Articles | Volume 18, issue 11
https://doi.org/10.5194/bg-18-3505-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3505-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures
Peter M. J. Douglas
CORRESPONDING AUTHOR
Earth and Planetary Sciences, McGill University, Montreal, H3A 0E8,
Canada
Emerald Stratigopoulos
Earth and Planetary Sciences, McGill University, Montreal, H3A 0E8,
Canada
now at: Department of Earth Sciences, University of Toronto, Toronto, M5S
3B1, Canada
Sanga Park
Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
Dawson Phan
Earth and Planetary Sciences, McGill University, Montreal, H3A 0E8,
Canada
Related authors
Benjamin Gwinneth, Kevin Johnston, Andy Breckenridge, and Peter M. J. Douglas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3237, https://doi.org/10.5194/egusphere-2025-3237, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Over time, traces of humans, fire, and plants accumulate at the bottom of lakes. They reveal the history of how the lowland Maya, a society thought to have declined due to drought, transformed their environment over time. We show how forest was cleared, agriculture expanded, and population levels rose then declined. However, the record does not show drought even though population declines. This challenges the idea that climate was the primary cause of the societal changes.
Alexie Roy-Lafontaine, Rebecca Lee, Peter M. J. Douglas, Dustin Whalen, and André Pellerin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2570, https://doi.org/10.5194/egusphere-2025-2570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
As Arctic coastlines change with the climate, we studied how these changes might affect methane release, a powerful greenhouse gas. We found that coastal sediments can produce a lot of methane, even when exposed to seawater, which was thought to prevent it. This suggests that Arctic coasts could be an overlooked source of methane to the atmosphere as the climate continues to warm and sea levels rise.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Benjamin Gwinneth, Kevin Johnston, Andy Breckenridge, and Peter M. J. Douglas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3237, https://doi.org/10.5194/egusphere-2025-3237, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Over time, traces of humans, fire, and plants accumulate at the bottom of lakes. They reveal the history of how the lowland Maya, a society thought to have declined due to drought, transformed their environment over time. We show how forest was cleared, agriculture expanded, and population levels rose then declined. However, the record does not show drought even though population declines. This challenges the idea that climate was the primary cause of the societal changes.
Alexie Roy-Lafontaine, Rebecca Lee, Peter M. J. Douglas, Dustin Whalen, and André Pellerin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2570, https://doi.org/10.5194/egusphere-2025-2570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
As Arctic coastlines change with the climate, we studied how these changes might affect methane release, a powerful greenhouse gas. We found that coastal sediments can produce a lot of methane, even when exposed to seawater, which was thought to prevent it. This suggests that Arctic coasts could be an overlooked source of methane to the atmosphere as the climate continues to warm and sea levels rise.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Cited articles
Alstad, K. P. and Whiticar, M. J.: Carbon and hydrogen isotope ratio
characterization of methane dynamics for Fluxnet Peatland Ecosystems, Org.
Geochem., 42, 548–558, 2011.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon
sink, Science, 331, 50–50, 2011.
Bellisario, L., Bubier, J., Moore, T., and Chanton, J.: Controls on CH4
emissions from a northern peatland, Global Biogeochem. Cy., 13, 81–91, 1999.
Bergamaschi, P.: Seasonal variations of stable hydrogen and carbon isotope
ratios in methane from a Chinese rice paddy, J. Geophys.
Res.-Atmos., 102, 25383–25393, 1997.
Bilek, R., Tyler, S., Kurihara, M., and Yagi, K.: Investigation of cattle
methane production and emission over a 24-hour period using measurements of
δ13C and δD of emitted CH4 and rumen water, J.
Geophys. Res.-Atmos., 106, 15405–15413, 2001.
Bock, M., Schmitt, J., Möller, L., Spahni, R., Blunier, T., and Fischer,
H.: Hydrogen isotopes preclude marine hydrate CH4 emissions at the onset of
Dansgaard-Oeschger events, Science, 328, 1686–1689, 2010.
Bock, M., Schmitt, J., Beck, J., Seth, B., Chappellaz, J., and Fischer, H.:
Glacial/interglacial wetland, biomass burning, and geologic methane
emissions constrained by dual stable isotopic CH4 ice core records,
P. Natl. Acad. Sci. USA, 114, E5778–E5786, 2017.
Bouchard, F., Laurion, I., Prėskienis, V., Fortier, D., Xu, X., and Whiticar, M. J.: Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut), Biogeosciences, 12, 7279–7298, https://doi.org/10.5194/bg-12-7279-2015, 2015.
Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of
modern meteoric precipitation, Water Resour. Res., 39, 1299, https://doi.org/10.1029/2003WR002086, 2003.
Bowen, G. J. and Wilkinson, B.: Spatial distribution of δ18O in
meteoric precipitation, Geology, 30, 315–318, 2002.
Bowen, G. J., Wassenaar, L. I., and Hobson, K. A.: Global application of
stable hydrogen and oxygen isotopes to wildlife forensics, Oecologia, 143,
337–348, 2005.
Bowes, H. L. and Hornibrook, E. R.: Emission of highly 13C-depleted methane
from an upland blanket mire, Geophys. Res. Lett., 33, L04401, https://doi.org/10.1029/2005GL025209, 2006.
Brooks, J. R., Gibson, J. J., Birks, S. J., Weber, M. H., Rodecap, K. D.,
and Stoddard, J. L.: Stable isotope estimates of evaporation: inflow and
water residence time for lakes across the United States as a tool for
national lake water quality assessments, Limnol. Oceanogr., 59, 2150–2165,
2014.
Brosius, L., Walter Anthony, K., Grosse, G., Chanton, J., Farquharson, L.,
Overduin, P. P., and Meyer, H.: Using the deuterium isotope composition of
permafrost meltwater to constrain thermokarst lake contributions to
atmospheric CH4 during the last deglaciation, J. Geophys.
Res.-Biogeo. (2005–2012), 117, G01022, https://doi.org/10.1029/2011JG001810, 2012.
Burke Jr., R.: Shallow aquatic sediments, Bacterial Gas. Conference, Milan,
25–26 September 1989, Editions Technip, Paris, France,
1992.
Burke Jr., R. A. and Sackett, W. M.: Stable hydrogen and carbon isotopic
compositions of biogenic methanes from several shallow aquatic environments, in: Organic Marine Geochemistry, edited by: Sohn, M. L.,
ACS Publications, Washington D.C., USA, 297–313, 1986.
Burke Jr., R. A., Barber, T. R., and Sackett, W. M.: Methane flux and stable
hydrogen and carbon isotope composition of sedimentary methane from the
Florida Everglades, Global Biogeochem. Cy., 2, 329–340, 1988.
Burke Jr., R. A., Barber, T. R., and Sackett, W. M.: Seasonal variations of
stable hydrogen and carbon isotope ratios of methane in subtropical
freshwater sediments, Global Biogeochem. Cy., 6, 125–138, 1992.
Burke Jr., R. A.: Possible influence of hydrogen concentration on microbial
methane stable hydrogen isotopic composition, Chemosphere, 26, 55–67, 1993.
Cadieux, S. B., White, J. R., Sauer, P. E., Peng, Y., Goldman, A. E., and
Pratt, L. M.: Large fractionations of C and H isotopes related to methane
oxidation in Arctic lakes, Geochim. Cosmochim. Ac., 187, 141–155, 2016.
Chanton, J., Whiting, G., Blair, N., Lindau, C., and Bollich, P.: Methane
emission from rice: Stable isotopes, diurnal variations, and CO2 exchange,
Global Biogeochem. Cy., 11, 15–27, 1997.
Chanton, J. P.: The effect of gas transport on the isotope signature of
methane in wetlands, Org. Geochem., 36, 753–768, 2005.
Chanton, J. P., Fields, D., and Hines, M. E.: Controls on the hydrogen
isotopic composition of biogenic methane from high-latitude terrestrial
wetlands, J. Geophys. Res.-Biogeo. (2005–2012), 111, G04004, https://doi.org/10.1029/2005JG000134,
2006.
Chasar, L., Chanton, J., Glaser, P. H., and Siegel, D.: Methane
concentration and stable isotope distribution as evidence of rhizospheric
processes: Comparison of a fen and bog in the Glacial Lake Agassiz Peatland
complex, Ann. Bot., 86, 655–663, 2000.
Chen, Y., Lehmann, K. K., Peng, Y., Pratt, L., White, J., Cadieux, S.,
Sherwood Lollar, B., Lacrampe-Couloume, G., and Onstott, T. C.: Hydrogen
Isotopic Composition of Arctic and Atmospheric CH4 Determined by a Portable
Near-Infrared Cavity Ring-Down Spectrometer with a Cryogenic
Pre-Concentrator, Astrobiology, 16, 787–797, 2016.
Conrad, R., Noll, M., Claus, P., Klose, M., Bastos, W. R., and Enrich-Prast, A.: Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments, Biogeosciences, 8, 795–814, https://doi.org/10.5194/bg-8-795-2011, 2011.
Coplen, T. B.: Guidelines and recommended terms for expression of
stable-isotope-ratio and gas-ratio measurement results, Rapid Commun. Mass
Sp., 25, 2538–2560, 2011.
David, K., Timms, W., Hughes, C. E., Crawford, J., and McGeeney, D.: Application of the pore water stable isotope method and hydrogeological approaches to characterise a wetland system, Hydrol. Earth Syst. Sci., 22, 6023–6041, https://doi.org/10.5194/hess-22-6023-2018, 2018.
Douglas, P. M. J., Stolper, D., Smith, D., Walter Anthony, K., Paull, C.,
Dallimore, S., Wik, M., Crill, P., Winterdahl, M., Eiler, J., and Sessions,
A. L.: Diverse origins of Arctic and Subarctic methane point source
emissions identified with multiply-substituted isotopologues, Geochim.
Cosmochim. Ac., 188, 163–188, 2016.
Douglas, P. M. J., Stolper, D. A., Eiler, J. M., Sessions, A. L., Lawson, M.,
Shuai, Y., Bishop, A., Podlaha, O. G., Ferreira, A. A., and Neto, E. V. S.:
Methane clumped isotopes: progress and potential for a new isotopic tracer,
Org. Geochem., 113, 262–282, 2017.
Douglas, P. M. J., Gonzalez Moguel, R., Walter Anthony, K. M., Wik, M., Crill,
P. M., Dawson, K. S., Smith, D. A., Yanay, E., Lloyd, M. K., and Stolper, D.
A.: Clumped isotopes link older carbon substrates with slower rates of
methanogenesis in northern lakes, Geophys. Res. Lett., 47, e2019GL086756, https://doi.org/10.1029/2019GL086756, 2020a.
Douglas, P. M. J., Stratigopoulos, E., Park, J., and Phan, D.: Data for geographic
variability in freshwater methane hydrogen isotope ratios and its
implications for emissions source apportionment and microbial
biogeochemistry, figshare [Dataset], https://doi.org/10.6084/m9.figshare.13194833.v2, 2020b.
Drevon, D., Fursa, S. R., and Malcolm, A. L.: Intercoder reliability and
validity of WebPlotDigitizer in extracting graphed data, Behav.
Modif., 41, 323–339, 2017.
Dunn, O. J.: Multiple comparisons using rank sums, Technometrics, 6,
241–252, 1964.
Fisher, R. E., Sriskantharajah, S., Lowry, D., Lanoisellé, M., Fowler,
C., James, R., Hermansen, O., Lund Myhre, C., Stohl, A., Greinert, J., and
Nisbet, E. G.: Arctic methane sources: Isotopic evidence for atmospheric
inputs, Geophys. Res. Lett., 38, L21803, https://doi.org/10.1029/2011GL049319, 2011.
Fletcher, D. and Dixon, P. M.: Modelling data from different sites, times
or studies: weighted vs. unweighted regression, Method. Ecol.
Evolut., 3, 168–176, 2012.
Ganesan, A., Stell, A., Gedney, N., Comyn-Platt, E., Hayman, G., Rigby, M.,
Poulter, B., and Hornibrook, E.: Spatially resolved isotopic source
signatures of wetland methane emissions, Geophys. Res. Lett., 45, 3737–3745,
2018.
Gruen, D. S., Wang, D. T., Könneke, M., Topçuoğlu, B. D.,
Stewart, L. C., Goldhammer, T., Holden, J. F., Hinrichs, K.-U., and Ono, S.:
Experimental investigation on the controls of clumped isotopologue and
hydrogen isotope ratios in microbial methane, Geochim. Cosmochim. Ac., 237,
339–356, 2018.
Happell, J. D., Chanton, J. P., Whiting, G. J., and Showers, W. J.: Stable
isotopes as tracers of methane dynamics in Everglades marshes with and
without active populations of methane oxidizing bacteria, J.
Geophys. Res.-Atmos., 98, 14771–14782, 1993.
Happell, J. D., Chanton, J. P., and Showers, W. S.: The influence of methane
oxidation on the stable isotopic composition of methane emitted from Florida
swamp forests, Geochim. Cosmochim. Ac., 58, 4377–4388, 1994.
Hornibrook, E. R.: The stable carbon isotope composition of methane produced
and emitted from northern peatlands, edited by: Baird, A., Belyea, L., Comas, X.,
Reeve, A., and Slater, L., American Geophysical Union, Geophys. Monogr.
Ser., 184, 187–203, 2009.
Hornibrook, E. R., Longstaffe, F. J., and Fyfe, W. S.: Spatial distribution
of microbial methane production pathways in temperate zone wetland soils:
stable carbon and hydrogen isotope evidence, Geochim. Cosmochim. Ac., 61,
745–753, 1997.
Huang, Y., Shuman, B., Wang, Y., and Webb III, T.: Hydrogen isotope ratios
of palmitic acid in lacustrine sediments record late Quaternary climate
variations, Geology, 30, 1103–1106, 2002.
Jonsson, C. E., Leng, M. J., Rosqvist, G. C., Seibert, J., and Arrowsmith,
C.: Stable oxygen and hydrogen isotopes in sub-Arctic lake waters from
northern Sweden, J. Hydrol., 376, 143–151, 2009.
Kai, F. M., Tyler, S. C., Randerson, J. T., and Blake, D. R.: Reduced
methane growth rate explained by decreased Northern Hemisphere microbial
sources, Nature, 476, 194–197, 2011.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate feedbacks accelerate global warming, P. Natl. Acad. Sci. USA, 108, 14769–14774, 2011.
Kruskal, W. H. and Wallis, W. A.: Use of ranks in one-criterion variance
analysis, J. Am. Stat. Assoc., 47, 583–621,
1952.
Krzycki, J., Kenealy, W., DeNiro, M., and Zeikus, J.: Stable carbon isotope
fractionation by Methanosarcina barkeri during methanogenesis from acetate,
methanol, or carbon dioxide-hydrogen, Appl. Environ.
Microbiol., 53, 2597–2599, 1987.
Lansdown, J., Quay, P., and King, S.: CH4 production via CO2 reduction in a
temperate bog: A source of 13C-depIeted CH4, Geochim. Cosmochim. Ac., 56,
3493–3503, 1992.
Lansdown, J. M.: The carbon and hydrogen stable isotope composition of
methane released from natural wetlands and ruminants, PhD Dissertation,
University of Washington, 1992.
Lecher, A. L., Chuang, P. C., Singleton, M., and Paytan, A.: Sources of
methane to an Arctic lake in Alaska: An isotopic investigation, J.
Geophys. Res.-Biogeo., 122, 753–766, 2017.
Levin, I., Bergamaschi, P., Dörr, H., and Trapp, D.: Stable isotopic
signature of methane from major sources in Germany, Chemosphere, 26,
161–177, 1993.
Liptay, K., Chanton, J., Czepiel, P., and Mosher, B.: Use of stable isotopes
to determine methane oxidation in landfill cover soils, J.
Geophys. Res.-Atmos., 103, 8243–8250, 1998.
Mann, H. B. and Whitney, D. R.: On a test of whether one of two random
variables is stochastically larger than the other, Ann.
Mathemat. Stat., 18, 50–60, 1947.
Marik, T., Fischer, H., Conen, F., and Smith, K.: Seasonal variations in
stable carbon and hydrogen isotope ratios in methane from rice fields,
Global Biogeochem. Cy., 16, 41-41–41-11, 2002.
Martens, C. S., Kelley, C. A., Chanton, J. P., and Showers, W. J.: Carbon
and hydrogen isotopic characterization of methane from wetlands and lakes of
the Yukon-Kuskokwim delta, western Alaska, J. Geophys. Res.-Atmos. (1984–2012), 97, 16689–16701, 1992.
Miles, N. L., Martins, D. K., Richardson, S. J., Rella, C. W., Arata, C., Lauvaux, T., Davis, K. J., Barkley, Z. R., McKain, K., and Sweeney, C.: Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region, Atmos. Meas. Tech., 11, 1273–1295, https://doi.org/10.5194/amt-11-1273-2018, 2018.
Mischler, J. A., Sowers, T. A., Alley, R. B., Battle, M., McConnell, J.,
Mitchell, L., Popp, T., Sofen, E., and Spencer, M.: Carbon and hydrogen
isotopic composition of methane over the last 1000 years, Global Biogeochem.
Cy., 23, GB4024, https://doi.org/10.1029/2009GB003460, 2009.
Mora, G. and Zanazzi, A.: Hydrogen isotope ratios of moss cellulose and
source water in wetlands of Lake Superior, United States reveal their
potential for quantitative paleoclimatic reconstructions, Chem. Geol., 468,
75–83, 2017.
Nakagawa, F., Yoshida, N., Sugimoto, A., Wada, E., Yoshioka, T., Ueda, S.,
and Vijarnsorn, P.: Stable isotope and radiocarbon compositions of methane
emitted from tropical rice paddies and swamps in Southern Thailand,
Biogeochemistry, 61, 1–19, 2002a.
Nakagawa, F., Yoshida, N., Nojiri, Y., and Makarov, V.: Production of
methane from alasses in eastern Siberia: Implications from its 14C and
stable isotopic compositions, Global Biogeochem. Cy., 16, 14-11–14-15, 2002b.
Nisbet, E., Dlugokencky, E., Manning, M., Lowry, D., Fisher, R., France, J.,
Michel, S., Miller, J., White, J., and Vaughn, B.: Rising atmospheric
methane: 2007–2014 growth and isotopic shift, Global Biogeochem. Cy., 30,
1356–1370, 2016.
Nisbet, E. G., Manning, M., Dlugokencky, E., Fisher, R., Lowry, D., Michel,
S., Myhre, C. L., Platt, S. M., Allen, G., and Bousquet, P.: Very strong
atmospheric methane growth in the 4 years 2014–2017: Implications for the
Paris Agreement, Global Biogeochem. Cy., 33, 318–342, 2019.
Penger, J., Conrad, R., and Blaser, M.: Stable carbon isotope fractionation
by methylotrophic methanogenic archaea, Appl. Environ.
Microbiol., 78, 7596–7602, 2012.
Penning, H. and Conrad, R.: Quantification of carbon flow from stable
isotope fractionation in rice field soils with different organic matter
content, Org. Geochem., 38, 2058–2069, 2007.
Penning, H., Plugge, C. M., Galand, P. E., and Conrad, R.: Variation of
carbon isotope fractionation in hydrogenotrophic methanogenic microbial
cultures and environmental samples at different energy status, Glob. Change
Biol., 11, 2103–2113, 2005.
Pine, M. J. and Barker, H.: Studies on the methane fermentation XII.: The
pathway of hydrogen in the acetate fermentation, J. Bacteriol.,
71, 644–648, 1956.
Pison, I., Ringeval, B., Bousquet, P., Prigent, C., and Papa, F.: Stable atmospheric methane in the 2000s: key-role of emissions from natural wetlands, Atmos. Chem. Phys., 13, 11609–11623, https://doi.org/10.5194/acp-13-11609-2013, 2013.
Popp, T. J., Chanton, J. P., Whiting, G. J., and Grant, N.: Methane stable
isotope distribution at a Carex dominated fen in north central Alberta,
Global Biogeochem. Cy., 13, 1063–1077, 1999.
Rice, A. L., Butenhoff, C. L., Teama, D. G., Röger, F. H., Khalil, M. A.
K., and Rasmussen, R. A.: Atmospheric methane isotopic record favors fossil
sources flat in 1980s and 1990s with recent increase, P.
Natl. Acad. Sci. USA, 113, 10791–10796, 2016.
Rigby, M., Manning, A., and Prinn, R.: The value of high-frequency,
high-precision methane isotopologue measurements for source and sink
estimation, J. Geophys. Res.-Atmos., 117, D12312, https://doi.org/10.1029/2011JD017384, 2012.
Röckmann, T., Eyer, S., van der Veen, C., Popa, M. E., Tuzson, B., Monteil, G., Houweling, S., Harris, E., Brunner, D., Fischer, H., Zazzeri, G., Lowry, D., Nisbet, E. G., Brand, W. A., Necki, J. M., Emmenegger, L., and Mohn, J.: In situ observations of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, 2016.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic
patterns in modern global precipitation, Geophys. Monogr. Ser., 78,
1–36, 1993.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E.,
Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., and van der
Meer, M. T. J.: Molecular paleohydrology: Interpreting the hydrogen-isotopic
composition of lipid biomarkers from photosynthesizing organisms, Ann.
Rev. Earth Planet. Sci., 40, 221–249, 2012.
Sakagami, H., Takahashi, N., Hachikubo, A., Minami, H., Yamashita, S.,
Shoji, H., Khlystov, O., Kalmychkov, G., Grachev, M., and De Batist, M.:
Molecular and isotopic composition of hydrate-bound and dissolved gases in
the southern basin of Lake Baikal, based on an improved headspace gas
method, Geo.-Mar. Lett., 32, 465–472, 2012.
Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G.
W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., and
Levin, I.: A 21st-century shift from fossil-fuel to biogenic methane
emissions indicated by 13CH4, Science, 352, 80–84, 2016.
Schoell, M.: The hydrogen and carbon isotopic composition of methane from
natural gases of various origins, Geochim. Cosmochim. Ac., 44, 649–661, 1980.
Schoell, M.: Genetic characterization of natural gases, AAPG Bull., 67,
2225–2238, 1983.
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M., Miller, J. B., Etiope,
G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., and
White, J. W.: Upward revision of global fossil fuel methane emissions based
on isotope database, Nature, 538, 88–91, 2016.
Shapiro, S. S. and Wilk, M. B.: An analysis of variance test for normality
(complete samples), Biometrika, 52, 591–611, 1965.
Sherwood, O. A., Schwietzke, S., Arling, V. A., and Etiope, G.: Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017, Earth Syst. Sci. Data, 9, 639–656, https://doi.org/10.5194/essd-9-639-2017, 2017.
Shoemaker, J., Varner, R., and Schrag, D.: Characterization of subsurface
methane production and release over 3 years at a New Hampshire wetland,
Geochim. Cosmochim. Ac., 91, 120–139, 2012.
Sprenger, M., Tetzlaff, D., Tunaley, C., Dick, J., and Soulsby, C.:
Evaporation fractionation in a peatland drainage network affects stream
water isotope composition, Water Resour. Res., 53, 851–866, 2017.
Stell, A. C., Douglas, P. M. J., Rigby, M., and Ganesan, A. L.: The impact of
spatially varying wetland source signatures on the atmospheric variability
of δD-CH4, Philos. T. R. Soc. A, in press, 2021.
Stolper, D., Martini, A., Clog, M., Douglas, P., Shusta, S., Valentine, D.,
Sessions, A., and Eiler, J.: Distinguishing and understanding thermogenic
and biogenic sources of methane using multiply substituted isotopologues,
Geochim. Cosmochim. Ac., 161, 219–247, 2015.
Sugimoto, A. and Wada, E.: Hydrogen isotopic composition of bacterial
methane: CO2 H2 reduction and acetate fermentation, Geochim.
Cosmochim. Ac., 59, 1329–1337, 1995.
Teasdale, C. J., Hall, J. A., Martin, J. P., and Manning, D. A.:
Discriminating methane sources in ground gas emissions in NW England,
Q. J. Eng. Geol. Hydrogeol., 52, 110–122,
2019.
Thompson, H. A., White, J. R., Pratt, L. M., and Sauer, P. E.: Spatial
variation in flux, δ13C and δ2H of methane in a small
Arctic lake with fringing wetland in western Greenland, Biogeochemistry,
131, 17–33, 2016.
Thompson, K. M., Burmaster, D. E., and Crouch, E. A.: Monte Carlo
techniques for quantitative uncertainty analysis in public health risk
assessments, Risk Anal., 12, 53–63, 1992.
Thompson, R. L., Nisbet, E., Pisso, I., Stohl, A., Blake, D., Dlugokencky,
E., Helmig, D., and White, J.: Variability in atmospheric methane from
fossil fuel and microbial sources over the last three decades, Geophys. Res.
Lett., 45, 11499–11508, 2018.
Turner, A. J., Frankenberg, C., and Kort, E. A.: Interpreting contemporary
trends in atmospheric methane, P. Natl. Acad.
Sci. USA, 116, 2805–2813, 2019.
Tyler, J. J., Leng, M. J., and Arrowsmith, C.: Seasonality and the isotope
hydrology of Lochnagar, a Scottish mountain lake: implications for
palaeoclimate research, The Holocene, 17, 717–727, 2007.
Tyler, S., Bilek, R., Sass, R., and Fisher, F.: Methane oxidation and
pathways of production in a Texas paddy field deduced from measurements of
flux, δ13C, and δD of CH4, Global Biogeochem. Cy., 11,
323–348, 1997.
Umezawa, T., Aoki, S., Kim, Y., Morimoto, S., and Nakazawa, T.: Carbon and
hydrogen stable isotopic ratios of methane emitted from wetlands and
wildfires in Alaska: Aircraft observations and bonfire experiments, J. Geophys. Res.-Atmos., 116, D15305, https://doi.org/10.1029/2010JD015545, 2011.
Valentine, D., Sessions, A., Tyler, S., and Chidthaisong, A.: Hydrogen
isotope fractionation during H2 CO2 acetogenesis: hydrogen utilization
efficiency and the origin of lipid-bound hydrogen, Geobiology, 2, 179–188,
2004a.
Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S., and Tyler, S.
C.: Carbon and hydrogen isotope fractionation by moderately thermophilic
methanogens, Geochim. Cosmochim. Ac., 68, 1571–1590, 2004b.
Vigano, I., Holzinger, R., Keppler, F., Greule, M., Brand, W. A., Geilmann,
H., Van Weelden, H., and Röckmann, T.: Water drives the deuterium
content of the methane emitted from plants, Geochim. Cosmochim. Ac., 74,
3865–3873, 2010.
Wahlen, M.: Carbon dioxide, carbon monoxide and methane in the atmosphere:
abundance and isotopic composition, in: Stable Isotopes in Ecology and
Environmental Science, edited by: Lathja, K. and Michener, R. H., Blackwell, Malden, MA, USA, 93–113, 1994.
Waldron, S., Watson-Craik, I. A., Hall, A. J., and Fallick, A. E.: The
carbon and hydrogen stable isotope composition of bacteriogenic methane: a
laboratory study using a landfill inoculum, Geomicrobiol. J., 15,
157–169, 1998.
Waldron, S., Lansdown, J., Scott, E., Fallick, A., and Hall, A.: The global
influence of the hydrogen iostope composition of water on that of
bacteriogenic methane from shallow freshwater environments, Geochim.
Cosmochim. Ac., 63, 2237–2245, 1999a.
Waldron, S., Hall, A. J., and Fallick, A. E.: Enigmatic stable isotope
dynamics of deep peat methane, Global Biogeochem. Cy., 13, 93–100, 1999b.
Walter, K., Chanton, J. P., Chapin, F. S., Schuur, E. A. G., and Zimov, S.
A.: Methane production and bubble emissions from arctic lakes: Isotopic
implications for source pathways and ages, J. Geophys. Res.-Biogeo., 113, G00A08, https://doi.org/10.1029/2007JG000569, 2008.
Walter, K. M., Zimov, S., Chanton, J. P., Verbyla, D., and Chapin, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to climate
warming, Nature, 443, 71–75, 2006.
Wang, D. T., Gruen, D. S., Sherwood Lollar, B., Hinrichs, K.-U., Stewart, L.
C., Holden, J. F., Hristov, A. N., Pohlman, J. W., Morrill, P. L.,
Könneke, M., Delwiche, K. B., Reeves, E. P., Sutcliffe, C. N., Ritter,
D. J., Seewald, J. S., McIntosh, J. C., Hemond, H. F., Kubo, M. D., Cardace,
D., Hoehler, T. M., and Ono, S.: Nonequilibrium clumped isotope signals in
microbial methane, Science, 348, 428–431, 2015.
Wang, D. T., Welander, P. V., and Ono, S.: Fractionation of the methane
isotopologues 13CH4, 12CH3D, and 13CH3D during
aerobic oxidation of methane by Methylococcus capsulatus (Bath), Geochim. Cosmochim. Ac., 192, 186–202,
2016.
Wassmann, R., Thein, U., Whiticar, M., Rennenburg, H., Seiler, W., and Junk,
W.: Methane emissions from the Amazon floodplain: characterization of
production and transport, Global Biogeochem. Cy., 6, 3–13, 1992.
Whiticar, M. and Schaefer, H.: Constraining past global tropospheric
methane budgets with carbon and hydrogen isotope ratios in ice,
Philos. T. Ro. Soc. A, 365, 1793–1828, 2007.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314, 1999.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in
marine and freshwater environments: CO2 reduction vs. acetate
fermentation – Isotope evidence, Geochim. Cosmochim. Ac., 50, 693–709, 1986.
Woltemate, I., Whiticar, M., and Schoell, M.: Carbon and hydrogen isotopic
composition of bacterial methane in a shallow freshwater lake, Limnol.
Oceanogr., 29, 985–992, 1984.
Worden, J. R., Bloom, A. A., Pandey, S., Jiang, Z., Worden, H. M., Walker,
T. W., Houweling, S., and Röckmann, T.: Reduced biomass burning
emissions reconcile conflicting estimates of the post-2006 atmospheric
methane budget, Nat. Commun., 8, 1–11, 2017.
Yacovitch, T. I., Daube, C., and Herndon, S. C.: Methane emissions from
offshore oil and gas platforms in the Gulf of Mexico, Environ. Sci.
Technol., 54, 3530–3538, 2020.
Young, E., Kohl, I., Sherwood Lollar, B., Etiope, G., Rumble, D., Li, S.,
Haghnegahdar, M., Schauble, E., McCain, K., Foustoukos, D., Sutclife, C.,
Warr, O., and Ballentine, C.: The relative abundances of resolved
CH2D2 and 13CH3D and mechanisms controlling isotopic
bond ordering in abiotic and biotic methane gases, Geochim. Cosmochim. Ac.,
203, 235–264, 2017.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., and Del Giorgio, P. A.: Methane fluxes show
consistent temperature dependence across microbial to ecosystem scales,
Nature, 507, 488–491, 2014.
Zazzeri, G., Lowry, D., Fisher, R., France, J., Lanoisellé, M., and
Nisbet, E.: Plume mapping and isotopic characterisation of anthropogenic
methane sources, Atmos. Environ., 110, 151–162, 2015.
Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G., Huang, C., and Poulter, B.: Emerging role of wetland methane emissions in driving 21st century climate change, P. Natl. Acad. Sci. USA, 114, 9647–9652, 2017.
Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas,
R., Nusbaumer, J., Wong, T., and Jahn, A.: Reduced ENSO variability at the
LGM revealed by an isotope-enabled Earth system model, Geophys. Res. Lett., 44,
6984–6992, 2017.
Zimov, S., Voropaev, Y. V., Semiletov, I., Davidov, S., Prosiannikov, S.,
Chapin, F. S., Chapin, M., Trumbore, S., and Tyler, S.: North Siberian
lakes: a methane source fueled by Pleistocene carbon, Science, 277, 800–802,
1997.
Short summary
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane emissions from freshwater environments. We analyzed an expanded global dataset of freshwater methane hydrogen isotope ratios and found significant geographic variation linked to water isotopic composition. This geographic variability could be used to resolve changing methane fluxes from freshwater environments and provide more accurate estimates of the relative balance of global methane sources.
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane...
Altmetrics
Final-revised paper
Preprint