Articles | Volume 17, issue 1
https://doi.org/10.5194/bg-17-145-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-145-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Tecnológico Nacional de México – I. T. Chetumal., Av. Insurgentes 330, Chetumal, 77013 Quintana Roo, Mexico
Laura Macario-González
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Tecnológico Nacional de México – I. T. de la Zona Maya,
Carretera Chetumal-Escárcega Km 21.5, Ejido Juan Sarabia, 77965 Quintana
Roo, Mexico
Sebastian Wagner
Zentrum für Material- und
Küstenforschung, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Katrin Naumann
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Paula Echeverría-Galindo
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Liseth Pérez
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Jason Curtis
Land Use and Environmental Change Institute, University of Florida, Gainesville, Florida 32611, USA
Department of Geological Sciences, University of Florida, Gainesville, Florida 32611, USA
Mark Brenner
Land Use and Environmental Change Institute, University of Florida, Gainesville, Florida 32611, USA
Department of Geological Sciences, University of Florida, Gainesville, Florida 32611, USA
Antje Schwalb
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Related authors
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Sudip Acharya, Maximilian Prochnow, Thomas Kasper, Linda Langhans, Peter Frenzel, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Christopher Berndt, Sönke Szidat, Gary Salazar, Antje Schwalb, and Roland Zech
E&G Quaternary Sci. J., 72, 219–234, https://doi.org/10.5194/egqsj-72-219-2023, https://doi.org/10.5194/egqsj-72-219-2023, 2023
Short summary
Short summary
This study presents a palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany. Before 870 CE peat deposits existed. Erosion increased from 1240 to 1380 CE, followed by aquatic productivity and anoxia from 1310 to 1470 CE. Increased allochthonous input and a substantial shift in the aquatic community in 1701 were caused by construction of a mill. Recent anoxia has been observed since the 1960s.
Steffen Kutterolf, Mark Brenner, Robert A. Dull, Armin Freundt, Jens Kallmeyer, Sebastian Krastel, Sergei Katsev, Elodie Lebas, Axel Meyer, Liseth Pérez, Juanita Rausch, Armando Saballos, Antje Schwalb, and Wilfried Strauch
Sci. Dril., 32, 73–84, https://doi.org/10.5194/sd-32-73-2023, https://doi.org/10.5194/sd-32-73-2023, 2023
Short summary
Short summary
The NICA-BRIDGE workshop proposes a milestone-driven three-phase project to ICDP and later ICDP/IODP involving short- and long-core drilling in the Nicaraguan lakes and in the Pacific Sandino Basin to (1) reconstruct tropical climate and environmental changes and their external controlling mechanisms over several million years, (2) assess magnitudes and recurrence times of multiple natural hazards, and (3) provide
baselineenvironmental data for monitoring lake conditions.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Ulrich Harms, Ulli Raschke, Flavio S. Anselmetti, Michael Strasser, Volker Wittig, Martin Wessels, Sebastian Schaller, Stefano C. Fabbri, Richard Niederreiter, and Antje Schwalb
Sci. Dril., 28, 29–41, https://doi.org/10.5194/sd-28-29-2020, https://doi.org/10.5194/sd-28-29-2020, 2020
Short summary
Short summary
Hipercorig is a new modular lake sediment coring instrument based on a barge and a hydraulic corer system driven by a down-the-hole hammer. Hipercorig's performance was tested on the two periglacial lakes, namely Mondsee and Constance, located on the northern edge of the Alpine chain. Up to 63 m of Holocene lake sediments and older meltwater deposits from the last deglaciation were recovered for the first time.
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Erik T. Brown, Margarita Caballero, Enrique Cabral Cano, Peter J. Fawcett, Socorro Lozano-García, Beatriz Ortega, Liseth Pérez, Antje Schwalb, Victoria Smith, Byron A. Steinman, Mona Stockhecke, Blas Valero-Garcés, Sebastian Watt, Nigel J. Wattrus, Josef P. Werne, Thomas Wonik, Amy E. Myrbo, Anders J. Noren, Ryan O'Grady, Douglas Schnurrenberger, and the MexiDrill Team
Sci. Dril., 26, 1–15, https://doi.org/10.5194/sd-26-1-2019, https://doi.org/10.5194/sd-26-1-2019, 2019
Short summary
Short summary
MexiDrill, the Basin of Mexico Drilling Program, recovered a continuous, high-resolution 400 000 year record of tropical North American environmental change. The field location, in the densely populated, water-stressed, Mexico City region, gives this record particular societal relevance. The record also contains a rich record of volcanic activity; knowledge of the history of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity.
Maria Pyrina, Eduardo Moreno-Chamarro, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-50, https://doi.org/10.5194/esd-2019-50, 2019
Revised manuscript not accepted
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Florence Sylvestre, Mathieu Schuster, Hendrik Vogel, Moussa Abdheramane, Daniel Ariztegui, Ulrich Salzmann, Antje Schwalb, Nicolas Waldmann, and the ICDP CHADRILL Consortium
Sci. Dril., 24, 71–78, https://doi.org/10.5194/sd-24-71-2018, https://doi.org/10.5194/sd-24-71-2018, 2018
Short summary
Short summary
CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions and the most continuous climatic and environmental record to be compared with hominid migrations across northern Africa and the implications for understanding human evolution.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Maria Pyrina, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 13, 1339–1354, https://doi.org/10.5194/cp-13-1339-2017, https://doi.org/10.5194/cp-13-1339-2017, 2017
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, Sebastian Wagner, and Juan José Gómez-Navarro
Clim. Past, 12, 317–338, https://doi.org/10.5194/cp-12-317-2016, https://doi.org/10.5194/cp-12-317-2016, 2016
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita
Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, https://doi.org/10.5194/cp-9-1667-2013, 2013
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Phytoplankton community disruption caused by latest Cretaceous global warming
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Araújo, M. and New, M.: Ensemble forecasting of species distributions,
Trends Ecol. Evol., 22, 42–47, https://doi.org/10.1016/j.tree.2006.09.010,
2007.
Araújo, M. and Peterson, A.: Uses and misuses of bioclimatic envelope models, Ecology, 93, 1527–1539, https://doi.org/10.1890/11-1930.1, 2012.
Arienzo, M. M., Swart, P. K., Pourmand, A., Broad, K., Clement, A. C., Murphy, L. N., Vonhof, H. B., and Kakuk, B.: Bahamas speleothem reveals climate variability associated with Heinrich events, Earth Planet. Sci. Lett., 430, 377e386, https://doi.org/10.1016/j.epsl.2015.08.035, 2015.
Bergmann, G. T. and Motta, P. J.: Diet and morphology through ontogeny of the nonindigenous Mayan cichlid “Cichlasoma (Nandopsis)” urophthalmus (Günther 1862) in southern Florida, Environ. Biol. Fish., 72, 205, https://doi.org/10.1007/s10641-004-1480-1, 2005.
Blois, J., Zarnetske, P., Fitzpatrick, M., and Finnegan, S.: Climate change and
the past, present, and future of biotic interactions, Science, 341,
499–504, https://doi.org/10.1126/science.1237184, 2013.
Bonetti, M. F. and Wiens, J. J.: Evolution of climatic niche specialization:
a phylogenetic analysis in amphibians, Proc. Biol. Sci., 281, 1795,
https://doi.org/10.1098/rspb.2013.3229, 2014.
Brady, G. S. and Robertson, D.: The Ostracoda and Foraminifera of tidal rivers. Part I, Ann. Mag. Nat. Hist. ser 4, 6, 1–33, 1870.
Brehm, V.: La fauna microscópica del Lago Petén, Guatemala, An. Esc. Nac. Cienc. Biol., 1, 173–203, 1939.
Brown, J. L.: SDMtoolbox: a python-based GIS toolkit for landscape genetic,
biogeographic, and species distribution model analyses, Methods Ecol. Evol.,
5, 694–700, https://doi.org/10.1111/2041-210X.12200, 2014.
Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S.,
Brander, K. M., Brown, C. Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding,
J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan,
C., Schwing, F. B., Sydema, W. J., and Richardson, A. J.: The pace of shifting
climate in marine and terrestrial ecosystems, Science, 334, 652–655,
https://doi.org/10.1126/science.1210288, 2011.
Busby, J. R.: BIOCLIM – a bioclimate analysis and prediction system, Plant
Prot. Q., 6, 8–9, 1991.
Bush, M. B. and Colinvaux, P. A.: A paleoecological perspective of tropical
forest disturbance: records of Darien Panama, Ecology, 75, 1761–1768,
1994.
Bush, M. B., Correa-Metrio, A. Y., Hodell, D. A., Brenner, M., Anselmetti,
F. S., Ariztegui, D., Mueller, D. A. D., Curtis, J. H., Grzesik, D. A., Burton, C.,
and Gilli, A.: Re-evaluation of climate change in lowland Central America
during the Last Glacial Maximum using new sediment cores from Lake Petén
Itzá, Guatemala, in: Climate Variability in South America and Surrounding
Regions from the Last Glacial Maximum to the Holocene, edited by: Vimeux,
F., Sylvestre, F., and Khodri, M., Past Springer, the Netherlands, 113–128,
https://doi.org/10.1007/978-90-481-2672-9_5, 2009.
Cavers, S., Navarro, C., and Lowe, A. J.: Chloroplast DNA phylogeography
reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica, Mol.
Ecol., 12, 1451–1460, https://doi.org/10.1046/j.1365-294X.2003.01810.x,
2003.
Chen, H. M., Zhou, T. J., Neale, R. B., Wu, X. Q., and Zhang, G. J.: Performance of the New NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the Convection Scheme, J. Climate, 23, 3657–3675, https://doi.org/10.1175/2010JCLI3022.1, 2010.
Cohuo, S., Macario-González, L., Pérez, L., and Schwalb, L.: Overview
of Neotropical-Caribbean freshwater ostracode fauna (Crustacea, Ostracoda):
identifying areas of endemism and assessing biogeographical affinities,
Hydrobiologia, 786, 5–21, https://doi.org/10.1007/s10750-016-2747-1, 2016.
Cohuo, S., Macario-González, L., Pérez, L., Sylvestre, F.,
Paillès, C., Curtis, J., Kutterolf, S., Wojewódka, M., Zawisza, E.,
Szeroczyńska, K., and Schwalb, A.: Ultrastructure and aquatic community
response to Heinrich Stadial (HS5a-HS1) in the continental northern
Neotropics, Quaternary Sci. Rev., 19, 75–91,
https://doi.org/10.1016/j.quascirev.2018.07.015, 2018.
Cole, L. E., Bhagwat, S. A., and Willis, K. J.: Recovery and resilience of
tropical forests after disturbance, Nat. Commun., 5, 3906,
https://doi.org/10.1038/ncomms4906, 2014.
Correa-Metrio, A., Bush, M., Cabrera, K., Sully, S., Brenner, M., Hodell,
D., Escobar J., and Guilderson, T.: Rapid climate change and no-analog
vegetation in lowland Central America during the last 86,000 years, Quaternary
Sci. Rev., 38, 63–75, https://doi.org/10.1016/j.quascirev.2012.01.025,
2012a.
Correa-Metrio, A., Bush, M. B., Hodell, D. A., Brenner, M., Escobar, J., and
Guilderson, T.: The influence of abrupt climate change on the ice-age
vegetation of the Central American lowlands, J. Biogeogr., 39, 497–509,
https://doi.org/10.1111/j.1365-2699.2011.02618.x, 2012b.
Correa-Metrio, A., Bush, M., Lozano-García, S., and Sosa-Nájera, S.:
Millennial-Scale Temperature Change Velocity in the Continental Northern
Neotropics, PLoS ONE, 8, e81958,
https://doi.org/10.1371/journal.pone.0081958, 2013.
Correa-Metrio, A., Meave, J. A., Lozano-García, S., and Bush, M. B.:
Environmental determinism and neutrality in vegetation at millennial time
scales, J. Veg. Sci., 25, 627–635, https://doi.org/10.1111/jvs.12129, 2014.
Daday, E.: Untersuchungen über die Süßwasser-Mikrofauna Paraguays, Zoologica, 18, 1–374, 1905.
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M.:
Beyond Predictions: Biodiversity Conservation in a Changing Climate,
Science, 332, 53–58, https://doi.org/10.1126/science.1200303, 2011.
Deevey, E. S., Brenner, M., and Binford, M. W.: Paleolimnology of the
Petén distric, Guatemala, Hydrobiologia, 103, 205–210,
https://doi.org/10.1007/BF00028453, 1983.
Dick, C. W., Abdul-Salim, K., and Bermingham, E.: Molecular systematic
analysis reveals cryptic Tertiary diversification of a widespread tropical
rain forest tree, Am. Nat., 162, 691–703,
https://doi.org/10.1086/379795, 2003.
Elith, J. and Leathwick, J.: Species Distribution Models: Ecological
Explanation and Prediction Across Space and Time, Annu. Rev. Ecol. Evol.
S., 40, 677–697, https://doi.org/10.1146/annurev.ecolsys.110308.120159,
2009.
Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y., and Yates, C.: A statistical explanation of MaxEnt for ecologists, Divers. Distrib., 17, 43–57, https://doi.org/10.1111/j.1472-4642.2010.00725.x, 2011.
Escobar, J., Hodell, D. A., Brenner, M., Curtis, J. H., Gilli, A., Mueller,
A. D., Anselmetti, F. S., Ariztegui, D., Grzesik, D. A., Pérez, L., Schwalb,
A., and Guilderson, T. P.: A ∼43 ka record of paleoenvironmental change
in the Central American lowlands inferred from stable isotopes of lacustrine
ostracods, Quaternary Sci. Rev., 37, 92–104,
https://doi.org/10.1016/j.quascirev.2012.01.020, 2012.
Ferguson Jr., E., Hutchinson, G., and Goulden, C.: Cypria petenensis, a new name for the ostracod Cypria pelagica Brehm 1932, Bull. Peabody Mus. Nat. Hist., 80, 1–4, 1964.
Franklin, J.: Mapping species distributions-spatial inference and prediction, Cambridge, University Press, Cambridge, 2010.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z. L., and Zhang, M.: The Community Climate System Model
Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1,
2011.
Georges, D. and Thuiller, W.: An example of species distribution modeling with BIOMOD2, R version, 2, 2013.
Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., Klein, S. A., Boyle, J., Mitchell, D. L., and Li, J. F. L.: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model, J. Geophys. Res., 115, D18216, https://doi.org/10.1029/2009JD013797, 2010.
Grauel, A., Hodell, D., and Bernasconi S.: Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka, Earth Planet. Sci. Lett., 438, 37–46, https://doi.org/10.1016/j.epsl.2016.01.001, 2016.
Guisan, A. and Thuiller, W.: Predicting Species Distribution: Offering More than Simple Habitat Models, Ecol. Lett., 8, 993–1009, https://doi.org/10.1111/j.1461-0248.2005.00792.x, 2005.
Guisan, A., Edwards Jr., T. C., and Hastie, T.: Generalized linear and generalized additive models in studies of species distributions: setting the scene, Ecol. Model., 157, 89–100, https://doi.org/10.1016/S0304-3800(02)00204-1, 2002.
Hastie, T. J. and Tibshirani, R. J.: Generalized additive models, CRC Press,
Boca Raton, FL, 1990.
Hijmans, R. J., Cameron, S., Parra, K., Jones, P., and Jarvis, A.: Very high
resolution interpolated climate surfaces for global land areas, Int. J.
Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hodell, D. A., Anselmetti, F., Ariztegui, D., Brenner, M., Curtis, J., Gilli,
A., Grzesik, D., Guilderson, T., Müller, A., Bush, M., Correa-Metrio,
A., Escobar, J., and Kutterolf, S.: An 85-ka record of climate change in
lowland Central America, Quaternary Sci. Rev., 27, 1152–1165,
https://doi.org/10.1016/j.quascirev.2008.02.008, 2008.
Hodell, D. A., Turchyn, A. J., Wiseman, C. V., Escobar, J., Curtis, J. H.,
Brenner, M., Gilli, A., Anselmetti, F., Ariztegui, D., Perez, L., Schwalb,
A., and Brown, E.: Late glacial temperature and precipitation changes in the
lowland Neotropics by tandem measurements of δ18O in biogenic
carbonate and gypsum hydration water, Geochim. Cosmochim. Ac., 77,
352–368, https://doi.org/10.1016/j.gca.2011.11.026, 2012.
Holm, J., Van Bloem, S. J., Larocque, G. R., and Shugart, H.: Shifts in
biomass and productivity for a subtropical dry forest in response to
simulated elevated hurricane disturbances, Environ. Res. Lett., 12, 025007,
https://doi.org/10.1088/1748-9326/aa583c, 2017.
Horne, D. J., Cohen, A., and Martens, K.: Taxonomy, morphology and biology of
Quaternary and living Ostracoda, in: The Ostracoda: Applications in
Quaternary Research, edited by: Holmes, J. A. and Chivas, A. R., Washington,
DC, American Geophysical Union, 131, 5–36, https://doi.org/10.1029/131GM02,
2002.
Hugall, A., Moritz, C., Moussalli, A., and Stanisic, J.: Reconciling
paleodistribution models and comparative phylogeography in the Wet Tropics
rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875), P. Natl. Acad. Sci. USA, 99,
6112–6117, https://doi.org/10.1073/pnas.092538699, 2002.
Johnson, A. B. and Winker, K.: Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience, PLoS ONE, 5, e15109, https://doi.org/10.1371/journal.pone.0015109, 2010.
Juggins, S.: C2 version 1.5 user guide, Software for ecological and
palaeoecological data analysis and visualization, Newcastle University,
Newcastle upon Tyne, UK, 2007.
Kageyama, M., Laine, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C.D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W.R., Rosell-Mele, A., Vettoretti, G., Weber, S. L., Yu, Y., and Members, M. P.: Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions, Quaternary Sci. Rev., 25, 2082–2102, https://doi.org/10.1016/j.quascirev.2006.02.010, 2006.
Karanovic, I. (Eds.): Recent Freshwater Ostracods of the World, Crustacea,
Ostracoda, Podocopida, Springer, Berlin, 2012.
Kutterolf, S., Schindlbeck, C., Anselmetti, S., Ariztegui, D., Brenner, M.,
Curtis, J., Schmid, D., Hodell, A., Mueller, A., Pérez, L., Pérez,
W., Schwalb, A., Frische, M., and Wang, L.: A 400-ka tephrochronological
framework for Central America from Lake Petén Itzá (Guatemala)
sediments, Quaternary Sci. Rev., 150, 200–220,
https://doi.org/10.1016/j.quascirev.2016.08.023, 2016.
Litsios, G., Pellissier, L., Forest, F., Lexer, C., Pearman, P. B.,
Zimmermann, N. E., and Salamin, N.: Trophic specialization influences the
rate of environmental niche evolution in damselfishes (Pomacentridae), P.
R. Soc. London, 279, 3662–3669, https://doi.org/10.1098/rspb.2012.1140,
2012.
Liu, H., Wang, C., Lee, S., and Enfield, D.: Atlantic warm pool variability in the CMIP5 simulations, J. Climate, 26, 5315–5336, https://doi.org/10.1175/JCLI-D-12-00556.1, 2013.
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., and
Ackerly, D. D.: The velocity of climate change, Nature, 462, 1052–1055,
https://doi.org/10.1038/nature08649, 2009.
Maguire, K. C. and Stigall, A. L.: Distribution of fossil horses in the Great Plains during the Miocene and Pliocene: An Ecological Niche Modelling Approach, Paleobiology, 35, 587–611, https://doi.org/10.1666/0094-8373-35.4.587, 2009.
Maguire, K. C., Nieto-Lugilde, D., Fitzpatrick, M. C., Williams, J. W., and Blois,
J. L.: Modeling species and community responses to past, present, and future
episodes of climatic and ecological change, Annu. Rev. Ecol. Evol. S.,
46, 343–368, https://doi.org/10.1146/annurev-ecolsys-112414-054441, 2015.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., and Thuiller, W.:
Evaluation of consensus methods in predictive species distribution
modelling, Divers. Distrib., 15, 59–69,
https://doi.org/10.1111/j.1472-4642.2008.00491.x, 2009.
Martínez-Meyer, E., Peterson, A., and Hargrove, W.: Ecological niches
as stable distributional constraints on mammal species, with implications
for Pleistocene extinctions and climate change projections for biodiversity,
Global Ecol. Biogeogr., 13, 305–314,
https://doi.org/10.1111/j.1466-822X.2004.00107.x, 2004.
McCullagh, P. and Nelder, J. A (Eds.): Generalized linear models, Chapman
& Hall/CRC monographs on Statistics & Applied Probability, Chapman and
Hall/CRC Press, London, 1989.
McGuire, J. L. and Davis, E. B.: Using the palaeontological record of
Microtus to test species distribution models and reveal responses to climate change,
J. Biogeogr., 40, 1490–500, https://doi.org/10.1111/jbi.12106, 2013.
Mercado-Salas, N. F., Morales-Vela, B., Suárez-Morales, E., and Iliffe,
T. M.: Conservation status of the inland aquatic crustaceans in the Yucatan
Peninsula, Mexico: shortcomings of a protection strategy, Aquat. Conserv., 23, 939–951, https://doi.org/10.1002/aqc.2350, 2013.
Mesquita-Joanes, F., Smith, A., and Viehberg, F.: The ecology of Ostracoda
across levels of biological organisation from individual to ecosystem: A
review of recent developments and future potential, in: Ostracoda as Proxies
for Quaternary Climate change, edited by: Horne, D. J., Holmes, J. A.,
Rodriguez-Lazaro, J., and Viehberg, F. A., Amsterdam, Elsevier, 15–35,
https://doi.org/10.1016/B978-0-444-53636-5.00002-0, 2012.
Mueller, A., Anselmetti, F., Ariztegui, D., Brenner, M., Hodell, D., Curtis,
J., Escobar, J., Gilli, A., Grzesik, D., Guilderson, T., Kutterolf, S., and
Plötze, M.: Late Quaternary palaeoenvironment of northern Guatemala:
evidence from deep drill cores and seismic stratigraphy of Lake Petén
Itzá, Sedimentology, 57, 1220–1245, https://doi.org/10.1111/j.1365-3091.2009.01144.x,
2010.
Neelin, J. D., Bracco, A., Luo, H., McWilliams, J. C., and Meyerson, J. E.: Considerations for parameter optimization and sensitivity in climate models, P. Natl. Acad. Sci. USA, 107, 21349–21354, https://doi.org/10.1073/pnas.1015473107, 2010.
Nogués-Bravo, D.: Predicting the past distribution of species climatic
niches, Global Ecol. Biogeogr., 18, 521–31,
https://doi.org/10.1111/j.1466-8238.2009.00476.x, 2009.
Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P., and
Araújo, M. B.: Climate change, humans, and the extinction of the woolly
mammoth, PLoS Biol., 6, e79, https://doi.org/10.1371/journal.pbio.0060079,
2008.
Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., Hu, A.,
and CAPE Last Interglacial Project members: Simulating Arctic Climate
Warmth and Icefield Retreat in the Last Interglaciation, Science, 311,
1751–1753, https://doi.org/10.1126/science.1120808, 2006.
Otto-Bliesner, B. L., Schneider, R., Brady, E. C., Kucera, M., Abe-Ouchi, A., Bard, E., Braconnot, P., Crucifix, M., Hewitt, C. D., Kageyama, M., Marti, O., Paul, A., Rosell-Mele, A., Waelbroeck, C., Weber, S. L., Weinelt, M., and Yu, Y.: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum, Clim. Dynam., 32, 799–815, https://doi.org/10.1007/s00382-008-0509-0, 2009.
Parmesan, C. and Yohe, G. A.: Globally coherent fingerprint of climate
change impacts across natural systems, Nature, 421, 37–42,
https://doi.org/10.1038/nature01286, 2003.
Pérez, L., Lorenschat, J., Brenner, M., Scharf, B., and Schwalb, A.:
Extant freshwater ostracodes (Crustacea: Ostracoda) from Lago Petén
Itzá, Guatemala, Rev. Biol. Trop., 58, 871–895,
https://doi.org/10.15517/rbt.v58i2.5252, 2010.
Pérez, L., Frenzel, P., Brenner, M., Escobar, J., Hoelzmann, P., Scharf,
B., and Schwalb, A.: Late Quaternary (24–10 ka BP)
environmental history of the Neotropical lowlands inferred from ostracodes
in sediments of Lago Petén Itzá, Guatemala, J. Paleolimnol., 46,
59–74, https://doi.org/10.1007/s10933-011-9514-0, 2011.
Perry, E., Velazquez-Oliman, G., and Marin, L.: The Hydrogeochemistry of the
Karst Aquifer System of the Northern Yucatan Peninsula, Mexico, Int. Geol.
Rev., 44, 191–221, https://doi.org/10.2747/0020-6814.44.3.191, 2002.
Peterson, A. T. and Nyári, Á.: Ecological niche conservatism and
Pleistocene refugia in the thrush-like mourner, Schiffornis sp., in the
Neotropics, Evolution, 62, 173–183,
https://doi.org/10.1111/j.1558-5646.2007.00258.x, 2008.
Peterson, A. T., Martínez-Meyer, E., and González-Salazar, C.:
Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae), Divers.
Distrib., 10, 237–246, https://doi.org/10.1111/j.1366-9516.2004.00097.x,
2004.
R Development Core Team: a language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, available at: https://www.r-project.org (last access: 20 July 2019), 2015.
Ridgeway, G.: The state of boosting, Comput. Sci. Stat., 31,
172–181, 1999.
Rodriguez-Lazaro, J. and Ruiz-Muñoz, F.: A general introduction to
ostracods: Morphology, distribution, fossil record and applications, in:
Ostracoda as Proxies for Quaternary Climate Change, edited by: Horne, D. J.,
Holmes, J. A., Rodriguez-Lazaro, J., and Viehberg, F. A., Amsterdam, Elsevier,
1–14, https://doi.org/10.1016/B978-0-444-53636-5.00001-9, 2012.
Ruegg, K., Hijmans, R., and Moritz, C.: Climate change and the origin of
migratory pathways in the Swainson's thrush, Catharus ustulatus, J. Biogeogr., 33, 1172–1182,
https://doi.org/10.1111/j.1365-2699.2006.01517.x, 2006.
Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J., Sutherland,
W. J., and Svenning, J. C.: The influence of Late Quaternary climate-change
velocity on species endemism, Science, 334, 660–664,
https://doi.org/10.1126/science.1210173, 2011.
Schmitter-Soto, J., Comín, F., Escobar-Briones, E., Herrera, J.,
Alcocer, J., Suarez-Morales, E., Elías-Gutiérrez, M., Díaz,
V., Marin, L., and Steinich, B.: Hydrogeochemical and biological
characteristics of cenotes in the Yucatan Peninsula (SE Mexico),
Hydrobiologia, 467, 215–228, https://doi.org/10.1023/A:1014923217206,
2002.
Solomon, S., Bacci, M., Martins, J., Vinha, G., and Mueller, U.:
Paleodistributions and comparative molecular phylogeography of leafcutter
ants (Atta spp.) provide new insight into the origins of Amazonian
diversity, PLoS ONE, 3, e2738, https://doi.org/10.1371/journal.pone.0002738,
2008.
Solomon, S., Daniel, J. S., Sanford, T. J., Murphy, D. M., Plattner, G., Knutti, R., and Friedlingstein, P.: Persistence of climate changes due to a range of greenhouse gases, P. Natl. Acad. Sci. USA, 107, 18354–18359, https://doi.org/10.1073/pnas.1006282107, 2010.
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J.-C., Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of precipitation in global models, J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532, 2010.
Svenning, J. C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D., and Normand, S.: Applications of species distribution modeling to paleobiology, Quat. Sci. Rev., 30, 2930–2947, https://doi.org/10.1016/j.quascirev.2011.06.012, 2011.
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – a
platform for ensemble forecasting of species distributions, Ecography, 32,
369–373, https://doi.org/10.1111/j.1600-0587.2008.05742.x, 2009.
Thuiller, W., Georges, D., and Engler, R.: Package “biomod2”: ensemble
platform for species distribution modeling, R package version 3, 3–7, 2015.
Tsuruoka, Y.: A simple C library for maximum entropy classification, available at:
https://www.logos.ic.i.u-tokyo.ac.jp/~tsuruoka/maxent/ (last access: 23 July 2019), 2006.
Valtierra-Vega, M. T. and Schmitter-Soto, J. J.: Hábitos alimentarios de las mojarras (Perciformes: Cichlidae) de la laguna Caobas, Quintana Roo, México, Rev. Biol. Trop., 48, 503–508, 2000.
Van Bloem, S. J., Lugo, A. E., and Murphy, P. G.: Structural response of
Caribbean dry forests to hurricane winds: a case study from Guanica Forest,
Puerto Rico, J. Biogeogr., 33, 517–523, https://doi.org/10.1111/j.1365-2699.2005.01450.x, 2006.
Vázquez-Domínguez, E. and Arita, H.: The Yucatan peninsula:
biogeographical history 65 million years in the making, Ecology, 33,
212–219, https://doi.org/10.1111/j.1600-0587.2009.06293.x, 2010.
Veloz, S. D., Williams, J. W., Blois, J. L., He, F., Otto-Bliesner, B., and
Liu, Z.: No-analog climates and shifting realized niches during the late
quaternary: implications for 21st-century predictions by species
distribution models, Glob. Change Biol., 18, 1698–713,
https://doi.org/10.1111/j.1365-2486.2011.02635.x, 2012.
Waltari, E. and Guralnick, R.: Ecological niche modelling of montane
mammals in the Great Basin, North America: examining past and present
connectivity of species across basins and ranges, J. Biogeogr., 36,
148–161, https://doi.org/10.1111/j.1365-2699.2008.01959.x, 2009.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Will, T.: Birds of a severely hurricane-damaged Atlantic coast rain forest in Nicaragua, Biotropica, 23, 497–507, https://doi.org/10.2307/2388272, 1991.
Wunderle Jr., J. M., Lodge, D. J., and Waide, R. B.: Short-term effects of Hurricane Gilbert on terrestrial bird populations on Jamaica, Auk, 109, 148–166, https://doi.org/10.2307/4088275, 1992.
Yasuhara, M., Cronin, T., de Menocal, P., Okahashi, H., and Linseley, B.:
Abrupt climate change and collapse of deep-sea ecosystems, P. Natl. Acad.
Sci. USA, 105, 1556–1560, https://doi.org/10.1073/pnas.0705486105, 2008.
Yasuhara, M., Hunt, G., Cronin, T., and Okahashi, H.: Temporal
latitudinal-gradient dynamics and tropical instability of deep-sea species
diversity, P. Natl. Acad. Sci. USA, 106, 21717–21720,
https://doi.org/10.1073/pnas.0910935106, 2009.
Yasuhara, M., Okahashi, H., Cronin, T., Rasmussen, T., and Hunt, G.:
Response of deep-sea biodiversity to abrupt deglacial and Holocene climate
changes in the North Atlantic Ocean, Global Ecol. Biogeogr., 23, 957–967,
https://doi.org/10.1111/geb.12178, 2014.
Yasuhara, M., Tittensor, D., Hillebrand, H., and Worm, B.: Combining marine
macroecology and palaeoecology in understanding biodiversity: Microfossils
as a model, Biol. Rev., 92, 199–215, https://doi.org/10.1111/brv.12223,
2017.
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
We evaluated how freshwater ostracode species responded to long-term and abrupt climate...
Altmetrics
Final-revised paper
Preprint