Articles | Volume 18, issue 7
https://doi.org/10.5194/bg-18-2241-2021
https://doi.org/10.5194/bg-18-2241-2021
Research article
 | 
06 Apr 2021
Research article |  | 06 Apr 2021

Porewater δ13CDOC indicates variable extent of degradation in different talik layers of coastal Alaskan thermokarst lakes

Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (16 Feb 2021) by Yakov Kuzyakov
AR by O.H Meisel on behalf of the Authors (27 Feb 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (01 Mar 2021) by Yakov Kuzyakov
AR by O.H Meisel on behalf of the Authors (02 Mar 2021)
Download
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Altmetrics
Final-revised paper
Preprint