Articles | Volume 17, issue 13
https://doi.org/10.5194/bg-17-3631-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-3631-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting decadal trends of subsurface excess nitrate in the western and eastern North Atlantic Ocean
Jin-Yu Terence Yang
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
Division of Environmental Science and Engineering, Pohang University
of Science and Technology, Pohang 37673, Korea
Division of Environmental Science and Engineering, Pohang University
of Science and Technology, Pohang 37673, Korea
Jia-Zhong Zhang
National Oceanic and Atmospheric Administration, Atlantic
Oceanographic and Meteorological Laboratory, Miami, FL 33149, USA
Ji-Young Moon
Division of Environmental Science and Engineering, Pohang University
of Science and Technology, Pohang 37673, Korea
Joon-Soo Lee
Ocean Climate and Ecology Research Division, National Institute of
Fisheries Science, Busan 46083, Korea
In-Seong Han
Ocean Climate and Ecology Research Division, National Institute of
Fisheries Science, Busan 46083, Korea
Eunil Lee
Ocean Research Division, Korea Hydrographic and Oceanographic
Agency, Busan 49111, Korea
Related authors
Yifan Ma, Kuanbo Zhou, Weifang Chen, Junhui Chen, Jin-Yu Terence Yang, and Minhan Dai
Biogeosciences, 20, 2013–2030, https://doi.org/10.5194/bg-20-2013-2023, https://doi.org/10.5194/bg-20-2013-2023, 2023
Short summary
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
Shuh-Ji Kao, Tzu-Ling Chiang, Da-Wei Li, Yi-Chia Hsin, Li-Wei Zheng, Jin-Yu Terence Yang, Shih-Chieh Hsu, Chau-Ron Wu, and Minhan Dai
Clim. Past Discuss., https://doi.org/10.5194/cp-2015-167, https://doi.org/10.5194/cp-2015-167, 2016
Preprint withdrawn
Short summary
Short summary
A 3-D model was run for the South China Sea to explore the effects of sea level drop and monsoon wind intensity on glacial patterns of circulation and ventilation. Winter northeasterly monsoon wind intensity governs the volume transport of Kuroshio intrusion through the Luzon Strait, subsequently, the water exchange rate and the mean residence time of water body of the SCS.
J.-Y. T. Yang, S.-C. Hsu, M. H. Dai, S. S.-Y. Hsiao, and S.-J. Kao
Biogeosciences, 11, 1833–1846, https://doi.org/10.5194/bg-11-1833-2014, https://doi.org/10.5194/bg-11-1833-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
Yifan Ma, Kuanbo Zhou, Weifang Chen, Junhui Chen, Jin-Yu Terence Yang, and Minhan Dai
Biogeosciences, 20, 2013–2030, https://doi.org/10.5194/bg-20-2013-2023, https://doi.org/10.5194/bg-20-2013-2023, 2023
Short summary
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
Marjan Marbouti, Sehyun Jang, Silvia Becagli, Gabriel Navarro, Rita Traversi, Kitack Lee, Tuomo Nieminen, Lisa J. Beck, Markku Kulmala, Veli-Matti Kerminen, and Mikko Sipilä
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-52, https://doi.org/10.5194/acp-2022-52, 2022
Publication in ACP not foreseen
Short summary
Short summary
This research was done to understand and investigate the roles of Chl-a, PP and sea ice extent in controlling and producing the in-situ measured MSA, SA, HIO3, HOM and aerosol concentrations over the Greenland and Barents Seas. Our results provide strong support to the hypothesis that MSA, SA and small-particle concentrations in the Svalbard area are directly linked to ocean biological activity and sea ice melting during springtime.
Sehyun Jang, Ki-Tae Park, Kitack Lee, Young Jun Yoon, Kitae Kim, Hyun Young Chung, Eunho Jang, Silvia Becagli, Bang Yong Lee, Rita Traversi, Konstantinos Eleftheriadis, Radovan Krejci, and Ove Hermansen
Atmos. Chem. Phys., 21, 9761–9777, https://doi.org/10.5194/acp-21-9761-2021, https://doi.org/10.5194/acp-21-9761-2021, 2021
Short summary
Short summary
This study provides comprehensive datasets encompassing seasonal and interannual variations in sulfate and MSA concentration in aerosol particles in the Arctic atmosphere. As oxidation products of DMS have important roles in new particle formation and growth, we focused on factors affecting their variability and the branching ratio of DMS oxidation. We found a strong correlation between the ratio and the light condition, chemical properties of particles, and biological activities near Svalbard.
Ki-Tae Park, Sehyun Jang, Kitack Lee, Young Jun Yoon, Min-Seob Kim, Kihong Park, Hee-Joo Cho, Jung-Ho Kang, Roberto Udisti, Bang-Yong Lee, and Kyung-Hoon Shin
Atmos. Chem. Phys., 17, 9665–9675, https://doi.org/10.5194/acp-17-9665-2017, https://doi.org/10.5194/acp-17-9665-2017, 2017
Short summary
Short summary
We evaluated the connection between DMS and the formation of aerosol particles in the Arctic atmosphere by analyzing multiple datasets of atmospheric DMS, aerosol particle size distributions and aerosol chemical composition that were collected at Ny-Ålesund, Svalbard (78.5° N, 11.8° E), during April–May 2015. The key finding from this research is that the contribution of biogenic DMS to the formation of aerosol particles was substantial during the phytoplankton bloom period.
Jong-Hoon Jeong, Dong-In Lee, Chung-Chieh Wang, and In-Seong Han
Nat. Hazards Earth Syst. Sci., 16, 927–939, https://doi.org/10.5194/nhess-16-927-2016, https://doi.org/10.5194/nhess-16-927-2016, 2016
Short summary
Short summary
An extreme rainfall-producing mesoscale convective system (MCS) associated with the Changma front in south-eastern South Korea was investigated using observational data. The aim of the present study is to analyze and better understand the synoptic and mesoscale environment and the behaviour of the MCS causing natural hazards over South Korea.
Shuh-Ji Kao, Tzu-Ling Chiang, Da-Wei Li, Yi-Chia Hsin, Li-Wei Zheng, Jin-Yu Terence Yang, Shih-Chieh Hsu, Chau-Ron Wu, and Minhan Dai
Clim. Past Discuss., https://doi.org/10.5194/cp-2015-167, https://doi.org/10.5194/cp-2015-167, 2016
Preprint withdrawn
Short summary
Short summary
A 3-D model was run for the South China Sea to explore the effects of sea level drop and monsoon wind intensity on glacial patterns of circulation and ventilation. Winter northeasterly monsoon wind intensity governs the volume transport of Kuroshio intrusion through the Luzon Strait, subsequently, the water exchange rate and the mean residence time of water body of the SCS.
J.-Y. T. Yang, S.-C. Hsu, M. H. Dai, S. S.-Y. Hsiao, and S.-J. Kao
Biogeosciences, 11, 1833–1846, https://doi.org/10.5194/bg-11-1833-2014, https://doi.org/10.5194/bg-11-1833-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
J.-H. Kim, K. Y. Kim, E. J. Kang, K. Lee, J.-M. Kim, K.-T. Park, K. Shin, B. Hyun, and H. J. Jeong
Biogeosciences, 10, 7525–7535, https://doi.org/10.5194/bg-10-7525-2013, https://doi.org/10.5194/bg-10-7525-2013, 2013
I.-N. Kim, K. Lee, H. W. Bange, and A. M. Macdonald
Biogeosciences, 10, 6783–6792, https://doi.org/10.5194/bg-10-6783-2013, https://doi.org/10.5194/bg-10-6783-2013, 2013
Cited articles
Altieri, K. E., Hastings, M. G., Peters, A. J., Oleynik, S., and Sigman, D.
M.: Isotopic evidence for a marine ammonium source in rainwater at Bermuda,
Global Biogeochem. Cy., 28, 1066–1080,
https://doi.org/10.1002/2014GB004809, 2014.
Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings,
M. G.: Marine biogenic source of atmospheric organic nitrogen in the
subtropical North Atlantic, P. Natl. Acad. Sci. USA, 113, 925–930,
https://doi.org/10.1073/pnas.1516847113, 2016.
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization
determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80,
https://doi.org/10.1029/93GB03318, 1994.
Antia, A. N.: Solublization of particles in sediment trap, revising the
stoichiometry of mixed layer export, Biogeosciences, 2, 189–204,
https://doi.org/10.5194/bg-2-189-2005, 2005.
Baker, A. R., Lesworth, T., Adams, C., Jickells, T. D., and Ganzeveld, L.:
Estimation of atmospheric nutrient inputs to the Atlantic Ocean from
50∘ N to 50∘ S based on large-scale field sampling:
Fixed nitrogen and dry deposition of phosphorus, Global Biogeochem. Cy.,
24, GB3006, https://doi.org/10.1029/2009GB003634, 2010.
Baringer, M., Bullister, J., Feely, R., Wanninkhof, R., Millero, F.,
Hansell, D., Zhang, J.-Z., Mordy, C., Langdon, C., Schlosser, P., Jenkins,
W., McNichol A., and Key, R.: Carbon Dioxide, Hydrographic, and Chemical
Data Obtained During the R/V Ronald H. Brown Cruise in the Atlantic Ocean on
GO-SHIP/CLIVAR Repeat Hydrography Section A16N (3 August–1 October 2013).
Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory,
US Department of Energy, Oak Ridge, Tennessee,
https://doi.org/10.3334/CDIAC/OTG.GOSHIP_A16N_2013, 2014
Bates, N. R. and Hansell, D. A.: Temporal variability of excess nitrate in
the subtropical mode water of the North Atlantic Ocean, Mar. Chem., 84,
225–241, https://doi.org/10.1016/j.marchem.2003.08.003, 2004.
Benavides, M. and Voss, M.: Five decades of N2 fixation research in
the North Atlantic Ocean, Front. Mar. Sci., 2, 1–20,
https://doi.org/10.3389/fmars.2015.00040, 2015.
Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A.
M., Hauglustaine, D., Horowitz, L. W., Krol, M., Kulshrestha, U. C.,
Lawrence, M., Galy-Lacaux, C., Rast, S., Shindell, D., Stevenson, D., Van
Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T., Cofala, J.,
Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro,
V., Müller, J. F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F.,
Strahan, S., Schultz, M., Sudo, K., Szopa, S., and Wild, O.: Nitrogen and
sulfur deposition on regional and global scales: A multimodel evaluation,
Global Biogeochem. Cy., 20, GB4003, https://doi.org/10.1029/2005gb002672,
2006.
Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T.,
Lamarque, J. -F., and Rasch, P. J.: Impact of anthropogenic atmopheric
nitrogen and sulfur deposition on ocean acidification and the inorganic
carbon system, P. Natl. Acad. Sci. USA, 104, 14580–14585,
https://doi.org/10.1073/pnas.0702218104, 2007.
Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone,
D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R.
J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M.,
Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T.,
Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M.,
Ulloa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of atmospheric
anthropogenic nitrogen on the open ocean, Science, 320, 893–897,
https://doi.org/10.1126/science.1150369, 2008
EPA: National Air Pollutant Emission Trends, 1900–1998, Office of Air
Quality Planning and Standards, Research Triangle Park, A7–A10, 2000.
Fanning, K. A.: Influence of atmospheric pollution on nutrient limitation in
the ocean, Nature, 339, 460–463, https://doi.org/10.1038/339460a0, 1989.
Foltz, G. R. and McPhaden, M. J.: Trends in Saharan dust and tropical
Atlantic climate during 1980–2006, Geophys. Res. Lett., 35, L20706,
https://doi.org/10.1029/2008GL035042, 2008.
Fowler, D., Pyle, J. A., Raven, J. A., and Sutton, M. A.: The golbal
nitrogen cycle in the twenty-first century, Philos. T. R. Soc. Lond. B, 368, 1–13, https://doi.org/10.1098/rstb.2013.0164, 2013.
Galloway, J. N., Howarth, R. W., Michaels, A. F., Nixon, S. W., Prospero, J.
M., and Dentener, F. J.: Nitrogen and phosphorus budgets of the North
Atlantic Ocean and its watershed, Biogeochemistry, 35, 3–25,
https://doi.org/10.1007/BF02179823, 1996.
GLODAPv2 group: GLODAPv2 Atlantic Ocean, available at: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0162565/data_product/, last access: 10 July 2020.
Gruber, N. and Deutsch, C. A.: Redfield's evolving legacy, Nat. Geosci., 7,
853–855, https://doi.org/10.1038/ngeo2308, 2014.
Gruber, N. and Sarmiento, J.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077, 1997.
Hansell, D. A., Bates, N. R., and Olson, D. B.: Excess nitrate and nitrogen
fixation in the North Atlantic Ocean, Mar. Chem., 84, 243–265,
https://doi.org/10.1016/j.marchem.2003.08.004, 2004.
Hansell, D. A., Olson, D. B., Dentener, F., and Zamora, L. M.: Assessment of
excess nitrate development in the subtropical North Atlantic, Mar. Chem.,
106, 562–579, https://doi.org/10.1016/j.marchem.2007.06.005, 2007.
Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for
source changes of nitrate in rain at Bermuda, J. Geophys. Res.-Atmos.,
108, 4790, https://doi.org/10.1029/2003JD003789, 2003.
Hydes, D., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S.,
Daniel, A., Dickson, A., Grosso, O., Kerouel, R., van Ooijen, J., Sato, K.,
Tanhua, T., Woodward, M., and Zhang, J.: Determination of dissolved
nutrients (N, P, Si) in seawater with high precision and inter-comparability
using gas-segmented continuous flow analysers, in: The GO-SHIP Repeat
Hydrography Manual: A Collection of Expert Reports and guidelines. IOCCP
Report No 14, ICPO Publication Series No. 134, version 1, UNESCO/IOC., 87,
2010.
Jickells, T. and Moore, C. M.: The importance of atmospheric deposition for
ocean productivity, Annu. Rev. Ecol. Evol. S., 46, 481–501,
https://doi.org/10.1146/annurev-ecolsys-112414-054118, 2015.
Jickells, T. D., Buitenhuis, E., Altieri, K., Baker, A. R., Capone, D.,
Duce, R. A., Dentener, F., Fennel, K., Kanakidou, M., LaRoche, J., Lee, K.,
Liss, P., Middelburg, J. J., Moore, J. K., Okin, G., Oschlies, A., Sarin,
M., Seitzinger, S., Sharples, J., Singh, A., Suntharalingam, P., Uematsu,
M., and Zamora, L. M.: A reevaluation of the magnitude and impacts of
anthropogenic atmospheric nitrogen inputs on the ocean, Global Biogeochem.
Cy., 31, 289–305, https://doi.org/10.1002/2016GB005586, 2017.
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T.:
Global Ocean Data Analysis Project, Version 2 (GLODAPv2), (ORNL/CDIAC-162,
ND-P093), Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, US Department of Energy, 1–9, 2015.
Kim, I.-N., Lee, K., Gruber, N., Karl, D. M., Bullister, J. L., Yang, S.,
and Kim, T.-W.: Increasing anthropogenic nitrogen in the North Pacific
Ocean, Science, 346, 1102–1106, https://doi.org/10.1126/science.1258396,
2014.
Kim, T.-W., Lee, K., Najjar, R. G., Jeong, H. D., and Jeong, H. J.:
Increasing N abundance in the northwestern Pacific Ocean due to atmospheric
nitrogen deposition, Science, 334, 505–509,
https://doi.org/10.1126/science.1206583, 2011.
Kim, T.-W., Lee, K. Duce, R., and Liss, P.: Impact of atmospheric nitrogen
deposition on phytoplankton productivity in the South China Sea, Geophys.
Res. Lett., 41, 3156–3162, https://doi.org/10.1002/2014GL059665, 2014.
Knapp, A. N., Hastings, M. G., Sigman, D. M., Lipschultz, F., and Galloway,
J. N.: The flux and isotopic composition of reduced and total nitrogen in
Bermuda rain, Mar. Chem., 120, 83–89,
https://doi.org/10.1016/j.marchem.2008.08.007, 2010.
Ko, Y. H., Lee, K., Takahashi, T., Karl, D. M., Kang, S.-H., and Lee, E.:
Carbon-based estimate of nitrogen-fixation-derived net community production
in N-depleted ocean gyres, Global Biogeochem. Cy., 32, 1241–1252,
https://doi.org/10.1029/2017GB005634, 2018.
Landolfi, A., Oschlies, A., and Sanders, R.: Organic nutrients and excess
nitrogen in the North Atlantic subtropical gyre, Biogeosciences, 5,
1199–1213, https://doi.org/10.5194/bg-5-1199-2008, 2008.
Lee, K.: Global net community production estimated from the annual cycle of
surface water total dissolved inorganic carbon, Limnol. Oceanogr., 46,
1287–1297, https://doi.org/10.4319/lo.2001.46.6.1287, 2001.
Lee, K., Karl, D. M., Wanninkhof, R., and Zhang, J.-Z.: Global estimates of
net carbon production in the nitrate-depleted tropical and subtropical
oceans, Geophys. Res. Lett., 29, 1907, https://doi.org/10.1029/2001GL014198,
2002.
Liu, X. Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P.,
Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.:
Enhanced nitrogen deposition over China, Nature, 494, 459–462,
https://doi.org/10.1038/nature11917, 2013.
Lomas, M. W., Burke, A. L., Lomas, D. A., Bell, D. W., Shen, C., Dyhrman, S.
T., and Ammerman, J. W.: Sargasso Sea phosphorus biogeochemistry: an
important role for dissolved organic phosphorus (DOP), Biogeosciences, 7,
695–710, https://doi.org/10.5194/bg-7-695-2010, 2010.
Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I.,
Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G.,
Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L.
I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen,
K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J.,
Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P.
H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J.
A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P.,
Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A.,
Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr,
J. P.: Database of diazotrophs in global ocean, abundance, biomass and
nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73,
https://doi.org/10.5194/essd-4-47-2012, 2012.
Mahaffey, C., Michaels, A. F., and Capone, D. G.: The conundrum of marine
N2 fixation, Am. J. Sci. 305, 546–595,
https://doi.org/10.2475/ajs.305.6-8.546, 2005.
Martiny, A. C., Lomas, M. W., Fu, W., Boyd, P. W., Chen, Y.-l. L., Cutter,
G. A., Ellwood, M. J., Furuya, K., Hashihama, F., Kanda, J., Karl, D. M.,
Kodama, T., Li, Q. P., Ma, J., Moutin, T., Woodward, E. M. S., and Moore, J.
K.: Biogeochemical controls of surface ocean phosphate, Sci. Adv., 5,
eaax0341, https://doi.org/10.1126/sciadv.aax0341, 2019.
Moon, J.-Y., Lee, K., Tanhua, T., Kress, N., and Kim, I.-N.: Temporal
nutrient dynamics in the Mediterranean Sea in response to anthropogenic
inputs, Geophys. Res. Lett., 43, 5243–5251,
https://doi.org/10.1002/2016GL068788, 2016.
Moore, C. M.: Diagnosing oceanic nutrient deficiency, Philos. T. R.
Soc. A, 374, 20150290, https://doi.org/10.1098/rsta.2015.0290, 2016.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsude, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013.
Okin, G. S., Baker, A. R., Tegen, I., Mahowald, N. M., Dentener, F. J.,
Duce, R. A., Galloway, J. N., Hunter, K., Kanakidou, M., Kubilay, N.,
Prospero, J. M., Sarin, M., Surapipith, V., Uematsu, M., and Zhu, T.:
Impacts of atmospheric nutrient deposition on marine productivity, Roles of
nitrogen, phosphorus, and iron, Global Biogeochem. Cy., 25, GB2022,
https://doi.org/10.1029/2010GB003858, 2011.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.:
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally
consistent data product for the world ocean, Earth Syst. Sci. Data, 8,
297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Palter, J. B., Lozier, M. S., and Barber, R. T.: The effect of advection on
the nutrient reservoir in the North Atlantic subtropical gyre, Nature, 437,
687-692, https://doi.org/10.1038/nature03969, 2005.
Palter, J. B., Lozier, M. S., Samiento, J. L., and Williams, R. G.: The
supply of excess phosphate across the Gulf Stream and the maintenance of
subtropical nitrogen fixation, Global Biogeochem. Cy., 25, GB4007,
https://doi.org/10.1029/2010GB003955, 2011.
Ren, H., Chen, Y.-C., Wang, X. T., Wong, G. T. F., Cohen, A. L., DeCarlo, T.
M., Weigand, M. A., Mii, H.-S., and Sigman, D. M.: 21st-century rise in
anthropogenic nitrogen deposition on a remote coral reef, Science, 356,
749–752, https://doi.org/10.1126/science.aal3869, 2017.
Ridley, D. A., Heald, C. L., and Prospero, J. M.: What controls the recent
changes in African mineral dust aerosol across the Atlantic?, Atoms. Chem.
Phys., 14, 5735–5747, https://doi.org/10.5194/acp-14-5735-2014, 2014.
Ríos, A. F., Resplandy, L., García-Ibáñez, M. I., Fajar,
N. M., Velo, A., Padin, X. A., Wanninkhof, R., Steinfeldt, R., Rosón,
G., and Pérez, F. F.: Decadal acidification in the water masses of the
Atlantic Ocean, P. Natl. Acad. Sci. USA, 112, 9950–9955,
https://doi.org/10.1073/pnas.1504613112, 2015.
Rodwell, M. J., Rowell, D. P., and Folland, C. K.: Oceanic forcing of the
wintertime North Atlantic Oscillation and European climate, Nature, 398,
320–323, https://doi.org/10.1038/18648, 1999.
Robson, J., Ortega, P., and Sutton, R.: A reversal of climatic trends in the
North Atlantic since 2005, Nat. Geosci., 9, 513–517,
https://doi.org/10.1038/ngeo2727, 2016.
Singh, A., Lomas, M. W., and Bates, N. R.: Revisiting N2 fixation in
the North Atlantic Ocean: Significance of deviations from the Redfield
Ratio, atmospheric deposition and climate variability, Deep-Sea Res. Pt.
II, 93, 148–158, https://doi.org/10.1016/j.dsr2.2013.04.008, 2013.
Singh, A., Baer, S. E., Riebesell, U., Martiny, A. C., and Lomas, M. W.: C,
N, P stoichiometry at the Bermuda Atlantic Time-series Study station in the
North Atlantic Ocean, Biogeosciences, 12, 6389–6403,
https://doi.org/10.5194/bg-12-6389-2015, 2015.
Srokosz, M. A. and Bryden, H. L.: Observing the Atlantic Meridional
Overturning Circulation yields a decade of inevitable surprises, Science,
348, 1330, https://doi.org/10.1126/science.1255575, 2015.
St-Laurent, P., Friedrichs, M. A. M., Najjar, R. G., Martins, D. K.,
Herrmann, M., Miller, S. K., and Wilkin, J.: Impacts of atmospheric nitrogen
deposition on surface waters of the western North Atlantic mitigated by
multiple feedbacks, J. Geophys. Res.-Ocean., 122, 8406–8426,
https://doi.org/10.1002/2017JC013072, 2017.
Takahashi, T., Broecker, W. S., and Langer, S.: Redfield ratio based on
chemical data from isopycnal surfaces, J. Geophys. Res., 90, 6907–6924,
https://doi.org/10.1029/JC090iC04p06907, 1985.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A.,
Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J.,
Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N.
M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of
precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base
cations, organic acids, acidity and pH, and phosphorus, Atmos. Environ., 93,
3–100, https://doi.org/10.1016/j.atmosenv.2013.10.060, 2014.
Wang, X. T., Cohen, A. L., Luu, V., Ren, H., Su, Z., Haug, G. H., and
Sigman, D. M.: Natural forcing of the North Atlantic nitrogen cycle in the
Anthropocene, P. Natl. Acad. Sci. USA, 115, 10606–10611,
https://doi.org/10.1073/pnas.1801049115, 2018.
Woosley, R. J., Millero, F. J., and Wanninkhof, R.: Rapid anthropogenic
changes in CO2 and pH in the Atlantic Ocean: 2003–2014, Global
Biogeochem. Cy., 30, 70–90, https://doi.org/10.1002/2015GB005248, 2016.
Yang, J. Y. T., Hsu, S. C., Dai, M. H., Hsiao, S. S. Y., and Kao, S. J.:
Isotopic composition of water-soluble nitrate in bulk atmospheric deposition
at Dongsha Island, sources and implications of external N supply to the
northern South China Sea, Biogeosciences, 11, 1833–1846,
https://doi.org/10.5194/bg-11-1833-2014, 2014.
Yang, S. and Gruber, N.: The anthropogenic perturbation of the marine
nitrogen cycle by atmospheric deposition, Nitrogen cycle feedbacks and the
15N Habor-Bosch effect, Global Biogeochem. Cy., 30, 1418–1440,
https://doi.org/10.1002/2016GB005421, 2016.
Zamora, L. M., Landolfi, A., Oschlies, A., Hansell, D. A., Dietze, H., and
Dentener F.: Atmospheric deposition of nutrients and excess N formation in
the North Atlantic, Biogeosciences, 7, 777–793,
https://doi.org/10.5194/bg-7-777-2010, 2010.
Zhang, J.-Z., Mordy, C. W., Gordon, L. I., Ross, A., and Garcia, H. E..:
Temporal trends in deep ocean Redfield ratios, Science, 289, 1839–1839,
https://doi.org/10.1126/science.289.5486.1839a, 2000.
Zhang, J.-Z., Wanninkhof, R., and Lee, K.: Enhanced new production observed
from the diurnal cycle of nitrate in an oligotrophic anticyclonic eddy,
Geophys. Res. Lett., 28, 1579–1582, https://doi.org/10.1029/2000GL012065,
2001.
Short summary
The anthropogenic nitrogen deposition has led to an increase in nitrate relative to phosphate in the upper oligotrophic waters; however, this anthropogenic nitrogen signal is unclear in the North Atlantic. We analyzed datasets from repeated measurements on meridional and zonal transects in the upper North Atlantic between the 1980s and 2010s and found that the anthropogenic nitrogen signal has been found only in the upper western North Atlantic.
The anthropogenic nitrogen deposition has led to an increase in nitrate relative to phosphate in...
Altmetrics
Final-revised paper
Preprint