Articles | Volume 17, issue 6
https://doi.org/10.5194/bg-17-1557-2020
https://doi.org/10.5194/bg-17-1557-2020
Research article
 | 
26 Mar 2020
Research article |  | 26 Mar 2020

Phytoplankton and dimethylsulfide dynamics at two contrasting Arctic ice edges

Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (05 Feb 2020) by Emilio Marañón
AR by M. Lizotte on behalf of the Authors (07 Feb 2020)  Author's response   Manuscript 
ED: Publish subject to technical corrections (12 Feb 2020) by Emilio Marañón
AR by M. Lizotte on behalf of the Authors (16 Feb 2020)  Manuscript 
Download
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Altmetrics
Final-revised paper
Preprint