Articles | Volume 18, issue 6
https://doi.org/10.5194/bg-18-2003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Topography-based statistical modelling reveals high spatial variability and seasonal emission patches in forest floor methane flux
Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
Environmental Soil Sciences, Department of Agricultural Sciences,
University of Helsinki, Helsinki, Finland
Institute for Atmospheric and Earth System Research (INAR)/Forest
Science, University of Helsinki, Helsinki, Finland
Olli Peltola
Climate Research Programme, Finnish Meteorological Institute,
Helsinki, Finland
Ville Kasurinen
Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
Antti-Jussi Kieloaho
Natural Resources Institute Finland (LUKE), Helsinki, Finland
Eeva-Stiina Tuittila
School of Forest Sciences, University of Eastern Finland, Joensuu,
Finland
Mari Pihlatie
Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
Environmental Soil Sciences, Department of Agricultural Sciences,
University of Helsinki, Helsinki, Finland
Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
Related authors
No articles found.
Markku Koskinen, Jani Anttila, Valerie Vranová, Ladislav Holík, Kevin Roche, Michel Vorenhout, Mari Pihlatie, and Raija Laiho
Biogeosciences, 22, 3989–4012, https://doi.org/10.5194/bg-22-3989-2025, https://doi.org/10.5194/bg-22-3989-2025, 2025
Short summary
Short summary
Redox potential, indicative of the active pathways of organic matter decomposition, was monitored for 2 years in a boreal peatland with three drainage regimes. Contrary to expectations, the water table level and redox potential were not found to be correlated in a monotonic fashion; thus, the relationship between the water table level and redox conditions is not modellable using non-dynamic models.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025, https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Short summary
Our research explores diverse ecosystems’ roles in climate cooling via the concept of CarbonSink+ potential. We measured CO2 uptake and local aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that, while forests are vital with regard to CarbonSink+ potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resources to mitigate global warming.
Reija Kronberg, Sanna Kanerva, Markku Koskinen, Tatu Polvinen, Tuomas Mattila, and Mari Pihlatie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2801, https://doi.org/10.5194/egusphere-2025-2801, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied how off-season waterlogging affects CO2 and CH4 fluxes, and dissolved carbon dynamics in two cultivated boreal mineral soils. The study was conducted with intact soil profiles in a greenhouse. Waterlogging reduced immediate CO2 efflux, but CO2 accumulated in porewater and was released to the atmosphere upon soil drying. Cumulative emissions remained unaltered. Our results suggest that temporary waterlogging does not suppress CO2 production as much as conventionally assumed.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Asta Laasonen, Alexander Buzacott, Kukka-Maaria Kohonen, Erik Lundin, Alexander Meire, Mari Pihlatie, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2025-2094, https://doi.org/10.5194/egusphere-2025-2094, 2025
Short summary
Short summary
Carbon monoxide (CO) is an important indirect greenhouse gas, but its terrestrial sinks and sources are poorly understood. We present the first CO flux measurements using the eddy covariance method in an Arctic peatland. Our results show CO fluxes are dominated by two processes: radiation driven emissions and soil uptake. Dry peatland areas acted as CO sinks, while wetter areas were CO sources. Our findings suggest current global models may underestimate Arctic CO emissions.
Lukas Kohl, Petri Kiuru, Marjo Palviainen, Maarit Raivonen, Markku Koskinen, Mari Pihlatie, and Annamari Laurén
Biogeosciences, 22, 1711–1727, https://doi.org/10.5194/bg-22-1711-2025, https://doi.org/10.5194/bg-22-1711-2025, 2025
Short summary
Short summary
We present an assay to illuminate heterogeneity in biogeochemical transformations within peat samples. For this, we injected isotope-labeled acetate into peat cores and monitored the release of label-derived gases, which we compared to microtomography images. The fraction of label converted to CO2 and the rapidness of this conversion were linked to injection depth and air-filled porosity.
José Ángel Callejas-Rodelas, Alexander Knohl, Ivan Mammarella, Timo Vesala, Olli Peltola, and Christian Markwitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-810, https://doi.org/10.5194/egusphere-2025-810, 2025
Short summary
Short summary
The spatial variability of CO2 and water vapour exchanges with the atmosphere was quantified above an agroforestry system, and further compared to a monocropping system, using a total of four eddy covariance stations. The variability of fluxes within the agroforestry was found to be as large as the variability between agroforestry and monocropping, induced by the heterogeneity of the site, which highlights the need for replicated measurements above such ecosystems.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025, https://doi.org/10.5194/bg-22-1277-2025, 2025
Short summary
Short summary
The emissions of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clear-cut peatland forest site. The measurements covered the whole year of 2022, which was the second growing season after the clear-cut. The site was a strong GHG source, and the highest emissions came from CO2, followed by N2O and CH4. A statistical model that included information on different surfaces at the site was developed to unravel surface-type-specific GHG fluxes.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025, https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in northern Europe using ecosystem models, atmospheric inversions, and upscaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions, and upscaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5089–5106, https://doi.org/10.5194/amt-14-5089-2021, https://doi.org/10.5194/amt-14-5089-2021, 2021
Short summary
Short summary
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to high-frequency losses. There are different methods used to describe this low-pass filtering effect and to correct the measured fluxes. In this study, we analysed the systematic uncertainty related to this correction for various attenuation and signal-to-noise ratios. A new and robust transfer function method is finally proposed.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021, https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Short summary
We evaluated the suitability of fiber-optic distributed temperature sensing (DTS) for observing spatial (>25 cm) and temporal (>1 s) details of airflow within and above forests. The DTS measurements could discern up to third-order moments of the flow and observe spatial details of coherent flow motions. Similar measurements are not possible with more conventional measurement techniques. Hence, the DTS measurements will provide key insights into flows close to roughness elements, e.g. trees.
Hui Zhang, Eeva-Stiina Tuittila, Aino Korrensalo, Aleksi Räsänen, Tarmo Virtanen, Mika Aurela, Timo Penttilä, Tuomas Laurila, Stephanie Gerin, Viivi Lindholm, and Annalea Lohila
Biogeosciences, 17, 6247–6270, https://doi.org/10.5194/bg-17-6247-2020, https://doi.org/10.5194/bg-17-6247-2020, 2020
Short summary
Short summary
We studied the impact of a stream on peatland microhabitats and CH4 emissions in a northern boreal fen. We found that there were higher water levels, lower peat temperatures, and greater oxygen concentrations close to the stream; these supported the highest biomass production but resulted in the lowest CH4 emissions. Further from the stream, the conditions were drier and CH4 emissions were also low. CH4 emissions were highest at an intermediate distance from the stream.
Jinnan Gong, Nigel Roulet, Steve Frolking, Heli Peltola, Anna M. Laine, Nicola Kokkonen, and Eeva-Stiina Tuittila
Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020, https://doi.org/10.5194/bg-17-5693-2020, 2020
Short summary
Short summary
In this study, which combined a field and lab experiment with modelling, we developed a process-based model for simulating dynamics within peatland moss communities. The model is useful because Sphagnum mosses are key engineers in peatlands; their response to changes in climate via altered hydrology controls the feedback of peatland biogeochemistry to climate. Our work showed that moss capitulum traits related to water retention are the mechanism controlling moss layer dynamics in peatlands.
Cited articles
Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical Forecasting
of Current and Future Circum-Arctic Ground Temperatures and Active Layer
Thickness, Geophys. Res. Lett., 45, 4889–4898,
https://doi.org/10.1029/2018GL078007, 2018.
Aaltonen, H., Pumpanen, J., Pihlatie, M., Hakola, H., Hellén, H.,
Kulmala, L., Vesala, T., and Bäck, J.: Boreal pine forest floor biogenic
volatile organic compound emissions peak in early summer and autumn, Agr.
Forest Meteorol., 151, 682–691, https://doi.org/10.1016/j.agrformet.2010.12.010, 2011.
Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, 2014.
Angel, R., Matthies, D., and Conrad, R.: Activation of methanogenesis in arid
biological soil crusts despite the presence of oxygen, PLoS One, 6, 1–8,
https://doi.org/10.1371/journal.pone.0020453, 2011.
Angel, R., Claus, P., and Conrad, R.: Methanogenic archaea are globally
ubiquitous in aerated soils and become active under wet anoxic conditions,
ISME J., 6, 847–862, https://doi.org/10.1038/ismej.2011.141, 2012.
Angle, J. C., Morin, T. H., Solden, L. M., Narrowe, A. B., Smith, G. J.,
Borton, M. A., Rey-Sanchez, C., Daly, R. A., Mirfenderesgi, G., Hoyt, D. W.,
Riley, W. J., Miller, C. S., Bohrer, G., and Wrighton, K. C.: Methanogenesis
in oxygenated soils is a substantial fraction of wetland methane emissions,
Nat. Commun., 8, 1567, https://doi.org/10.1038/s41467-017-01753-4, 2017.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology/Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. Bull.,
24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Billings, S. A., Richter, D. D., and Yarie, J.: Sensitivity of soil methane
fluxes to reduced precipitation in boreal forest soils, Soil Biol. Biochem.,
32, 1431–1441, https://doi.org/10.1016/S0038-0717(00)00061-4, 2000.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Corley, J.: Best practices in establishing detection and quantification
limits for pesticide residues in foods, in: Handbook of Residue Analytical
Methods for Agrochemicals, edited by: Lee, P. W., Aizawa, H., Barefoot, A. C.,
Murphy, J. J., and Roberts, T., 59–75, John Wiley & Sons Ltd,
Chichester, England, 2003.
Curry, C. L.: Modeling the soil consumption at atmospheric methane at the
global scale, Global Biogeochem. Cy., 21, GB4012,
https://doi.org/10.1029/2006GB002818, 2007.
Dinsmore, K. J., Drewer, J., Levy, P. E., George, C., Lohila, A., Aurela, M., and Skiba, U. M.: Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale, Biogeosciences, 14, 799–815, https://doi.org/10.5194/bg-14-799-2017, 2017.
Dunn, S. M. and Mackay, R.: Spatial variation in evapotranspiration and the
influence of land use on catchment hydrology, J. Hydrol., 171, 49–73,
https://doi.org/10.1016/0022-1694(95)02733-6, 1995.
Flanagan, L. B., Nikkel, D. J., Scherloski, L. M., Tkach, R. E., Smits, K.
M., Selinger, L. B., and Rood, S. B.: Multiple processes contribute to
methane emission in a riparian cottonwood forest ecosystem, New Phytol., 229,
1970–1982, https://doi.org/10.1111/nph.16977, 2020.
Freeman, T. G.: Calculating catchment area with divergent flow based on a
regular grid, Comput. Geosci., 17, 413–422,
https://doi.org/10.1016/0098-3004(91)90048-I, 1991.
Gauci, V., Gowing, D. J. G., Hornibrook, E. R. C., Davis, J. M., and Dise, N.
B.: Woody stem methane emission in mature wetland alder trees, Atmos.
Environ., 44, 2157–2160, https://doi.org/10.1016/j.atmosenv.2010.02.034, 2010.
Halmeenmäki, E., Heinonsalo, J., Putkinen, A., Santalahti, M., Fritze,
H., and Pihlatie, M.: Above- and belowground fluxes of methane from boreal
dwarf shrubs and Pinus sylvestris seedlings, Plant Soil, 420,
361–373, https://doi.org/10.1007/s11104-017-3406-7, 2017.
Hari, P. and Kulmala, M.: Station for Measuring Ecosystem-Atmosphere
Relations (SMEAR II), Boreal Environ. Res., 10, 315–322, 2005.
Hill, M. O. and Šmilauer, P.: TWINSPAN for Windows version 2.3, Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice, 2005.
Hokkanen, P.: Environmental patterns and gradients in the vascular plants
and bryophytes of eastern Fennoscandian herb-rich forests, For. Ecol.
Manage., 229, 73–87, https://doi.org/10.1016/j.foreco.2006.03.025, 2006.
Holland, P. W. and Welsch, R. E.: Robust regression using iteratively
reweighted least-squares, Commun. Stat.-Theory Methods, 6, 813–827,
https://doi.org/10.1080/03610927708827533, 1977.
Hutchinson, G. L. and Livingston, G. P.: Vents and seals in non-steady-state
chambers used for measuring gas exchange between soil and the atmosphere,
Eur. J. Soil Sci., 52, 675–682, https://doi.org/10.1046/j.1365-2389.2001.00415.x,
2001.
Ilvesniemi, H., Levula, J., Ojansuu, R., Kolari, P., Kulmala, L., Pumpanen,
J., Launiainen, S., Vesala, T., and Nikinmaa, E.: Long-term measurements of
the carbon balance of a boreal Scots pine dominated forest ecosystem, Boreal
Environ. Res., 14, 731–753, 2009.
Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A.,
Metzger, R., and Pedrazzini, A.: Use of LIDAR in landslide investigations: A
review, Nat. Hazards, 61, 5–28, https://doi.org/10.1007/s11069-010-9634-2, 2012.
Jang, I., Lee, S., Hong, J. H., and Kang, H.: Methane oxidation rates in
forest soils and their controlling variables: A review and a case study in
Korea, Ecol. Res., 21, 849–854, https://doi.org/10.1007/s11284-006-0041-9, 2006.
Jugold, A., Althoff, F., Hurkuck, M., Greule, M., Lenhart, K., Lelieveld, J., and Keppler, F.: Non-microbial methane formation in oxic soils, Biogeosciences, 9, 5291–5301, https://doi.org/10.5194/bg-9-5291-2012, 2012.
Kaiser, K. E., McGlynn, B. L., and Dore, J. E.: Landscape analysis of soil methane flux across complex terrain, Biogeosciences, 15, 3143–3167, https://doi.org/10.5194/bg-15-3143-2018, 2018.
Kemppinen, J., Niittynen, P., Riihimäki, H., and Luoto, M.: Modelling
soil moisture in a high-latitude landscape using LiDAR and soil data, Earth
Surf. Process. Landforms, 43, 1019–1031, https://doi.org/10.1002/esp.4301, 2018.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. a., Sudo, K.,
Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources
and sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/NGEO1955, 2013.
Korkiakoski, M., Tuovinen, J.-P., Aurela, M., Koskinen, M., Minkkinen, K., Ojanen, P., Penttilä, T., Rainne, J., Laurila, T., and Lohila, A.: Methane exchange at the peatland forest floor – automatic chamber system exposes the dynamics of small fluxes, Biogeosciences, 14, 1947–1967, https://doi.org/10.5194/bg-14-1947-2017, 2017.
Korpela, I., Koskinen, M., Vasander, H., Holopainen, M., and Minkkinen, K.:
Airborne small-footprint discrete-return LiDAR data in the assessment of
boreal mire surface patterns, vegetation, and habitats, For. Ecol. Manage.,
258, 1549–1566, https://doi.org/10.1016/j.foreco.2009.07.007, 2009.
Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N. J., Martikainen, P. J., Alm, J., and Wilmking, M.: CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression, Biogeosciences, 4, 1005–1025, https://doi.org/10.5194/bg-4-1005-2007, 2007.
Larmola, T., Tuittila, E.-S., Tiirola, M., Nykänen, H., Martikainen, P.
J., Yrjälä, K., Tuomivirta, T., and Fritze, H.: The role of
Sphagnum mosses in the methane cycling of a boreal mire, Ecology, 91, 2356–2365,
https://doi.org/10.1890/09-1343.1, 2010.
Li, T., Raivonen, M., Alekseychik, P., Aurela, M., Lohila, A., Zheng, X.,
Zhang, Q., Wang, G., Mammarella, I., Rinne, J., Yu, L., Xie, B., Vesala, T.,
and Zhang, W.: Importance of vegetation classes in modeling CH4
emissions from boreal and subarctic wetlands in Finland, Sci. Total
Environ., 572, 1111–1122, https://doi.org/10.1016/j.scitotenv.2016.08.020, 2016.
Livingston, G. P. and Hutchinson, G. L.: Enclosure-based measurement of
trace gas exchange: applications and sources of error, in: Biogenic trace
gases: Measuring emissions from soil and water, edited by: Matson, P. A., Lawton, J.
H., Harriss, R. C., and Likens, G. E., 14–51, Blackwell Science,
Oxford, United Kingdom., 1995.
Lohila, A., Aalto, T., Aurela, M., Hatakka, J., Tuovinen, J., Kilkki, J.,
Penttilä, T., Vuorenmaa, J., Hänninen, P., Sutinen, R., Viisanen, Y.,
and Laurila, T.: Large contribution of boreal upland forest soils to a
catchment-scale CH4 balance in a wet year, Geophys. Res. Lett., 43,
2946–2953, https://doi.org/10.1002/2016GL067718, 2016.
Luo, G. J., Kiese, R., Wolf, B., and Butterbach-Bahl, K.: Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types, Biogeosciences, 10, 3205–3219, https://doi.org/10.5194/bg-10-3205-2013, 2013.
Machacova, K., Bäck, J., Vanhatalo, A., Halmeenmäki, E., Kolari, P.,
Mammarella, I., Pumpanen, J., Acosta, M., Urban, O., and Pihlatie, M.: Pinus sylvestris as a
missing source of nitrous oxide and methane in boreal forest, Sci. Rep., 6,
23410, https://doi.org/10.1038/srep23410, 2016.
Maier, M., Paulus, S., Nicolai, C., Stutz, K. P., and Nauer, P. A.: Drivers
of plot-scale variability of CH4 consumption in a well-aerated pine
forest soil, Forests, 8, 1–16, https://doi.org/10.3390/f8060193, 2017.
Mäkisara, K., Katila, M., and Peräsaari, J.: The Multi-Source national forest inventory of Finland - methods and results 2015, Natural resources and bioeconomy studies 8/2019, Natural Resources Institute Finland (Luke), Helsinki, 57 pp., available at: http://urn.fi/URN:ISBN:978-952-326-711-4 (last access: 10 February 2021),
2019.
Matson, A., Pennock, D., and Bedard-Haughn, A.: Methane and nitrous oxide
emissions from mature forest stands in the boreal forest, Saskatchewan,
Canada, For. Ecol. Manage., 258, 1073–1083,
https://doi.org/10.1016/j.foreco.2009.05.034, 2009.
Mikkelsen, T. N., Bruhn, D., Ambus, P., Larsen, K. S., Ibrom, A., and
Pilegaard, K.: Is methane released from the forest canopy?, IForest, 4,
200–204, https://doi.org/10.3832/ifor0591-004, 2011.
Milly, P. C. D.: Sensitivity of greenhouse summer dryness to changes in
plant rooting characteristics, Geophys. Res. Lett., 24, 269–271,
https://doi.org/10.1029/96GL03968, 1997.
Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T., Odgaard, M. V.,
Nygaard, B., and Jens-Christian, S.: Topographically controlled soil moisture
is the primary driver of local vegetation patterns across a lowland region,
Ecosphere, 4, 1–26, https://doi.org/10.1890/ES13-00134.1, 2013.
Murphy, P. N. C., Ogilvie, J., Connor, K., and Arp, P. A.: Mapping wetlands:
A comparison of two different approaches for New Brunswick, Canada,
Wetlands, 27, 846–854,
https://doi.org/10.1672/0277-5212(2007)27[846:mwacot]2.0.co;2, 2007.
Pavelka, M., Acosta, M., Kiese, R., Altimir, N., Brümmer, C., Crill, P.,
Darenova, E., Fuß, R., Gielen, B., Graf, A., Klemedtsson, L., Lohila,
A., Longdoz, B., Lindroth, A., Nilsson, M., Jiménez, S. M., Merbold, L.,
Montagnani, L., Peichl, M., Pihlatie, M., Pumpanen, J., Ortiz, P. S.,
Silvennoinen, H., Skiba, U., Vestin, P., Weslien, P., Janous, D., and Kutsch,
W.: Standardisation of chamber technique for CO2, N2O and CH4 fluxes
measurements from terrestrial ecosystems, Int. Agrophysics, 32, 569–587,
https://doi.org/10.1515/intag-2017-0045, 2018.
Pedersen, A. R., Petersen, S. O., and Schelde, K.: A comprehensive approach
to soil-atmosphere trace-gas flux estimation with static chambers, Eur. J.
Soil Sci., 61, 888–902, https://doi.org/10.1111/j.1365-2389.2010.01291.x, 2010.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations, Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, 2019.
Pihlatie, M., Pumpanen, J., Rinne, J., Ilvesniemi, H., Simojoki, A., Hari,
P., and Vesala, T.: Gas concentration driven fluxes of nitrous oxide and
carbon dioxide in boreal forest soil, Tellus B, 59, 458–469, https://doi.org/10.1111/j.1600-0889.2007.00278.x, 2007.
Pihlatie, M., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J., Nordbo,
A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J., Jones, S.,
Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P., Schreiber, P.,
Serça, D., Vicca, S., Wolf, B., and Pumpanen, J.: Comparison of static
chambers to measure CH4 emissions from soils, Agr. Forest Meteorol.,
171–172, 124–136, https://doi.org/10.1016/j.agrformet.2012.11.008, 2013.
Pirinen, P., Simola, H., Aalto, J., Kaukoranta, J.-P., Karlsson, P., and
Ruuhela, R.: Climatological statistics of Finland 1981–2010, Reports,
2012(1), 96, 2012.
Praeg, N., Wagner, A. O., and Illmer, P.: Plant species, temperature, and
bedrock affect net methane flux out of grassland and forest soils, Plant
Soil, 410, 193–206, https://doi.org/10.1007/s11104-016-2993-z, 2017.
Reay, D. S., Nedwell, D. B., McNamara, N., and Ineson, P.: Effect of tree
species on methane and ammonium oxidation capacity in forest soils, Soil
Biol. Biochem., 37, 719–730, https://doi.org/10.1016/j.soilbio.2004.10.004, 2005.
Riley, S. J., DeGloria, S. D., and Elliot, R.: A terrain ruggedness index
that quantifies topographic heterogeneity, Intermt. J. Sci., 5,
23–27, 1999.
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J.
P., Tuittila, E. S., and Vesala, T.: Annual cycle of methane emission from a
boreal fen measured by the eddy covariance technique, Tellus B, 59, 449–457, https://doi.org/10.1111/j.1600-0889.2007.00261.x,
2007.
Rinne, J., Tuittila, E.-S., Peltola, O., Li, X., Raivonen, M., Alekseychik,
P., Haapanala, S., Pihlatie, M., Aurela, M., Mammarella, I., and Vesala, T.:
Temporal variation of ecosystem scale methane emission from a boreal fen in
relation to temperature, water table position, and carbon dioxide fluxes,
Global Biogeochem. Cy., 32, 1087–1106, https://doi.org/10.1029/2017GB005747,
2018.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J.,
Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder,
B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C.
F.: Cross-validation strategies for data with temporal, spatial,
hierarchical, or phylogenetic structure, Ecography (Cop.)., 40, 913–929,
https://doi.org/10.1111/ecog.02881, 2017.
Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J.,
Weuthen, A., Western, A. W., and Vereecken, H.: Seasonal and event dynamics
of spatial soil moisture patterns at the small catchment scale, Water
Resour. Res., 48, W10544, https://doi.org/10.1029/2011WR011518, 2012.
Saari, A., Heiskanen, J., and Martikainen, P. J.: Effect of the organic
horizon on methane oxidation and uptake in soil of a boreal Scots pine
forest, FEMS Microbiol. Ecol., 26, 245–255,
https://doi.org/10.1016/S0168-6496(98)00040-3, 1998.
Savage, K., Moore, T. R., and Crill, P. M.: Methane and carbon dioxide
exchanges between the atmosphere and northern boreal forest soils, J.
Geophys. Res.-Atmos., 102, 29279–29288, https://doi.org/10.1029/97JD02233, 1997.
Savi, F., Di Bene, C., Canfora, L., Mondini, C., and Fares, S.: Environmental
and biological controls on CH4 exchange over an evergreen Mediterranean
forest, Agr. Forest Meteorol., 226–227, 67–79,
https://doi.org/10.1016/j.agrformet.2016.05.014, 2016.
Schwanghart, W. and Kuhn, N. J.: TopoToolbox: A set of Matlab functions for
topographic analysis, Environ. Model. Softw., 25, 770–781,
https://doi.org/10.1016/j.envsoft.2009.12.002, 2010.
Shoemaker, J. K., Keenan, T. F., Hollinger, D. Y., and Richardson, A. D.:
Forest ecosystem changes from annual methane source to sink depending on
late summer water balance, Geophys. Res. Lett., 41, 673–679,
https://doi.org/10.1002/2013GL058691, 2014.
Skiba, U., Drewer, J., Tang, Y. S., van Dijk, N., Helfter, C., Nemitz, E.,
Famulari, D., Cape, J. N., Jones, S. K., Twigg, M., Pihlatie, M., Vesala,
T., Larsen, K. S., Carter, M. S., Ambus, P., Ibrom, A., Beier, C., Hensen,
A., Frumau, A., Erisman, J. W., Brüggemann, N., Gasche, R.,
Butterbach-Bahl, K., Neftel, A., Spirig, C., Horvath, L., Freibauer, A.,
Cellier, P., Laville, P., Loubet, B., Magliulo, E., Bertolini, T., Seufert,
G., Andersson, M., Manca, G., Laurila, T., Aurela, M., Lohila, A.,
Zechmeister-Boltenstern, S., Kitzler, B., Schaufler, G., Siemens, J.,
Kindler, R., Flechard, C., and Sutton, M. A.: Biosphere-atmosphere exchange
of reactive nitrogen and greenhouse gases at the NitroEurope core flux
measurement sites: Measurement strategy and first data sets, Agric. Ecosyst.
Environ., 133, 139–149, https://doi.org/10.1016/j.agee.2009.05.018, 2009.
Šmilauer, P. and Lepš, J.: Multivariate analysis of ecological data
using CANOCO 5, Cambridge University Press, Cambridge, United Kingdom, 362 pp., https://doi.org/10.1017/CBO9781139627061, 2014.
Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665, https://doi.org/10.5194/bg-8-1643-2011, 2011.
Sundqvist, E., Persson, A., Kljun, N., Vestin, P., Chasmer, L., Hopkinson,
C., and Lindroth, A.: Upscaling of methane exchange in a boreal forest using
soil chamber measurements and high-resolution LiDAR elevation data, Agr.
Forest Meteorol., 214–215, 393–401, https://doi.org/10.1016/j.agrformet.2015.09.003,
2015.
Treat, C. C., Bloom, A. A., and Marushchak, M. E.: Nongrowing season methane
emissions – a significant component of annual emissions across northern
ecosystems, Glob. Change Biol., 24, 3331–3343, https://doi.org/10.1111/gcb.14137,
2018.
Ueyama, M., Yoshikawa, K., and Takagi, K.: A cool-temperate young larch
plantation as a net methane source – A 4-year continuous hyperbolic relaxed
eddy accumulation and chamber measurements, Atmos. Environ., 184, 110–120,
https://doi.org/10.1016/j.atmosenv.2018.04.025, 2018.
Vainio, E., Peltola, O., Kasurinen, V., Kieloaho, A.-J., Tuittila, E.-S., and Pihlatie, M.: Dataset for “Topography-based statistical modelling reveals high spatial variability and seasonal emission patches in forest floor methane flux” (Version 1) [Data set], Zenodo, https://doi.org/10.5281/zenodo.4382801, 2020.
Wang, B., Hou, L., Liu, W., and Wang, Z.: Non-microbial methane emissions
from soils, Atmos. Environ., 80, 290–298,
https://doi.org/10.1016/j.atmosenv.2013.08.010, 2013.
Wang, J. M., Murphy, J. G., Geddes, J. A., Winsborough, C. L., Basiliko, N., and Thomas, S. C.: Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada, Biogeosciences, 10, 4371–4382, https://doi.org/10.5194/bg-10-4371-2013, 2013.
Warner, D. L., Vargas, R., Seyfferth, A., and Inamdar, S.: Transitional
slopes act as hotspots of both soil CO2 emission and CH4 uptake in
a temperate forest landscape, Biogeochemistry, 138, 121–135,
https://doi.org/10.1007/s10533-018-0435-0, 2018.
Warner, D. L., Guevara, M., Inamdar, S., and Vargas, R.: Upscaling
soil-atmosphere CO2 and CH4 fluxes across a topographically
complex forested landscape, Agr. Forest Meteorol., 264, 80–91,
https://doi.org/10.1016/j.agrformet.2018.09.020, 2019.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., and del Giorgio, P. A.: Methane fluxes show
consistent temperature dependence across microbial to ecosystem scales,
Nature, 507, 488–491, https://doi.org/10.1038/nature13164, 2014.
Short summary
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The results demonstrate high spatial variability in soil moisture and consequently in the methane flux. We detected wet patches emitting high amounts of methane in the early summer; however, these patches turned to methane uptake in the autumn. We concluded that the small-scale spatial variability of the boreal forest methane flux highlights the importance of soil chamber placement in similar studies.
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The...
Altmetrics
Final-revised paper
Preprint