Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variable particle size distributions reduce the sensitivity of global export flux to climate change
School of Oceanography, University of Washington, Seattle, 98195, USA
Thomas Weber
School of Oceanography, University of Washington, Seattle, 98195, USA
School of Arts and Sciences, University of Rochester, Rochester, 14627, USA
Jacob A. Cram
School of Oceanography, University of Washington, Seattle, 98195, USA
Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, 21613, USA
Curtis Deutsch
School of Oceanography, University of Washington, Seattle, 98195, USA
Related authors
No articles found.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Samantha A. Siedlecki, Darren Pilcher, Evan M. Howard, Curtis Deutsch, Parker MacCready, Emily L. Norton, Hartmut Frenzel, Jan Newton, Richard A. Feely, Simone R. Alin, and Terrie Klinger
Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, https://doi.org/10.5194/bg-18-2871-2021, 2021
Short summary
Short summary
Future ocean conditions can be simulated using projected trends in fossil fuel use paired with Earth system models. Global models generally do not include local processes important to coastal ecosystems. These coastal processes can alter the degree of change projected. Higher-resolution models that include local processes predict modified changes in carbon stressors when compared to changes projected by global models in the California Current System.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Alldredge, A. L. and Gotschalk, C.:
In situ settling behavior of marine snow,
Limnol. Oceanogr.,
33, 339–351, https://doi.org/10.4319/lo.1988.33.3.0339, 1988.
Aumont, O. and Bopp, L.:
Globalizing results from ocean in situ iron fertilization studies,
Global Biogeochem. Cy.,
20, https://doi.org/10.1029/2005GB002591, 2006.
Bach, L. T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K. G., and Riebesell, U.:
Influence of plankton community structure on the sinking velocity of marine aggregates,
Global Biogeochem. Cy.,
30, 1145–1165, https://doi.org/10.1002/2016GB005372, 2016.
Behrenfeld, M. J. and Falkowski, P. G.:
Photosynthetic rates derived from satellite-based chlorophyll concentration,
Limnol. Oceanogr.,
42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997.
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.:
Carbon-based ocean productivity and phytoplankton physiology from space,
Global Biogeochem. Cy.,
19, https://doi.org/10.1029/2004GB002299, 2005.
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.:
Global niche of marine anaerobic metabolisms expanded by particle microenvironments, Nat. Geosci.,
11, 263–268, https://doi.org/10.1038/s41561-018-0081-0, 2018.
Bopp, L., Monfray, P., Aumont, O., Dufresne, J.-L., Treut, H. L., Madec, G., Terray, L., and Orr, J. C.:
Potential impact of climate change on marine export production,
Global Biogeochem. Cy.,
15, 81–99, https://doi.org/10.1029/1999GB001256, 2001.
Bopp, L., Quéré, C. L., Heimann, M., Manning, A. C., and Monfray, P.:
Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget,
Global Biogeochem. Cy.,
16, 6-1–6-13, https://doi.org/10.1029/2001GB001445, 2002.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Boss, E., Twardowski, M. S., and Herring, S.:
Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,
Appl. Optics,
40, 4885–4893, https://doi.org/10.1364/AO.40.004885, 2001.
Boyd, P. W. and Trull, T. W.:
Understanding the export of biogenic particles in oceanic waters: Is there consensus?,
Prog. Oceanogr.,
72, 276–312, https://doi.org/10.1016/j.pocean.2006.10.007, 2007.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature,
568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Briggs, N., Dall'Olmo, G., and Claustre, H.:
Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans,
Science,
367, 791–793, https://doi.org/10.1126/science.aay1790, 2020.
Buesseler, K. O. and Boyd, P. W.:
Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr.,
54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Buonassissi, C. J. and Dierssen, H. M.:
A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,
J. Geophys. Res.-Oceans,
115, https://doi.org/10.1029/2010JC006256, 2010.
Cabré, A., Marinov, I., and Leung, S.:
Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models,
Clim. Dyn.,
45, 1253–1280, https://doi.org/10.1007/s00382-014-2374-3, 2015a.
Cabré, A., Marinov, I., Bernardello, R., and Bianchi, D.: Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends, Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, 2015b.
Cael, B. B. and White, A. E.:
Sinking Versus Suspended Particle Size Distributions in the North Pacific Subtropical Gyre,
Geophys. Res. Lett.,
47, e2020GL087825, https://doi.org/10.1029/2020GL087825, 2020.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.:
Observed fingerprint of a weakening Atlantic Ocean overturning circulation,
Nature,
556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018.
Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N., and Scott, J. D.:
Enhanced upper ocean stratification with climate change in the CMIP3 models,
J. Geophys. Res.-Oceans,
117, https://doi.org/10.1029/2011JC007409, 2012.
Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Noguchi Aita, M., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.:
A comparison of global estimates of marine primary production from ocean color,
Deep-Sea Res. Pt. II,
53, 741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006.
Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R.:
Remineralization of particulate organic carbon in an ocean oxygen minimum zone,
Nat. Commun.,
8, 1–9, https://doi.org/10.1038/ncomms14847, 2017.
Cavan, E. L., Henson, S. A., and Boyd, P. W.:
The Sensitivity of Subsurface Microbes to Ocean Warming Accentuates Future Declines in Particulate Carbon Export,
Front. Ecol. Evol.,
6, https://doi.org/10.3389/fevo.2018.00230, 2019.
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A.:
The impact of global warming on the tropical Pacific Ocean and El Niño,
Nat. Geosci.,
3, 391–397, https://doi.org/10.1038/ngeo868, 2010.
Collins, M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frölicher, T., Jacot Des Combes, H., Koll Roxy, M., Losada, I., McInnes, K., Ratter, B., Rivera-Arriaga, E., Susanto, R. D., Swingedouw, D., and Tibig, L.:
Chapter 6: Extremes, Abrupt Changes and Managing Risks – IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
available at:: https://www.ipcc.ch/srocc/chapter/chapter-6/ (last access 15 April 2020), 2019.
Cram, J. A., Weber, T., Leung, S. W., McDonnell, A. M. P., Liang, J.-H., and Deutsch, C.:
The Role of Particle Size, Ballast, Temperature, and Oxygen in the Sinking Flux to the Deep Sea,
Global Biogeochem. Cy.,
32, 858–876, https://doi.org/10.1029/2017GB005710, 2018.
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O., and Huey, R. B.:
Climate change tightens a metabolic constraint on marine habitats,
Science,
348, 1132–1135, https://doi.org/10.1126/science.aaa1605, 2015.
Deutsch, C., Penn, J. L., and Seibel, B.:
Metabolic trait diversity shapes marine biogeography,
Nature,
585, 557–562, https://doi.org/10.1038/s41586-020-2721-y, 2020.
Devol, A. H. and Hartnett, H. E.:
Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean,
Limnol. Oceanogr.,
46, 1684–1690, https://doi.org/10.4319/lo.2001.46.7.1684, 2001.
DeVries, T.:
The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era,
Global Biogeochem. Cy.,
28, 631–647, https://doi.org/10.1002/2013GB004739, 2014.
DeVries, T. and Weber, T.:
The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations,
Global Biogeochem. Cy.,
31, 535–555, https://doi.org/10.1002/2016GB005551, 2017.
DeVries, T., Liang, J.-H., and Deutsch, C.: A mechanistic particle flux model applied to the oceanic phosphorus cycle, Biogeosciences, 11, 5381–5398, https://doi.org/10.5194/bg-11-5381-2014, 2014.
Ducklow, H., Steinberg, D., and Buesseler, K.:
Upper Ocean Carbon Export and the Biological Pump,
Oceanography,
14, 50–58, https://doi.org/10.5670/oceanog.2001.06, 2001.
Dunne, J. P., Armstrong, R. A., Gnanadesikan, A., and Sarmiento, J. L.:
Empirical and mechanistic models for the particle export ratio,
Global Biogeochem. Cy.,
19, https://doi.org/10.1029/2004GB002390, 2005.
Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.:
A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor,
Global Biogeochem. Cy.,
21, https://doi.org/10.1029/2006GB002907, 2007.
Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Sentman, L. T., Adcroft, A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J., and Zadeh, N.:
GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics,
J. Climate,
26, 2247–2267, https://doi.org/10.1175/JCLI-D-12-00150.1, 2013.
Durkin, C. A., Estapa, M. L., and Buesseler, K. O.:
Observations of carbon export by small sinking particles in the upper mesopelagic,
Mar. Chem.,
175, 72–81, https://doi.org/10.1016/j.marchem.2015.02.011, 2015.
Emerson, S.:
Annual net community production and the biological carbon flux in the ocean,
Global Biogeochem. Cy.,
28, 14–28, https://doi.org/10.1002/2013GB004680, 2014.
Falkowski, P. G., Barber, R. T., and Smetacek, V.:
Biogeochemical Controls and Feedbacks on Ocean Primary Production,
Science,
281, 200–206, https://doi.org/10.1126/science.281.5374.200, 1998.
Friedland, K. D., Stock, C., Drinkwater, K. F., Link, J. S., Leaf, R. T., Shank, B. V., Rose, J. M., Pilskaln, C. H., and Fogarty, M. J.:
Pathways between Primary Production and Fisheries Yields of Large Marine Ecosystems,
PLoS One,
7, https://doi.org/10.1371/journal.pone.0028945, 2012.
Fu, W., Randerson, J. T., and Moore, J. K.: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models, Biogeosciences, 13, 5151–5170, https://doi.org/10.5194/bg-13-5151-2016, 2016.
Galbraith, E. D. and Martiny, A. C.:
A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems,
P. Natl. Acad. Sci. USA,
112, 8199–8204, https://doi.org/10.1073/pnas.1423917112, 2015.
Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and Ragueneau, O.: Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model, Biogeosciences, 3, 521–537, https://doi.org/10.5194/bg-3-521-2006, 2006.
Guidi, L., Stemmann, L., Legendre, L., Picheral, M., Prieur, L., and Gorsky, G.:
Vertical distribution of aggregates (> 110 µm) and mesoscale activity in the northeastern Atlantic: Effects on the deep vertical export of surface carbon,
Limnol. Oceanogr.,
52, 7–18, https://doi.org/10.4319/lo.2007.52.1.0007, 2007.
Guidi, L., Jackson, G. A., Stemmann, L., Miquel, J. C., Picheral, M., and Gorsky, G.:
Relationship between particle size distribution and flux in the mesopelagic zone,
Deep-Sea Res. Pt. I,
55, 1364–1374, https://doi.org/10.1016/j.dsr.2008.05.014, 2008.
Guidi, L., Stemmann, L., Jackson, G. A., Ibanez, F., Claustre, H., Legendre, L., Picheral, M., and Gorskya, G.:
Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis,
Limnol. Oceanogr.,
54, 1951–1963, https://doi.org/10.4319/lo.2009.54.6.1951, 2009.
Hartnett, H. E. and Devol, A. H.:
Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of northwest Mexico and Washington State,
Geochim. Cosmochim. Ac.,
67, 247–264, https://doi.org/10.1016/S0016-7037(02)01076-1, 2003.
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Moigne, F. L., and Quartly, G. D.:
A reduced estimate of the strength of the ocean's biological carbon pump,
Geophys. Res. Lett.,
38, https://doi.org/10.1029/2011GL046735, 2011.
Hofmann, M. and Schellnhuber, H.-J.:
Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes,
P. Natl. Acad. Sci. USA,
106, 3017–3022, https://doi.org/10.1073/pnas.0813384106, 2009.
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and Núñez-Riboni, I.:
Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations,
J. Adv. Model. Earth Sy.,
5, 287–315, https://doi.org/10.1029/2012MS000178, 2013.
Iversen, M. H. and Ploug, H.: Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates, Biogeosciences, 7, 2613–2624, https://doi.org/10.5194/bg-7-2613-2010, 2010.
John, E. H., Wilson, J. D., Pearson, P. N., and Ridgwell, A.:
Temperature-dependent remineralization and carbon cycling in the warm Eocene oceans,
Palaeogeogr. Palaeocl.,
413, 158–166, https://doi.org/10.1016/j.palaeo.2014.05.019, 2014.
Johnson, R., Strutton, P. G., Wright, S. W., McMinn, A., and Meiners, K. M.:
Three improved satellite chlorophyll algorithms for the Southern Ocean,
J. Geophys. Res.-Oceans,
118, 3694–3703, https://doi.org/10.1002/jgrc.20270, 2013.
Jokulsdottir, T. and Archer, D.: A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity, Geosci. Model Dev., 9, 1455–1476, https://doi.org/10.5194/gmd-9-1455-2016, 2016.
Keeling, R. F., Körtzinger, A., and Gruber, N.:
Ocean Deoxygenation in a Warming World,
Annu. Rev. Mar. Sci.,
2, 199–229, https://doi.org/10.1146/annurev.marine.010908.163855, 2010.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.:
Retrieval of the particle size distribution from satellite ocean color observations,
J. Geophys. Res.-Oceans,
114, https://doi.org/10.1029/2009JC005303, 2009.
Kriest, I. and Oschlies, A.: On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles, Biogeosciences, 5, 55–72, https://doi.org/10.5194/bg-5-55-2008, 2008.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.:
The impact of remineralization depth on the air–sea carbon balance,
Nat. Geosci.,
2, 630–635, https://doi.org/10.1038/ngeo612, 2009.
Lam, P. J. and Bishop, J. K. B.:
High biomass, low export regimes in the Southern Ocean,
Deep-Sea Res. Pt. II,
54, 601–638, https://doi.org/10.1016/j.dsr2.2007.01.013, 2007.
Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M., and Völker, C.: Drivers and uncertainties of future global marine primary production in marine ecosystem models, Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, 2015.
Laufkötter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney, S. C., Dunne, J. P., Hauck, J., John, J. G., Lima, I. D., Seferian, R., and Völker, C.: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem, Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, 2016.
Laufkötter, C., John, J. G., Stock, C. A., and Dunne, J. P.:
Temperature and oxygen dependence of the remineralization of organic matter,
Global Biogeochem. Cy.,
31, 1038–1050, https://doi.org/10.1002/2017GB005643, 2017.
Laurenceau-Cornec, E. C., Moigne, F. A. C. L., Gallinari, M., Moriceau, B., Toullec, J., Iversen, M. H., Engel, A., and Rocha, C. L. D. L.:
New guidelines for the application of Stokes' models to the sinking velocity of marine aggregates,
Limnol. Oceanogr.,
65, 1264–1285, https://doi.org/10.1002/lno.11388, 2020.
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J. J.:
Temperature effects on export production in the open ocean,
Global Biogeochem. Cy.,
14, 1231–1246, https://doi.org/10.1029/1999GB001229, 2000.
Laws, E. A., D'Sa, E., and Naik, P.:
Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production,
Limnol. Oceanogr.-Meth.,
9, 593–601, https://doi.org/10.4319/lom.2011.9.593, 2011.
Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cunha, L. C. D., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.:
Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,
Glob. Change Biol.,
11, 2016–2040, https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005.
Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K. L., and Davis, C.:
Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,
J. Geophys. Res.-Oceans,
112, https://doi.org/10.1029/2006JC003802, 2007.
Letscher, R. T., Primeau, F., and Moore, J. K.:
Nutrient budgets in the subtropical ocean gyres dominated by lateral transport,
Nat. Geosci.,
9, 815–819, https://doi.org/10.1038/ngeo2812, 2016.
Leung, S.: Data and model output for figures, in: Variable particle size distributions reduce the sensitivity of global export flux to climate change, available at: https://doi.org/10.5281/zenodo.4117382, last access: 5 May 2020.
Litchman, E., Klausmeier, C. A., Schofield, O. M., and Falkowski, P. G.:
The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level,
Ecol. Lett.,
10, 1170–1181, https://doi.org/10.1111/j.1461-0248.2007.01117.x, 2007.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Volume 1: Temperature, edited by: Levitus, S., NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 184 pp., 2010.
Long, M. C., Deutsch, C., and Ito, T.:
Finding forced trends in oceanic oxygen,
Global Biogeochem. Cy.,
30, 381–397, https://doi.org/10.1002/2015GB005310, 2016.
Mari, X., Passow, U., Migon, C., Burd, A. B., and Legendre, L.:
Transparent exopolymer particles: Effects on carbon cycling in the ocean,
Prog. Oceanogr.,
151, 13–37, https://doi.org/10.1016/j.pocean.2016.11.002, 2017.
Marinov, I., Gnanadesikan, A., Toggweiler, J. R., and Sarmiento, J. L.:
The Southern Ocean biogeochemical divide,
Nature,
441, 964–967, https://doi.org/10.1038/nature04883, 2006.
Marsay, C. M., Sanders, R. J., Henson, S. A., Pabortsava, K., Achterberg, E. P., and Lampitt, R. S.:
Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean,
P. Natl. Acad. Sci. USA,
112, 1089–1094, https://doi.org/10.1073/pnas.1415311112, 2015.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.:
VERTEX: carbon cycling in the northeast Pacific,
Deep-Sea Res.,
34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987.
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.:
Iron Fertilization of the Subantarctic Ocean During the Last Ice Age,
Science,
343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
Matear, R. J. and Hirst, A. C.:
Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming,
Global Biogeochem. Cy.,
17, https://doi.org/10.1029/2002GB001997, 2003.
Matsumoto, K.:
Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry,
Geophys. Res. Lett.,
34, https://doi.org/10.1029/2007GL031301, 2007a.
Matsumoto, K.:
Radiocarbon-based circulation age of the world oceans,
J. Geophys. Res.-Oceans,
112, https://doi.org/10.1029/2007JC004095, 2007b.
McDonnell, A. M. P. and Buesseler, K. O.:
Variability in the average sinking velocity of marine particles,
Limnol. Oceanogr.,
55, 2085–2096, https://doi.org/10.4319/lo.2010.55.5.2085, 2010.
McDonnell, A. M. P., Boyd, P. W., and Buesseler, K. O.:
Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone,
Global Biogeochem. Cy.,
29, 175–193, https://doi.org/10.1002/2014GB004935, 2015.
Moore, J. K., Doney, S. C., and Lindsay, K.:
Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model,
Global Biogeochem. Cy.,
18, https://doi.org/10.1029/2004GB002220, 2004.
Moore, J. K., Fu, W., Primeau, F., Britten, G. L., Lindsay, K., Long, M., Doney, S. C., Mahowald, N., Hoffman, F., and Randerson, J. T.:
Sustained climate warming drives declining marine biological productivity,
Science,
359, 1139–1143, https://doi.org/10.1126/science.aao6379, 2018.
Niemeyer, D., Kriest, I., and Oschlies, A.: The effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a global biogeochemical model, Biogeosciences, 16, 3095–3111, https://doi.org/10.5194/bg-16-3095-2019, 2019.
Passow, U.:
Transparent exopolymer particles (TEP) in aquatic environments,
Prog. Oceanogr.,
55, 287–333, https://doi.org/10.1016/S0079-6611(02)00138-6, 2002.
Passow, U. and Carlson, C. A.:
The biological pump in a high CO2 world,
Mar.-Ecol. Prog. Ser.,
470, 249–271, https://doi.org/10.3354/meps09985, 2012.
Reuer, M. K., Barnett, B. A., Bender, M. L., Falkowski, P. G., and Hendricks, M. B.:
New estimates of Southern Ocean biological production rates from O2∕Ar ratios and the triple isotope composition of O2,
Deep-Sea Res. Pt. I,
54, 951–974, https://doi.org/10.1016/j.dsr.2007.02.007, 2007.
Romanou, A., Gregg, W. W., Romanski, J., Kelley, M., Bleck, R., Healy, R., Nazarenko, L., Russell, G., Schmidt, G. A., Sun, S., and Tausnev, N.:
Natural air–sea flux of CO2 in simulations of the NASA-GISS climate model: Sensitivity to the physical ocean model formulation,
Ocean Model.,
66, 26–44, https://doi.org/10.1016/j.ocemod.2013.01.008, 2013.
Rossow, W. B. and Schiffer, R. A.:
Advances in Understanding Clouds from ISCCP,
B. Am. Meteorol. Soc.,
80, 2261–2288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
Sarmiento, J. L. and Siegenthaler, U.:
New Production and the Global Carbon Cycle,
in: Primary Productivity and Biogeochemical Cycles in the Sea,
edited by: Falkowski, P. G., Woodhead, A. D., and Vivirito, K.,
Springer US, Boston, MA, 317–332, 1992.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological productivity,
Nature,
427, 56–60, https://doi.org/10.1038/nature02127, 2004.
Schmidtko, S., Stramma, L., and Visbeck, M.:
Decline in global oceanic oxygen content during the past five decades,
Nature,
542, 335–339, https://doi.org/10.1038/nature21399, 2017.
Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., Bethke, I., Ilicak, M., Assmann, K. M., and Heinze, C.: Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1), Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, 2016.
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C., Luo, J. Y., Nakano, H., Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y., Takano, Y., Tjiputra, J., Tsujino, H., Watanabe, M., Wu, T., Wu, F., and Yamamoto, A.:
Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6, Current Climate Change Reports,
6, 95–119, https://doi.org/10.1007/s40641-020-00160-0, 2020.
Sheldon, R. W., Prakash, A., and Sutcliffe, W. H.:
The Size Distribution of Particles in the Ocean,
Limnol. Oceanogr.,
17, 327–340, https://doi.org/10.4319/lo.1972.17.3.0327, 1972.
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld, M. J., and Boyd, P. W.:
Global assessment of ocean carbon export by combining satellite observations and food-web models,
Global Biogeochem. Cy.,
28, 181–196, https://doi.org/10.1002/2013GB004743, 2014.
Smayda, T. J.:
Normal and accelerated sinking of phytoplankton in the sea,
Mar. Geol.,
11, 105–122, https://doi.org/10.1016/0025-3227(71)90070-3, 1971.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006),
J. Climate,
21, 2283–2296, https://doi.org/10.1175/2007JCLI2100.1, 2008.
Steinberg, D. K., Lomas, M. W., and Cope, J. S.:
Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling,
Global Biogeochem. Cy.,
26, https://doi.org/10.1029/2010GB004026, 2012.
Thornton, D. C. O.:
Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean,
Eur. J. Phycol.,
49, 20–46, https://doi.org/10.1080/09670262.2013.875596, 2014.
Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J., Seland, Ø., and Heinze, C.: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, 2013.
Toggweiler, J. R. and Russell, J.:
Ocean circulation in a warming climate,
Nature,
451, 286–288, https://doi.org/10.1038/nature06590, 2008.
Totterdell, I. J.: Description and evaluation of the Diat-HadOCC model v1.0: the ocean biogeochemical component of HadGEM2-ES, Geosci. Model Dev., 12, 4497–4549, https://doi.org/10.5194/gmd-12-4497-2019, 2019.
Tsujino, H., Motoi, T., Ishikawa, I., Hirabara, M., Nakano, H., Yamanaka, G., Yasuda, T., and Ishizaki, H.:
Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3., 2010.
Turner, J. T.:
Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump,
Prog. Oceanogr.,
130, 205–248, https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Van Mooy, B. A. S., Keil, R. G., and Devol, A. H.:
Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification,
Geochim. Cosmochim. Ac.,
66, 457–465, https://doi.org/10.1016/S0016-7037(01)00787-6, 2002.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Weber, T. and Deutsch, C.:
Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation,
Nature,
489, 419–422, https://doi.org/10.1038/nature11357, 2012.
Weber, T., Cram, J. A., Leung, S. W., DeVries, T., and Deutsch, C.:
Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency,
P. Natl. Acad. Sci. USA,
113, 8606–8611, https://doi.org/10.1073/pnas.1604414113, 2016.
White, A. E., Letelier, R. M., Whitmire, A. L., Barone, B., Bidigare, R. R., Church, M. J., and Karl, D. M.:
Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA),
J. Geophys. Res.-Oceans,
120, 7381–7399, https://doi.org/10.1002/2015JC010897, 2015.
Yamanaka, Y. and Tajika, E.:
The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model,
Global Biogeochem. Cy.,
10, 361–382, https://doi.org/10.1029/96GB00634, 1996.
Zahariev, K., Christian, J. R., and Denman, K. L.:
Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation,
Prog. Oceanogr.,
77, 56–82, https://doi.org/10.1016/j.pocean.2008.01.007, 2008.
Short summary
A global model is constrained with empirical relationships to quantify how shifts in sinking-particle sizes modulate particulate organic carbon export production changes in a warming ocean. Including the effect of dynamic particle sizes on remineralization reduces the magnitude of predicted 100-year changes in export production by ~14 %. Projections of future export could thus be improved by considering dynamic phytoplankton and particle-size-dependent remineralization depths.
A global model is constrained with empirical relationships to quantify how shifts in...
Altmetrics
Final-revised paper
Preprint