Articles | Volume 17, issue 6
https://doi.org/10.5194/bg-17-1367-2020
https://doi.org/10.5194/bg-17-1367-2020
Research article
 | 
19 Mar 2020
Research article |  | 19 Mar 2020

A robust data cleaning procedure for eddy covariance flux measurements

Domenico Vitale, Gerardo Fratini, Massimo Bilancia, Giacomo Nicolini, Simone Sabbatini, and Dario Papale

Viewed

Total article views: 4,006 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,593 1,334 79 4,006 407 61 85
  • HTML: 2,593
  • PDF: 1,334
  • XML: 79
  • Total: 4,006
  • Supplement: 407
  • BibTeX: 61
  • EndNote: 85
Views and downloads (calculated since 25 Jul 2019)
Cumulative views and downloads (calculated since 25 Jul 2019)

Viewed (geographical distribution)

Total article views: 4,006 (including HTML, PDF, and XML) Thereof 3,601 with geography defined and 405 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 04 Mar 2024
Download
Short summary
This work describes a data cleaning procedure for the detection of eddy covariance fluxes affected by systematic errors. We believe that the proposed procedure can serve as a basis toward a unified quality control strategy suitable for the centralized data processing pipelines, where the use of completely data-driven and scalable procedures that guarantee high-quality standards and reproducibility of the released products constitutes an essential prerequisite.
Altmetrics
Final-revised paper
Preprint