Articles | Volume 18, issue 13
https://doi.org/10.5194/bg-18-4117-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4117-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Ongoing and emerging opportunities to improve environmental science using observations from the Advanced Baseline Imager on the Geostationary Operational Environmental Satellites
Nelson Institute for Environmental Studies, University of Wisconsin – Madison, Madison, WI, USA
Paul C. Stoy
Nelson Institute for Environmental Studies, University of Wisconsin – Madison, Madison, WI, USA
Department of Biological Systems Engineering, University of Wisconsin – Madison, Madison, WI, USA
Department of Atmospheric and Oceanic Sciences, University of
Wisconsin – Madison, Madison, WI, USA
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
James T. Douglas
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
Martha Anderson
Hydrology and Remote Sensing Laboratory, ARS USDA, Beltsville, MD, USA
George Diak
Space Sciences and Engineering Center, University of Wisconsin –
Madison, Madison, WI, USA
Jason A. Otkin
Space Sciences and Engineering Center, University of Wisconsin –
Madison, Madison, WI, USA
Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin – Madison, Madison, WI, USA
Christopher Hain
Short-term Prediction Research and Transition Center, NASA Marshall
Space Flight Center, Earth Science Branch, Huntsville, AL, USA
Elizabeth M. Rehbein
Department of Electrical and Computer Engineering, Montana State
University, Bozeman, MT, USA
Joel McCorkel
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Related authors
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
This article is included in the Encyclopedia of Geosciences
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
This article is included in the Encyclopedia of Geosciences
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
This article is included in the Encyclopedia of Geosciences
R. Bradley Pierce, Monica Harkey, Allen Lenzen, Lee M. Cronce, Jason A. Otkin, Jonathan L. Case, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 9613–9635, https://doi.org/10.5194/acp-23-9613-2023, https://doi.org/10.5194/acp-23-9613-2023, 2023
Short summary
Short summary
We evaluate two high-resolution model simulations with different meteorological inputs but identical chemistry and anthropogenic emissions, with the goal of identifying a model configuration best suited for characterizing air quality in locations where lake breezes commonly affect local air quality along the Lake Michigan shoreline. This analysis complements other studies in evaluating the impact of meteorological inputs and parameterizations on air quality in a complex environment.
This article is included in the Encyclopedia of Geosciences
Jason A. Otkin, Lee M. Cronce, Jonathan L. Case, R. Bradley Pierce, Monica Harkey, Allen Lenzen, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 7935–7954, https://doi.org/10.5194/acp-23-7935-2023, https://doi.org/10.5194/acp-23-7935-2023, 2023
Short summary
Short summary
We performed model simulations to assess the impact of different parameterization schemes, surface initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run with high-resolution, real-time datasets depicting lake surface temperatures, green vegetation fraction, and soil moisture. The most accurate results were obtained when using high-resolution sea surface temperature and soil datasets to constrain the model simulations.
This article is included in the Encyclopedia of Geosciences
Aaron Pearlman, Monica Cook, Boryana Efremova, Francis Padula, Lok Lamsal, Joel McCorkel, and Joanna Joiner
Atmos. Meas. Tech., 15, 4489–4501, https://doi.org/10.5194/amt-15-4489-2022, https://doi.org/10.5194/amt-15-4489-2022, 2022
Short summary
Short summary
NOAA’s Geostationary Extended Observations (GeoXO) constellation is planned to consist of an atmospheric composition instrument (ACX) to support air quality forecasting and monitoring. As design trade-offs are being studied, we investigated one parameter, the polarization sensitivity, which has yet to be fully documented for NO2 retrievals. Our simulation study explores these impacts to inform the ACX’s development and better understand polarization’s role in trace gas retrievals.
This article is included in the Encyclopedia of Geosciences
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022, https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Short summary
This research assimilated the Global Precipitation Measurement (GPM) satellite-retrieved ocean surface meteorology data into the Weather Research and Forecasting (WRF) model with the Gridpoint Statistical Interpolation (GSI) system. This was for two snowstorms during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic Winter Games' (ICE-POP 2018) field experiments. The results indicated a positive impact of the data for short-term forecasts for heavy snowfall.
This article is included in the Encyclopedia of Geosciences
Sangchul Lee, Dongho Kim, Gregory W. McCarty, Martha Anderson, Feng Gao, Fangni Lei, Glenn E. Moglen, Xuesong Zhang, Haw Yen, Junyu Qi, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-187, https://doi.org/10.5194/hess-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watershed modeling is important to protect water resources. However, errors are involved in watershed modeling. To reduce errors, remotely sensed evapotranspiration data are widely used. However, the use of remotely sensed evapotranspiration data still includes errors. This study applied two remotely sensed data (evapotranspiration and leaf area index) into watershed modeling to reduce errors. The results showed advancement of watershed modeling by two remotely sensed data.
This article is included in the Encyclopedia of Geosciences
Paul C. Stoy, Adam A. Cook, John E. Dore, Natascha Kljun, William Kleindl, E. N. Jack Brookshire, and Tobias Gerken
Biogeosciences, 18, 961–975, https://doi.org/10.5194/bg-18-961-2021, https://doi.org/10.5194/bg-18-961-2021, 2021
Short summary
Short summary
The reintroduction of American bison creates multiple environmental benefits. Ruminants like bison also emit methane – a potent greenhouse gas – to the atmosphere, which has not been measured to date in a field setting. We measured methane efflux from an American bison herd during winter using eddy covariance. Automated cameras were used to approximate their location to calculate per-animal flux. From the measurements, bison do not emit more methane than the cattle they often replace.
This article is included in the Encyclopedia of Geosciences
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
This article is included in the Encyclopedia of Geosciences
Sangchul Lee, Gregory W. McCarty, Glenn E. Moglen, Haw Yen, Fangni Lei, Martha Anderson, Feng Gao, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-669, https://doi.org/10.5194/hess-2020-669, 2021
Publication in HESS not foreseen
Cited articles
Aerts, R., Wagendorp, T., November, E., Behailu, M., Deckers, J., and Muys,
B.: Ecosystem thermal buffer capacity as an indicator of the restoration
status of protected areas in the northern ethiopian highlands, Restor.
Ecol., 12, 586–596, https://doi.org/10.1111/j.1061-2971.2004.00324.x,
2004.
Ahl, D. E., Gower, S. T., Mackay, D. S., Burrows, S. N., Norman, J. M., and
Diak, G. R.: Heterogeneity of light use efficiency in a northern Wisconsin
forest: implications for modeling net primary production with remote
sensing, Remote Sens. Environ., 93, 168–178,
https://doi.org/10.1016/j.rse.2004.07.003, 2004.
Ahn, J.-H., Park, Y.-J., Ryu, J.-H., Lee, B., and Oh, I. S.: Development of
atmospheric correction algorithm for Geostationary Ocean Color Imager
(GOCI), Ocean Sci. J., 47, 247–259,
https://doi.org/10.1007/s12601-012-0026-2, 2012.
Anderson, M., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J.
R.: A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using
Thermal Infrared Remote Sensing, Remote Sens. Environ., 60, 195–216,
https://doi.org/10.1016/S0034-4257(96)00215-5, 1997.
Anderson, M., Norman, J., Kustas, W., Houborg, R., Starks, P., and Agam, N.:
A thermal-based remote sensing technique for routine mapping of land-surface
carbon, water and energy fluxes from field to regional scales, Remote
Sens. Environ., 112, 4227–4241,
https://doi.org/10.1016/j.rse.2008.07.009, 2008.
Anderson, M., Diak, G., Gao, F., Knipper, K., Hain, C., Eichelmann, E.,
Hemes, K., Baldocchi, D., Kustas, W., and Yang, Y.: Impact of Insolation Data
Source on Remote Sensing Retrievals of Evapotranspiration over the
California Delta, Remote Sens., 11, 216,
https://doi.org/10.3390/rs11030216, 2019.
Anderson, M. C., Norman, J. M., Meyers, T. P., and Diak, G. R.: An analytical
model for estimating canopy transpiration and carbon assimilation fluxes
based on canopy light-use efficiency, Agr. Forest Meteorol.,
101, 265–289, https://doi.org/10.1016/S0168-1923(99)00170-7, 2000.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas,
W. P.: A climatological study of evapotranspiration and moisture stress
across the continental United States based on thermal remote sensing: 1.
Model formulation, J. Geophys. Res., 112, D10117,
https://doi.org/10.1029/2006JD007506, 2007a.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas,
W. P.: A climatological study of evapotranspiration and moisture stress
across the continental United States based on thermal remote sensing: 2.
Surface moisture climatology, J. Geophys. Res., 112, D11112,
https://doi.org/10.1029/2006JD007507, 2007b.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J.
R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G.,
Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to
continental scales using geostationary and polar orbiting satellite imagery,
Hydrol. Earth Syst. Sci., 15, 223–239,
https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M.,
Wardlow, B., and Pimstein, A.: An Intercomparison of Drought Indicators Based
on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor
Classifications, J. Hydrometeor., 14, 1035–1056,
https://doi.org/10.1175/JHM-D-12-0140.1, 2013a.
Anderson, M. C., Cammalleri, C., Hain, C. R., Otkin, J., Zhan, X., and
Kustas, W.: Using a Diagnostic Soil-Plant-Atmosphere Model for Monitoring
Drought at Field to Continental Scales, Procedia Environ. Sci., 19,
47–56, https://doi.org/10.1016/j.proenv.2013.06.006, 2013b.
Anderson, M. C., Zolin, C., Sentelhas, P., Hain, C., Semmens, K., Yilmaz, M.
T., Gao, F., Otkin, J., and Tetrault, R.: Assessing correlations of
satellite-derived evapotranspiration, precipitation and leaf area index
anomalies with yields of major Brazilian crop, Remote Sens. Environ., 174,
82–99, 2016.
Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., Hain,
C. R., Kustas, W. P., Cawse-Nicholson, K., Hulley, G., Fisher, J. B.,
Alfieri, J. G., Meyers, T. P., Prueger, J., Baldocchi, D. D., and
Rey-Sanchez, C.: Interoperability of ECOSTRESS and Landsat for mapping
evapotranspiration time series at sub-field scales, Remote Sens.
Environ., 252, 112189, https://doi.org/10.1016/j.rse.2020.112189, 2020.
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance
and terrestrial photosynthesis, Sci. Adv., 3, e1602244,
https://doi.org/10.1126/sciadv.1602244, 2017.
Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B.: Terrestrial
gross primary production: Using NIRV to scale from site to globe, Glob.
Change Biol., 25, 3731–3740, https://doi.org/10.1111/gcb.14729, 2019.
Baguskas, S. A., Oliphant, A. J., Clemesha, R. E. S., and Loik, M. E.: Water
and light-use efficiency are enhanced under summer coastal fog in a
California agricultural system, J. Geophys. Res.-Biogeo., 126, e2020JG006193,
https://doi.org/10.1029/2020JG006193, 2021.
Baldocchi, D. D., Ryu, Y., Dechant, B., Eichelmann, E., Hemes, K., Ma, S.,
Sanchez, C. R., Shortt, R., Szutu, D., Valach, A., Verfaillie, J., Badgley,
G., Zeng, Y., and Berry, J. A.: Outgoing near-infrared radiation from
vegetation scales with canopy photosynthesis across a spectrum of function,
structure, physiological capacity, and weather, J. Geophys. Res.-Biogeo.,
125, e2019JG005534, https://doi.org/10.1029/2019JG005534, 2020.
Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P.
E., Bowden, J. D., Hoffman, F. M., and Reynolds, R. F.: Photoperiodic
regulation of the seasonal pattern of photosynthetic capacity and the
implications for carbon cycling, P. Natl. Acad. Sci. USA, 109,
8612–8617, https://doi.org/10.1073/pnas.1119131109, 2012.
Bieliński, T.: A parallax shift effect correction based on cloud height
for geostationary satellites and radar observations, Remote Sens.,
12, 365, https://doi.org/10.3390/rs12030365, 2020.
Bolton, D. K., Coops, N. C., Hermosilla, T., Wulder, M. A., and White, J. C.:
Assessing variability in post-fire forest structure along gradients of
productivity in the Canadian boreal using multi-source remote sensing, J.
Biogeogr., 44, 1294–1305, https://doi.org/10.1111/jbi.12947, 2017.
Bradley, N. L., Leopold, A. C., Ross, J., and Huffaker, W.: Phenological
changes reflect climate change in Wisconsin, P. Natl. Acad. Sci. USA,
96, 9701–9704, https://doi.org/10.1073/pnas.96.17.9701, 1999.
Brown, T. B., Hultine, K. R., Steltzer, H., Denny, E. G., Denslow, M. W.,
Granados, J., Henderson, S., Moore, D., Nagai, S., SanClements, M.,
Sánchez-Azofeifa, A., Sonnentag, O., Tazik, D., and Richardson, A. D.:
Using phenocams to monitor our changing Earth: toward a global phenocam
network, Front. Ecol. Environ., 14, 84–93,
https://doi.org/10.1002/fee.1222, 2016.
Brunsell, N. A., Schymanski, S. J., and Kleidon, A.: Quantifying the
thermodynamic entropy budget of the land surface: is this useful?, Earth
Syst. Dynam., 2, 87–103, https://doi.org/10.5194/esd-2-87-2011, 2011.
Cammalleri, C., Anderson, M. C., Gao, F., Hain, C. R., and Kustas, W. P.: A
data fusion approach for mapping daily evapotranspiration at field scale,
Water Resour. Res., 49, 4672–4686, https://doi.org/10.1002/wrcr.20349,
2013.
Cammalleri, C., Anderson, M. C., Gao, F., Hain, C. R., and Kustas, W. P.:
Mapping daily evapotranspiration at field scales over rainfed and irrigated
agricultural areas using remote sensing data fusion, Agr. Forest
Meteorol., 186, 1–11, https://doi.org/10.1016/j.agrformet.2013.11.001,
2014.
Carrer, D., Ceamanos, X., Moparthy, S., Vincent, C., C. Freitas, S., and
Trigo, I. F.: Satellite Retrieval of Downwelling Shortwave Surface Flux and
Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF
Program (Part 1: Methodology), Remote Sens., 11, 2532,
https://doi.org/10.3390/rs11212532, 2019.
Chambers, J. Q., Fisher, J. I., Zeng, H., Chapman, E. L., Baker, D. B., and
Hurtt, G. C.: Hurricane Katrina's carbon footprint on U.S. Gulf Coast
forests, Science, 318, 1107, https://doi.org/10.1126/science.1148913,
2007.
Chen, D., Huang, J., and Jackson, T. J.: Vegetation water content estimation
for corn and soybeans using spectral indices derived from MODIS near- and
short-wave infrared bands, Remote Sens. Environ., 98,
225–236, https://doi.org/10.1016/j.rse.2005.07.008, 2005.
Choi, J.-K., Park, Y. J., Ahn, J. H., Lim, H.-S., Eom, J., and Ryu, J.-H.:
GOCI, the world's first geostationary ocean color observation satellite, for
the monitoring of temporal variability in coastal water turbidity, J.
Geophys. Res., 117, C09004, https://doi.org/10.1029/2012JC008046, 2012.
Choi, J.-K., Min, J.-E., Noh, J. H., Han, T.-H., Yoon, S., Park, Y. J.,
Moon, J.-E., Ahn, J.-H., Ahn, S. M., and Park, J.-H.: Harmful algal bloom
(HAB) in the East Sea identified by the Geostationary Ocean Color Imager
(GOCI), Harmful Algae, 39, 295–302,
https://doi.org/10.1016/j.hal.2014.08.010, 2014.
Chudnovsky, A., Ben-Dor, E., and Saaroni, H.: Diurnal thermal behavior of
selected urban objects using remote sensing measurements, Energ.
Build., 36, 1063–1074,
https://doi.org/10.1016/j.enbuild.2004.01.052, 2004.
Concha, J., Mannino, A., Franz, B., and Kim, W.: Uncertainties in the Geostationary Ocean Color Imager (GOCI) Remote Sensing Reflectance for Assessing Diurnal Variability of Biogeochemical Processes, Remote Sens., 11, 295, https://doi.org/10.3390/rs11030295, 2019.
Coyle, D. B., Stysley, P. R., Poulios, D., Clarke, G. B., and Kay, R. B.:
Laser transmitter development for NASA's Global Ecosystem Dynamics
Investigation (GEDI) lidar, in: Lidar Remote Sensing for Environmental
Monitoring XV, Vol. 9612, edited by: Singh, U. N., SPIE, 961208,
https://doi.org/10.1117/12.2191569, 2015.
Dannenberg, M., Wang, X., Yan, D., and Smith, W.: Phenological
characteristics of global ecosystems based on optical, fluorescence, and
microwave remote sensing, Remote Sens., 12, 671,
https://doi.org/10.3390/rs12040671, 2020.
De Araujo Barbosa, C. C., Atkinson, P. M., and Dearing, J. A.: Remote sensing
of ecosystem services: A systematic review, Ecol. Ind., 52,
430–443, https://doi.org/10.1016/j.ecolind.2015.01.007, 2015.
Diak, G. R.: Investigations of improvements to an operational
GOES-satellite-data-based insolation system using pyranometer data from the
U.S. Climate Reference Network (USCRN), Remote Sens. Environ., 195,
79–95, https://doi.org/10.1016/j.rse.2017.04.002, 2017.
Diak, G. R. and Gautier, C.: Improvements to a Simple Physical Model for
Estimating Insolation from GOES Data, J. Climate Appl. Meteor., 22,
505–508, https://doi.org/10.1175/1520-0450(1983)022<0505:ITASPM>2.0.CO;2, 1983.
Diak, G. R. and Stewart, T. R.: Assessment of surface turbulent fluxes using
geostationary satellite surface skin temperatures and a mixed layer
planetary boundary layer scheme, J. Geophys. Res., 94, 6357,
https://doi.org/10.1029/JD094iD05p06357, 1989.
Diak, G. R. and Whipple, M. S.: Note on estimating surface sensible heat
fluxes using surface temperatures measured from a geostationary satellite
during FIFE 1989, J. Geophys. Res., 100, 25453,
https://doi.org/10.1029/95JD00729, 1995.
Dutkiewicz, S., Hickman, A. E., Jahn, O., Henson, S., Beaulieu, C., and
Monier, E.: Ocean colour signature of climate change, Nat. Commun., 10,
578, https://doi.org/10.1038/s41467-019-08457-x, 2019.
DOC, NOAA, NESDIS and NASA: Product Definition and User's Guide (PUG):
Volume 3: Level 1b Products,
available at: https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf (last access: 7 August
2020), 2019.
Emmel, C., D'Odorico, P., Revill, A., Hörtnagl, L., Ammann, C.,
Buchmann, N., and Eugster, W.: Canopy photosynthesis of six major arable
crops is enhanced under diffuse light due to canopy architecture, Glob.
Change Biol., 26, 5164–5177, https://doi.org/10.1111/gcb.15226, 2020.
Erbs, D. G., Klein, S. A., and Duffie, J. A.: Estimation of the diffuse
radiation fraction for hourly, daily and monthly-average global radiation,
Sol. Energy, 28, 293–302, https://doi.org/10.1016/0038-092X(82)90302-4,
1982.
Fang, L., Zhan, X., Schull, M., Kalluri, S., Laszlo, I., Yu, P., Carter, C.,
Hain, C., and Anderson, M.: Evapotranspiration Data Product from NESDIS GET-D
System Upgraded for GOES-16 ABI Observations, Remote Sens., 11,
2639, https://doi.org/10.3390/rs11222639, 2019.
Fensholt, R. and Sandholt, I.: Derivation of a shortwave infrared water
stress index from MODIS near- and shortwave infrared data in a semiarid
environment, Remote Sens. Environ., 87, 111–121,
https://doi.org/10.1016/j.rse.2003.07.002, 2003.
Fensholt, R., Sandholt, I., Stisen, S., and Tucker, C.: Analysing NDVI for
the African continent using the geostationary meteosat second generation
SEVIRI sensor, Remote Sens. Environ., 101, 212–229,
https://doi.org/10.1016/j.rse.2005.11.013, 2006.
Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Sonnentag, O.,
Humphreys, E., Hufkens, K., Ryu, Y., Verfaillie, J., Morra di Cella, U., and
Richardson, A. D.: NDVI derived from near-infrared-enabled digital cameras:
Applicability across different plant functional types, Agr.
Forest Meteorol., 249, 275–285,
https://doi.org/10.1016/j.agrformet.2017.11.003, 2018.
Fu, Z., Stoy, P. C., Luo, Y., Chen, J., Sun, J., Montagnani, L., Wohlfahrt,
G., Rahman, A. F., Rambal, S., Bernhofer, C., Wang, J., Shirkey, G., and Niu,
S.: Climate controls over the net carbon uptake period and amplitude of net
ecosystem production in temperate and boreal ecosystems, Agr.
Forest Meteorol., 243, 9–18,
https://doi.org/10.1016/j.agrformet.2017.05.009, 2017.
Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., and
Niu, S.: Maximum carbon uptake rate dominates the interannual variability of
global net ecosystem exchange, Glob. Change Biol., 25, 3381–3394,
https://doi.org/10.1111/gcb.14731, 2019.
Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E.,
Joel, G., Penuelas, J., and Valentini, R.: Relationships between NDVI, canopy
structure, and photosynthesis in three californian vegetation types, Ecol.
Appl., 5, 28–41, https://doi.org/10.2307/1942049, 1995.
Gamon, J. A., Huemmrich, K. F., Wong, C. Y. S., Ensminger, I., Garrity, S.,
Hollinger, D. Y., Noormets, A., and Peñuelas, J.: A remotely sensed
pigment index reveals photosynthetic phenology in evergreen conifers, P.
Natl. Acad. Sci. USA, 113, 13087–13092,
https://doi.org/10.1073/pnas.1606162113, 2016.
Ganguly, S., Friedl, M. A., Tan, B., Zhang, X., and Verma, M.: Land surface
phenology from MODIS: Characterization of the Collection 5 global land cover
dynamics product, Remote Sens. Environ., 114, 1805–1816,
https://doi.org/10.1016/j.rse.2010.04.005, 2010.
Gao, B.: NDWI – A normalized difference water index for remote sensing of
vegetation liquid water from space, Remote Sens. Environ., 58,
257–266, https://doi.org/10.1016/S0034-4257(96)00067-3, 1996.
Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., and Yang,
Y.: Fusing landsat and MODIS data for vegetation monitoring, IEEE Geosci.
Remote Sens. Mag., 3, 47–60, https://doi.org/10.1109/MGRS.2015.2434351,
2015.
García-Haro, F. J., Campos-Taberner, M., Moreno, Á., Tagesson, H.
T., Camacho, F., Martínez, B., Sánchez, S., Piles, M., Camps-Valls,
G., Yebra, M., and Gilabert, M. A.: A global canopy water content product
from AVHRR/Metop, ISPRS J. Photogramm., 162,
77–93, https://doi.org/10.1016/j.isprsjprs.2020.02.007, 2020.
Gautier, C., Diak, G., and Masse, S.: A Simple Physical Model to Estimate
Incident Solar Radiation at the Surface from GOES Satellite Data, J. Appl.
Meteor., 19, 1005–1012,
https://doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2, 1980.
Gerken, T., Bromley, G. T., Ruddell, B. L., Williams, S., and Stoy, P. C.:
Convective suppression before and during the United States Northern Great
Plains flash drought of 2017, Hydrol. Earth Syst. Sci., 22, 4155–4163,
https://doi.org/10.5194/hess-22-4155-2018, 2018.
Ghilain, N., Arboleda, A., and Gellens-Meulenberghs, F.: Evapotranspiration
modelling at large scale using near-real time MSG SEVIRI derived data,
Hydrol. Earth Syst. Sci., 15, 771–786,
https://doi.org/10.5194/hess-15-771-2011, 2011.
Goetz, S. J., Fiske, G. J., and Bunn, A. G.: Using satellite time-series data
sets to analyze fire disturbance and forest recovery across Canada, Remote
Sens. Environ., 101, 352–365,
https://doi.org/10.1016/j.rse.2006.01.011, 2006.
Govaerts, Y. M., Wagner, S., Lattanzio, A., and Watts, P.: Joint retrieval of
surface reflectance and aerosol optical depth from MSG/SEVIRI observations
with an optimal estimation approach: 1. Theory, J. Geophys. Res., 115, D02203,
https://doi.org/10.1029/2009JD011779, 2010.
Grant, I. F., Prata, A. J., and Cechet, R. P.: The impact of the diurnal
variation of albedo on the remote sensing of the daily mean albedo of
grassland, J. Appl. Meteor., 39, 231–244,
https://doi.org/10.1175/1520-0450(2000)039<0231:TIOTDV>2.0.CO;2, 2000.
Guan, K., Medvigy, D., Wood, E. F., Caylor, K. K., Li, S., and Jeong, S.-J.:
Deriving vegetation phenological time and trajectory information over africa
using SEVIRI daily LAI, IEEE Trans. Geosci. Remote Sens., 52,
1113–1130, https://doi.org/10.1109/TGRS.2013.2247611, 2014.
Gu, L., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J.,
Urbanski, S. P., and Boden, T. A.: Response of a deciduous forest to the
Mount Pinatubo eruption: enhanced photosynthesis, Science, 299,
2035–2038, https://doi.org/10.1126/science.1078366, 2003.
Hardisky, M., Klemas, V., and Smart, R. M.: The influence of soil salinity,
growth form, and leaf moisture on the spectral radiance of Spartina
Alterniflora canopies, Photogramm. Engin. Remote Sens.,
49, 77–83, 1983.
Hashimoto, H., Wang, W., Dungan, J. L., Li, S., Michaelis, A. R., Takenaka,
H., Higuchi, A., Myneni, R. B., and Nemani, R. R.: New generation
geostationary satellite observations support seasonality in greenness of the
Amazon evergreen forests, Nat. Commun., 12, 684,
https://doi.org/10.1038/s41467-021-20994-y, 2021.
Heidinger, A. and Straka, W. C.: Algorithm Theoretical Basis Document ABI Cloud Mask, NOAA NESDIS Center for Satellite Applications and Research, Version 3.0, available at: https://github.com/anmikhan/envirogoes.git (last access: 1 January 2021), 2012.
Hemes, K. S., Verfaillie, J., and Baldocchi, D. D.: Wildfire-smoke aerosols
lead to increased light use efficiency among agricultural and restored
wetland land uses in california's central valley, J. Geophys. Res.-Biogeo., 125, e2019JG005380, https://doi.org/10.1029/2019JG005380, 2020.
He, T., Liang, S., Wang, D., Wu, H., Yu, Y., and Wang, J.: Estimation of
surface albedo and directional reflectance from Moderate Resolution Imaging
Spectroradiometer (MODIS) observations, Remote Sens. Environ., 119,
286–300, https://doi.org/10.1016/j.rse.2012.01.004, 2012.
He, T., Zhang, Y., Liang, S., Yu, Y., and Wang, D.: Developing Land Surface Directional Reflectance and Albedo Products from Geostationary GOES-R and Himawari Data: Theoretical Basis, Operational Implementation, and Validation, Remote Sens., 11, 2655, https://doi.org/10.3390/rs11222655, 2019.
Higuchi, A.: Toward more integrated utilizations of geostationary satellite
data for disaster management and risk mitigation, Remote Sens.,
13, 1553, https://doi.org/10.3390/rs13081553, 2021.
Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J.
G., Gao, F., and White, J. C.: A new data fusion model for high spatial- and
temporal-resolution mapping of forest disturbance based on Landsat and
MODIS, Remote Sens. Environ., 113, 1613–1627,
https://doi.org/10.1016/j.rse.2009.03.007, 2009.
Holdaway, R. J., Sparrow, A. D., and Coomes, D. A.: Trends in entropy
production during ecosystem development in the Amazon Basin, Philos. T.
R. Soc. Lond. B, 365, 1437–1447,
https://doi.org/10.1098/rstb.2009.0298, 2010.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213,
https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Hulley, G., Hook, S., Fisher, J., and Lee, C.: ECOSTRESS, A NASA
Earth-Ventures Instrument for studying links between the water cycle and
plant health over the diurnal cycle, in 2017 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), IEEE, 5494–5496,
https://doi.org/10.1109/IGARSS.2017.8128248, 2017.
Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C.,
Doriaswamy, P., and Hunt, E. R.: Vegetation water content mapping using
Landsat data derived normalized difference water index for corn and
soybeans, Remote Sens. Environ., 92, 475–482,
https://doi.org/10.1016/j.rse.2003.10.021, 2004.
Janjai, S. and Wattan, R.: Development of a model for the estimation of
photosynthetically active radiation from geostationary satellite data in a
tropical environment, Remote Sens. Environ., 115, 1680–1693,
https://doi.org/10.1016/j.rse.2011.02.026, 2011.
Jolliff, J. K., Lewis, M. D., Ladner, S., and Crout, R. L.: Observing the
Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data, Sensors,
19, 3900, https://doi.org/10.3390/s19183900, 2019.
Jordan, C. F.: Derivation of Leaf-Area Index from Quality of Light on the
Forest Floor, Ecology, 50, 663–666, https://doi.org/10.2307/1936256, 1969.
Kannenberg, S. A., Bowling, D. R., and Anderegg, W. R. L.: Hot moments in
ecosystem fluxes: High GPP anomalies exert outsized influence on the carbon
cycle and are differentially driven by moisture availability across biomes,
Environ. Res. Lett., 15, 054004,
https://doi.org/10.1088/1748-9326/ab7b97, 2020.
Kay, J. J. and Schneider, E. D.: Thermodynamics and measures of ecological
integrity, in: Ecological Indicators, edited by: McKenzie, D. H., Hyatt, D. E.,
and McDonald, V. J., Springer US, Boston, MA, 159–182,
https://doi.org/10.1007/978-1-4615-4659-7_12, 1992.
Kerr, J. T. and Ostrovsky, M.: From space to species: ecological
applications for remote sensing, Trends. Ecol. Evol., 18, 299–305,
https://doi.org/10.1016/S0169-5347(03)00071-5, 2003.
Kim, H.-W., Yeom, J.-M., Shin, D., Choi, S., Han, K.-S., and Roujean, J.-L.:
An assessment of thin cloud detection by applying bidirectional reflectance
distribution function model-based background surface reflectance using
Geostationary Ocean Color Imager (GOCI): A case study for South Korea, J.
Geophys. Res.-Atmos., 122, 8153–8172,
https://doi.org/10.1002/2017JD026707, 2017.
Knauer, K., Gessner, U., Fensholt, R., and Kuenzer, C.: An ESTARFM Fusion
Framework for the Generation of Large-Scale Time Series in Cloud-Prone and
Heterogeneous Landscapes, Remote Sens., 8, 425,
https://doi.org/10.3390/rs8050425, 2016.
LeBauer, D., Wang, D., Feng, X., and Dietz, M.: PECAn: workflow management for data assimilation and forecasting, Nat. Prec., https://doi.org/10.1038/npre.2011.5533.1, 2011.
Leitão, P. J., Schwieder, M., Pötzschner, F., Pinto, J. R. R.,
Teixeira, A. M. C., Pedroni, F., Sanchez, M., Rogass, C., van der Linden,
S., Bustamante, M. M. C., and Hostert, P.: From sample to pixel: multi-scale
remote sensing data for upscaling aboveground carbon data in heterogeneous
landscapes, Ecosphere, 9, e02298, https://doi.org/10.1002/ecs2.2298,
2018.
Lin, H., Cao, M., Stoy, P. C., and Zhang, Y.: Assessing self-organization of
plant communities – A thermodynamic approach, Ecol. Modell., 220,
784–790, https://doi.org/10.1016/j.ecolmodel.2009.01.003, 2009.
Liu, Y., Hill, M. J., Zhang, X., Wang, Z., Richardson, A. D., Hufkens, K.,
Filippa, G., Baldocchi, D. D., Ma, S., Verfaillie, J., and Schaaf, C. B.:
Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology
of California oak/grass savanna and open grassland across spatial scales,
Agr. Forest Meteorol., 237/238, 311–325,
https://doi.org/10.1016/j.agrformet.2017.02.026, 2017.
Li, F., Zhang, X., Roy, D. P., and Kondragunta, S.: Estimation of
biomass-burning emissions by fusing the fire radiative power retrievals from
polar-orbiting and geostationary satellites across the conterminous United
States, Atmos. Environ., 211, 274–287,
https://doi.org/10.1016/j.atmosenv.2019.05.017, 2019a.
Li, S., Wang, W., Hashimoto, H., Xiong, J., Vandal, T., Yao, J., Qian, L.,
Ichii, K., Lyapustin, A., Wang, Y., and Nemani, R.: First Provisional Land
Surface Reflectance Product from Geostationary Satellite Himawari-8 AHI,
Remote Sens., 11, 2990, https://doi.org/10.3390/rs11242990,
2019b.
Li, X., Xiao, J., Fisher, J. B., and Baldocchi, D. D.: ECOSTRESS estimates
gross primary production with fine spatial resolution for different times of
day from the International Space Station, Remote Sens. Environ.,
258, 112360, https://doi.org/10.1016/j.rse.2021.112360, 2021.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and
Sobrino, J. A.: Satellite-derived land surface temperature: Current status
and perspectives, Remote Sens. Environ., 131, 14–37,
https://doi.org/10.1016/j.rse.2012.12.008, 2013.
Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J.
C., Gerbig, C., Munger, J. W., Chow, V. Y., and Gottlieb, E. W.: A
satellite-based biosphere parameterization for net ecosystem CO2 exchange:
Vegetation Photosynthesis and Respiration Model (VPRM), Global Biogeochem.
Cy., 22, GB2005, https://doi.org/10.1029/2006GB002735, 2008.
Ma, X., Huete, A., Tran, N. N., Bi, J., Gao, S., and Zeng, Y.: Sun-Angle
Effects on Remote-Sensing Phenology Observed and Modelled Using Himawari-8,
Remote Sens., 12, 1339, https://doi.org/10.3390/rs12081339, 2020.
McCallum, I., Wagner, W., Schmullius, C., Shvidenko, A., Obersteiner, M.,
Fritz, S., and Nilsson, S.: Satellite-based terrestrial production efficiency
modeling, Carb. Balance Manag., 4, 8,
https://doi.org/10.1186/1750-0680-4-8, 2009.
McCorkel, J., Efremova, B., Hair, J., Andrade, M., and Holben, B.: GOES-16
ABI solar reflective channel validation for earth science application,
Remote Sens. Environ., 237, 111438,
https://doi.org/10.1016/j.rse.2019.111438, 2020.
Mecikalski, J. R., Diak, G. R., Anderson, M. C., and Norman, J. M.:
Estimating fluxes on continental scales using remotely sensed data in an
atmospheric–land exchange model, J. Appl. Meteor., 38, 1352–1369,
https://doi.org/10.1175/1520-0450(1999)038<1352:EFOCSU>2.0.CO;2, 1999.
Medlyn, B. E.: Physiological basis of the light use efficiency model, Tree
Physiol., 18, 167–176, https://doi.org/10.1093/treephys/18.3.167, 1998.
Meng, R., Wu, J., Zhao, F., Cook, B. D., Hanavan, R. P., and Serbin, S. P.:
Measuring short-term post-fire forest recovery across a burn severity
gradient in a mixed pine-oak forest using multi-sensor remote sensing
techniques, Remote Sens. Environ., 210, 282–296,
https://doi.org/10.1016/j.rse.2018.03.019, 2018.
Menzel, W. P.: History of geostationary weather satellites, in: The GOES-R
Series, Elsevier, 5–11,
https://doi.org/10.1016/B978-0-12-814327-8.00002-0, 2020.
Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild,
M., and Cox, P. M.: Impact of changes in diffuse radiation on the global land
carbon sink, Nature, 458, 1014–1017,
https://doi.org/10.1038/nature07949, 2009.
Miura, T., Nagai, S., Takeuchi, M., Ichii, K., and Yoshioka, H.: Improved
Characterisation of Vegetation and Land Surface Seasonal Dynamics in Central
Japan with Himawari-8 Hypertemporal Data, Sci. Rep., 9, 15692,
https://doi.org/10.1038/s41598-019-52076-x, 2019.
Mladenova, I. E., Bolten, J. D., Crow, W. T., Anderson, M. C., Hain, C. R.,
Johnson, D. M., and Mueller, R.: Intercomparison of soil moisture,
evaporative stress, and vegetation indices for estimating corn and soybean
yields over the U.S., IEEE J. Sel. Top. Appl. Earth Observ. Remote
Sens., 10, 1328–1343, https://doi.org/10.1109/JSTARS.2016.2639338,
2017.
Monteith, J. L.: Solar radiation and productivity in tropical ecosystems, J.
Appl. Ecol., 9, 747–766, https://doi.org/10.2307/2401901, 1972.
Neukermans, G., Ruddick, K., Bernard, E., Ramon, D., Nechad, B., and
Deschamps, P.-Y.: Mapping total suspended matter from geostationary
satellites: a feasibility study with SEVIRI in the Southern North Sea, Opt.
Express, 17, 14029–14052, https://doi.org/10.1364/oe.17.014029, 2009.
Nieke, J., Borde, F., Mavrocordatos, C., Berruti, B., Delclaud, Y., Riti, J.
B., and Garnier, T.: The Ocean and Land Colour Imager (OLCI) for the Sentinel
3 GMES Mission: status and first test results, in: Earth Observing Missions
and Sensors: Development, Implementation, and Characterization II, Vol.
8528, edited by: Shimoda, H., Xiong, X., Cao, C., Gu, X., Kim, C., and Kiran
Kumar, A. S., SPIE, 85280C, https://doi.org/10.1117/12.977247, 2012.
NOAA: Summary of the GOES-17 Cooling System Issue, GOES Image Viewer,
available at: https://www.star.nesdis.noaa.gov/GOES/loopheatpipeanomaly.php, last access:
29 October 2020.
NOAA and NASA: GOES-17 ABI Performance, GOES-R,
available at: https://www.goes-r.gov/users/GOES-17-ABI-Performance.html, last access: 4
November 2020.
Noh, J. H., Kim, W., Son, S. H., Ahn, J.-H., and Park, Y.-J.: Remote
quantification of Cochlodinium polykrikoides blooms occurring in the East
Sea using geostationary ocean color imager (GOCI), Harmful Algae, 73,
129–137, https://doi.org/10.1016/j.hal.2018.02.006, 2018.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for
estimating soil and vegetation energy fluxes in observations of directional
radiometric surface temperature, Agr. Forest Meteorol.,
77, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Norris, C., Hobson, P., and Ibisch, P. L.: Microclimate and vegetation function as indicators of forest thermodynamic efficiency, J. Appl. Ecol. 49, 562–570, https://doi.org/10.1111/j.1365-2664.2011.02084.x, 2012.
Odum, E. P.: The Strategy of Ecosystem Development, Science, 164,
262–270, https://doi.org/10.1126/science.164.3877.262, 1969.
Oliphant, A. J. and Stoy, P. C.: An evaluation of semiempirical models for
partitioning photosynthetically active radiation into diffuse and direct
beam components, J. Geophys. Res.-Biogeo., 123, 889–901,
https://doi.org/10.1002/2017JG004370, 2018.
Otkin, J. A., Anderson, M. C., Mecikalski, J. R., and Diak, G. R.: Validation
of GOES-Based Insolation Estimates Using Data from the U.S. Climate
Reference Network, J. Hydrometeor., 6, 460–475,
https://doi.org/10.1175/JHM440.1, 2005.
Otkin, J. A., Anderson, M. C., Hain, C., Mladenova, I. E., Basara, J. B., and
Svoboda, M.: Examining rapid onset drought development using the thermal
infrared–based evaporative stress index, J. Hydrometeor., 14, 1057–1074,
https://doi.org/10.1175/JHM-D-12-0144.1, 2013.
Otkin, J. A., Anderson, M. C., Hain, C., and Svoboda, M.: Examining the
Relationship between Drought Development and Rapid Changes in the
Evaporative Stress Index, J. Hydrometeor., 15, 938–956,
https://doi.org/10.1175/JHM-D-13-0110.1, 2014.
Otkin, J. A., Shafer, M., Svoboda, M., Wardlow, B., Anderson, M. C., Hain,
C., and Basara, J.: Facilitating the Use of Drought Early Warning Information
through Interactions with Agricultural Stakeholders, Bull. Am. Meteorol.
Soc., 96, 1073–1078, https://doi.org/10.1175/BAMS-D-14-00219.1, 2015.
Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D., Mueller,
R., Tadesse, T., Wardlow, B., and Brown, J.: Assessing the evolution of soil
moisture and vegetation conditions during the 2012 United States flash
drought, Agr. Forest Meteorol., 218/219, 230–242,
https://doi.org/10.1016/j.agrformet.2015.12.065, 2016.
Otkin, J. A., Haigh, T., Mucia, A., Anderson, M. C., and Hain, C.: Comparison
of Agricultural Stakeholder Survey Results and Drought Monitoring Datasets
during the 2016 U.S. Northern Plains Flash Drought, Wea. Climate Soc.,
10, 867–883, https://doi.org/10.1175/WCAS-D-18-0051.1, 2018a.
Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain,
C., and Basara, J. B.: Flash droughts: a review and assessment of the
challenges imposed by rapid onset droughts in the united states, Bull. Am.
Meteorol. Soc., 99, 911–915, https://doi.org/10.1175/BAMS-D-17-0149.1,
2018b.
Otkin, J. A., Zhong, Y., Hunt, E. D., Basara, J., Svoboda, M., Anderson, M.
C., and Hain, C.: Assessing The Evolution Of Soil Moisture And Vegetation
Conditions During A Flash Drought – Flash Recovery Sequence Over The
South-Central United States, J. Hydrometeor., 20, 549–562,
https://doi.org/10.1175/JHM-D-18-0171.1, 2019.
Ouaknine, J., Gode, S., Napierala, B., Viard, T., Foerster, U., Fray, S.,
Peacoke, P., Hartl, M., Hallibert, P., and Durand, Y.: MTG Flexible Combined
Imager optical design and performances, in: Earth Observing Systems XVIII,
vol. 8866, edited by: Butler, J. J., (Jack) Xiong, X., and Gu, X.,
SPIE, 88661A, https://doi.org/10.1117/12.2023078, 2013.
Park, K.-A., Woo, H.-J., and Ryu, J.-H.: Spatial scales of mesoscale eddies
from GOCI Chlorophyll-a concentration images in the East/Japan Sea, Ocean
Sci. J., 47, 347–358, https://doi.org/10.1007/s12601-012-0033-3, 2012.
Peres, L. F. and DaCamara, C. C.: Emissivity maps to retrieve land-surface
temperature from MSG/SEVIRI, IEEE Trans. Geosci. Remote Sens., 43,
1834–1844, https://doi.org/10.1109/TGRS.2005.851172, 2005.
Peschoud, C., Minghelli, A., Mathieu, S., Lei, M., Pairaud, I., and Pinazo,
C.: Fusion of Sun-Synchronous and Geostationary Images for Coastal and Ocean
Color Survey Application to OLCI (Sentinel-3) and FCI (MTG), IEEE J. Sel.
Top. Appl. Earth Observ. Remote Sens., 10, 45–56,
https://doi.org/10.1109/JSTARS.2016.2558819, 2017.
Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L.,
Lian, X., Shen, M., and Zhu, X.: Plant phenology and global climate change:
Current progresses and challenges, Glob. Change Biol., 25, 1922–1940,
https://doi.org/10.1111/gcb.14619, 2019.
Pinker, R. T. and Ewing, J. A.: Modeling surface solar radiation: model
formulation and validation, J. Clim. Appl. Meteor., 24, 389–401,
https://doi.org/10.1175/1520-0450(1985)024<0389:MSSRMF>2.0.CO;2, 1985.
Pinker, R. T., Laszlo, I., Tarpley, J. D., and Mitchell, K.: Geostationary
satellite parameters for surface energy balance, Adv. Space Res., 30,
2427–2432, https://doi.org/10.1016/S0273-1177(02)80296-4, 2002.
Pinker, R. T., Ma, Y., Chen, W., Hulley, G., Borbas, E., Islam, T., Hain,
C., Cawse-Nicholson, K., Hook, S., and Basara, J.: Towards a Unified and
Coherent Land Surface Temperature Earth System Data Record from
Geostationary Satellites, Remote Sens., 11, 1399,
https://doi.org/10.3390/rs11121399, 2019.
Prins, E. M. and Menzel, W. P.: Trends in South American biomass burning
detected with the GOES visible infrared spin scan radiometer atmospheric
sounder from 1983 to 1991, J. Geophys. Res., 99, 16719,
https://doi.org/10.1029/94JD01208, 1994.
Qi, W., Lee, S.-K., Hancock, S., Luthcke, S., Tang, H., Armston, J., and
Dubayah, R.: Improved forest height estimation by fusion of simulated GEDI
Lidar data and TanDEM-X InSAR data, Remote Sens. Environ., 221,
621–634, https://doi.org/10.1016/j.rse.2018.11.035, 2019.
Ramo, R., Roteta, E., Bistinas, I., van Wees, D., Bastarrika, A., Chuvieco,
E., and van der Werf, G. R.: African burned area and fire carbon emissions
are strongly impacted by small fires undetected by coarse resolution
satellite data, P. Natl. Acad. Sci. USA, 118, e2011160118,
https://doi.org/10.1073/pnas.2011160118, 2021.
Randazzo, N. A., Michalak, A. M., and Desai, A. R.: Synoptic meteorology
explains temperate forest carbon uptake, J. Geophys. Res.-Biogeo., 125, e2019JG005476,
https://doi.org/10.1029/2019JG005476, 2020.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O.,
and Toomey, M.: Climate change, phenology, and phenological control of
vegetation feedbacks to the climate system, Agr. Forest
Meteorol., 169, 156–173, https://doi.org/10.1016/j.agrformet.2012.09.012,
2013.
Robinson, N. P., Allred, B. W., Smith, W. K., Jones, M. O., Moreno, A.,
Erickson, T. A., Naugle, D. E., and Running, S. W.: Terrestrial primary
production for the conterminous United States derived from Landsat 30 m and
MODIS 250 m, Remote Sens. Ecol. Conserv., 4, 264–280, https://doi.org/10.1002/rse2.74,
2018.
Rouse, J. W., Haas, R. H. J., Schell, J. A., and Deering, D. W.: Monitoring
vegetation systems in the great plains with ERTS, Vol. 1, edited by:
Freden, S. C., Mercanti, E. P., and Becker, M. A., NASA Scientific and
Technical Information Office, 309–317, available at:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf (last
access: 4 May 2021), 1974.
Ruddick, K., Neukermans, G., Vanhellemont, Q., and Jolivet, D.: Challenges
and opportunities for geostationary ocean colour remote sensing of regional
seas: A review of recent results, Remote Sens. Environ., 146,
63–76, https://doi.org/10.1016/j.rse.2013.07.039, 2014.
Running, S. W., Peterson, D. L., Spanner, M. A., and Teuber, K. B.: Remote
sensing of coniferous forest leaf area, Ecology, 67, 273–276,
https://doi.org/10.2307/1938532, 1986.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and
Hashimoto, H.: A Continuous Satellite-Derived Measure of Global Terrestrial
Primary Production, Bioscience, 54, 547–560,
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.
Ryu, J.-H. and Ishizaka, J.: GOCI data processing and ocean applications,
Ocean Sci. J., 47, 221–221, https://doi.org/10.1007/s12601-012-0023-5,
2012.
Ryu, J.-H., Han, H.-J., Cho, S., Park, Y.-J., and Ahn, Y.-H.: Overview of
geostationary ocean color imager (GOCI) and GOCI data processing system
(GDPS), Ocean Sci. J., 47, 223–233,
https://doi.org/10.1007/s12601-012-0024-4, 2012.
Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global – 500m V006, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43A4.006 (last access: 1 April 2021), 2015.
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and
Ratier, A.: An introduction to meteosat second generation (MSG), Bull. Am.
Meteorol. Soc., 83, 977–992,
https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2, 2002.
Schmidt, C. C., Hoffman, J., Prins, E., and Lindstrom, S.: GOES-R Advanced
Baseline Imager (ABI) Algorithm TheoreticalBasis Document For Fire/Hot
Spot Characterization, Noaa Nesdis Center For Satellite Applications And
Research, 2012.
Schmit, T. J. and Gunshor, M. M.: ABI Imagery from the GOES-R Series, in: The
GOES-R Series, Elsevier, 23–34,
https://doi.org/10.1016/B978-0-12-814327-8.00004-4, 2020.
Schmit, T., Gunshor, M., Fu, G., Rink, T., Bah, K., Zhang, W., and Wolf, W.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Cloud and Moisture Imagery Product (CMIP), NOAA NESDIS Center for Satellite Applications and Research, Version 3.0, available at: https://registry.opendata.aws/noaa-goes/ (last access: 1 January 2021), 2012.
Schmit, T. J., Goodman, S. J., Gunshor, M. M., Sieglaff, J., Heidinger, A.
K., Bachmeier, A. S., Lindstrom, S. S., Terborg, A., Feltz, J., Bah, K.,
Rudlosky, S., Lindsey, D. T., Rabin, R. M., and Schmidt, C. C.: Rapid refresh
information of significant events: preparing users for the next generation
of geostationary operational satellites, Bull. Am. Meteorol. Soc., 96,
561–576, https://doi.org/10.1175/BAMS-D-13-00210.1, 2015.
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J.,
and Lebair, W. J.: A Closer Look at the ABI on the GOES-R Series, Bull.
Am. Meteorol. Soc., 98, 681–698,
https://doi.org/10.1175/BAMS-D-15-00230.1, 2017.
Schmit, T. J., Lindstrom, S. S., Gerth, J. J., and Gunshor, M. M.:
Applications of the 16 spectral bands on the Advanced Baseline Imager
(ABI), J. Operational Meteor., 6, 33–46,
https://doi.org/10.15191/nwajom.2018.0604, 2018.
Schneider, E. D. and Kay, J. J.: Complexity and thermodynamics, Futures, 26, 626–647, https://doi.org/10.1016/0016-3287(94)90034-5, 1994.
Schumacher, D. L., Keune, J., and Miralles, D. G.: Atmospheric heat and
moisture transport to energy- and water-limited ecosystems, Ann. N. Y.
Acad. Sci., 1472, 123–138, https://doi.org/10.1111/nyas.14357, 2020.
Semmens, K. A., Anderson, M. C., Kustas, W. P., Gao, F., Alfieri, J. G.,
McKee, L., Prueger, J. H., Hain, C. R., Cammalleri, C., Yang, Y., Xia, T.,
Sanchez, L., Mar Alsina, M., and Vélez, M.: Monitoring daily
evapotranspiration over two California vineyards using Landsat 8 in a
multi-sensor data fusion approach, Remote Sens. Environ., 185,
155–170, https://doi.org/10.1016/j.rse.2015.10.025, 2016.
Seong, N.-H., Jung, D., Kim, J., and Han, K.-S.: Evaluation of NDVI
Estimation Considering Atmospheric and BRDF Correction through
Himawari-8/AHI, Asia-Pacific J. Atmos. Sci., 56, 265–274,
https://doi.org/10.1007/s13143-019-00167-0, 2020.
Seyednasrollah, B., Young, A. M., Hufkens, K., Milliman, T., Friedl, M. A.,
Frolking, S., and Richardson, A. D.: Tracking vegetation phenology across
diverse biomes using Version 2.0 of the PhenoCam Dataset, Sci. Data, 6,
222, https://doi.org/10.1038/s41597-019-0229-9, 2019.
Sims, D. A., Rahman, A. F., Cordova, V. D., El-Masri, B. Z., Baldocchi, D.
D., Flanagan, L. B., Goldstein, A. H., Hollinger, D. Y., Misson, L., Monson,
R. K., Oechel, W. C., Schmid, H. P., Wofsy, S. C., and Xu, L.: On the use of
MODIS EVI to assess gross primary productivity of North American ecosystems,
J. Geophys. Res., 111, G04015, https://doi.org/10.1029/2006JG000162, 2006.
Smith, W. K., Dannenberg, M. P., Yan, D., Herrmann, S., Barnes, M. L.,
Barron-Gafford, G. A., Biederman, J. A., Ferrenberg, S., Fox, A. M., Hudson,
A., Knowles, J. F., MacBean, N., Moore, D. J. P., Nagler, P. L., Reed, S.
C., Rutherford, W. A., Scott, R. L., Wang, X., and Yang, J.: Remote sensing
of dryland ecosystem structure and function: Progress, challenges, and
opportunities, Remote Sens. Environ., 233, 111401,
https://doi.org/10.1016/j.rse.2019.111401, 2019.
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C.,
Seneviratne, S. I., and Peñuelas, J.: Drought impacts on terrestrial
primary production underestimated by satellite monitoring, Nat. Geosci.,
12, 264–270, https://doi.org/10.1038/s41561-019-0318-6, 2019.
Stoy, P., Lin, H., Novick, K., Siqueira, M., and Juang, J.-Y.: The role of
vegetation on the ecosystem radiative entropy budget and trends along
ecological succession, Entropy, 16, 3710–3731,
https://doi.org/10.3390/e16073710, 2014.
Stoy, P. C., Katul, G. G., Siqueira, M. B. S., Juang, J.-Y., McCarthy, H.
R., Kim, H.-S., Oishi, A. C., and Oren, R.: Variability in net ecosystem
exchange from hourly to inter-annual time scales at adjacent pine and
hardwood forests: a wavelet analysis, Tree Physiol., 25, 887–902,
https://doi.org/10.1093/treephys/25.7.887, 2005.
Stoy, P. C., Trowbridge, A. M., and Bauerle, W. L.: Controls on seasonal
patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic
light response: contributions from both temperature and photoperiod,
Photosyn. Res., 119, 49–64,
https://doi.org/10.1007/s11120-013-9799-0, 2014.
Sullivan, P., Gallagher, F. W., Boukabara, S. A., Lindsey, D. T., and
Grigsby, E.: What Follows GOES-R?, available at:
https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/370685, last
access: 24 August 2020.
Sun, D. and Pinker, R. T.: Estimation of land surface temperature from a
Geostationary Operational Environmental Satellite (GOES-8), J. Geophys.
Res., 108, 4326, https://doi.org/10.1029/2002JD002422, 2003.
Suomi, V. E. and Parent, R. J.: a color view of planet Earth, Bull. Am.
Meteorol. Soc., 49, 74–75, https://doi.org/10.1175/1520-0477-49.2.74,
1968.
Tan, B., Dellomo, J., Wolfe, R. E., and Reth, A. D.: GOES-16 ABI navigation
assessment, in: Earth Observing Systems XXIII, edited by: Butler, J. J.,
(Jack) Xiong, X., and Gu, X., SPIE, p. 15, https://doi.org/10.1117/12.2321170,
2018.
Tan, B., Dellomo, J. J., Wolfe, R. E., and Reth, A. D.: GOES-16 and GOES-17
ABI INR assessment, in: Earth Observing Systems XXIV, edited by: Butler, J. J.,
(Jack) Xiong, X., and Gu, X., SPIE, p. 49, https://doi.org/10.1117/12.2529336,
2019.
Tan, B., Dellomo, J. J., Folley, C. N., Grycewicz, T. J., Houchin, S.,
Isaacson, P. J., Johnson, P. D., Porter, B. C., Reth, A. D., Thiyanaratnam,
P., and Wolfe, R. E.: GOES-R series image navigation and registration
performance assessment tool set, J. Appl. Remote Sens., 14, 032405,
https://doi.org/10.1117/1.JRS.14.032405, 2020.
Tian, Y., Romanov, P., Yu, Y., Xu, H., and Tarpley, D.: Analysis of
vegetation index NDVI anisotropy to improve the accuracy of the GOES-R green
vegetation fraction product, in 2010 IEEE International Geoscience and
Remote Sensing Symposium, IEEE, 2091–2094,
https://doi.org/10.1109/IGARSS.2010.5651925, 2010.
Tran, N. N., Huete, A., Nguyen, H., Grant, I., Miura, T., Ma, X., Lyapustin,
A., Wang, Y., and Ebert, E.: Seasonal Comparisons of Himawari-8 AHI and MODIS
Vegetation Indices over Latitudinal Australian Grassland Sites, Remote Sens., 12, 2494, https://doi.org/10.3390/rs12152494, 2020.
Trigo, I. F., Dacamara, C. C., Viterbo, P., Roujean, J.-L., Olesen, F.,
Barroso, C., Camacho-de-Coca, F., Carrer, D., Freitas, S. C.,
García-Haro, J., Geiger, B., Gellens-Meulenberghs, F., Ghilain, N.,
Meliá, J., Pessanha, L., Siljamo, N., and Arboleda, A.: The satellite
application facility for land surface analysis, Int. J. Remote Sens.,
32, 2725–2744, https://doi.org/10.1080/01431161003743199, 2011.
Tucker, C. J.: Red and photographic infrared linear combinations for
monitoring vegetation, Remote Sens. Environ., 8, 127–150,
https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Tucker, C. J.: Remote sensing of leaf water content in the near infrared,
Remote Sens. Environ., 10, 23–32,
https://doi.org/10.1016/0034-4257(80)90096-6, 1980.
Tucker, C. J., Townshend, J. R., and Goff, T. E.: African land-cover
classification using satellite data, Science, 227, 369–375,
https://doi.org/10.1126/science.227.4685.369, 1985.
Ulivieri, C. and Cannizzaro, G.: Land surface temperature retrievals from
satellite measurements, Acta Astronaut., 12, 977–985,
https://doi.org/10.1016/0094-5765(85)90026-8, 1985.
Verger, A., Baret, F., and Weiss, M.: Near Real-Time Vegetation Monitoring at
Global Scale, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.,
7, 3473–3481, https://doi.org/10.1109/JSTARS.2014.2328632, 2014.
Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., and Morcette, J. J.:
Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an
overview, IEEE Trans. Geosci. Remote Sens., 35, 675–686,
https://doi.org/10.1109/36.581987, 1997.
Wagner, S. C., Govaerts, Y. M., and Lattanzio, A.: Joint retrieval of surface
reflectance and aerosol optical depth from MSG/SEVIRI observations with an
optimal estimation approach: 2. Implementation and evaluation, J. Geophys.
Res., 115, D02204, https://doi.org/10.1029/2009JD011780, 2010.
Wang, M., Ahn, J.-H., Jiang, L., Shi, W., Son, S., Park, Y.-J., and Ryu,
J.-H.: Ocean color products from the Korean Geostationary Ocean Color Imager
(GOCI), Opt. Express, 21, 3835–3849,
https://doi.org/10.1364/OE.21.003835, 2013.
Wang, W., Qu, J. J., Hao, X., Liu, Y., and Stanturf, J. A.: Post-hurricane
forest damage assessment using satellite remote sensing, Agr.
Forest Meteorol., 150, 122–132,
https://doi.org/10.1016/j.agrformet.2009.09.009, 2010.
Wang, W., Li, S., Hashimoto, H., Takenaka, H., Higuchi, A., Kalluri, S., and
Nemani, R.: An Introduction to the Geostationary-NASA Earth Exchange
(GeoNEX) Products: 1. Top-of-Atmosphere Reflectance and Brightness
Temperature, Remote Sens., 12, 1267,
https://doi.org/10.3390/rs12081267, 2020.
Weiss, A. and Norman, J. M.: Partitioning solar radiation into direct and
diffuse, visible and near-infrared components, Agr. Forest
Meteorol., 34, 205–213,
https://doi.org/10.1016/0168-1923(85)90020-6, 1985.
Wheeler, K. I. and Dietze, M. C.: A Statistical Model for Estimating Midday
NDVI from the Geostationary Operational Environmental Satellite (GOES) 16
and 17, Remote Sens., 11, 2507,
https://doi.org/10.3390/rs11212507, 2019.
Wheeler, K. I. and Dietze, M. C.: Improving the monitoring of deciduous
broadleaf phenology using the Geostationary Operational Environmental
Satellite (GOES) 16 and 17, Biogeosciences, 18, 1971–1985,
https://doi.org/10.5194/bg-18-1971-2021, 2021.
White, M. A., de BEURS, K. M., Didan, K., Inouye, D. W., Richardson, A. D.,
Jensen, O. P., O'Keefe, J., Zhang, G., Nemani, R. R., van LEEUWEN, W. J. D.,
Brown, J. F., de WIT, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A.
S., Kimball, J., Schwartz, M. D., Baldocchi, D. D., Lee, J. T., and
Lauenroth, W. K.: Intercomparison, interpretation, and assessment of spring
phenology in North America estimated from remote sensing for 1982–2006,
Glob. Change Biol., 15, 2335–2359,
https://doi.org/10.1111/j.1365-2486.2009.01910.x, 2009.
Whittaker, T.: Explore the effects of parallax, available at:
http://cimss.ssec.wisc.edu/goes/webapps/parallax/goes16_conus.html (last access: 5 May 2021), 2014.
Wiesner, S., Staudhammer, C. L., Stoy, P. C., Boring, L. R., and Starr, G.:
Quantifying energy use efficiency via entropy production: a case study from
longleaf pine ecosystems, Biogeosciences, 16, 1845–1863,
https://doi.org/10.5194/bg-16-1845-2019, 2019.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P.,
Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J.,
Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y. P.:
Improving land surface models with FLUXNET data, Biogeosciences, 6,
1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Wong, C. Y. S., D'Odorico, P., Bhathena, Y., Arain, M. A., and Ensminger, I.:
Carotenoid based vegetation indices for accurate monitoring of the phenology
of photosynthesis at the leaf-scale in deciduous and evergreen trees, Remote
Sens. Environ., 233, 111407,
https://doi.org/10.1016/j.rse.2019.111407, 2019.
Wonsook, S. H., R. Diak, G., and F. Krajewski, W.: Estimating Near Real-Time
Hourly Evapotranspiration Using Numerical Weather Prediction Model Output
and GOES Remote Sensing Data in Iowa, Remote Sens., 12, 2337,
https://doi.org/10.3390/rs12142337, 2020.
Wooster, M.: Fire radiative energy for quantitative study of biomass
burning: derivation from the BIRD experimental satellite and comparison to
MODIS fire products, Remote Sens. Environ., 86, 83–107,
https://doi.org/10.1016/S0034-4257(03)00070-1, 2003.
Wu, G., Guan, K., Jiang, C., Peng, B., Kimm, H., Chen, M., Yang, X., Wang,
S., Suyker, A. E., Bernacchi, C. J., Moore, C. E., Zeng, Y., Berry, J. A.,
and Cendrero-Mateo, M. P.: Radiance-based NIRv as a proxy for GPP of corn
and soybean, Environ. Res. Lett., 15, 034009,
https://doi.org/10.1088/1748-9326/ab65cc, 2020.
Wu, P., Shen, H., Zhang, L., and Göttsche, F.-M.: Integrated fusion of
multi-scale polar-orbiting and geostationary satellite observations for the
mapping of high spatial and temporal resolution land surface temperature,
Remote Sens. Environ., 156, 169–181,
https://doi.org/10.1016/j.rse.2014.09.013, 2015.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A.
R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L.,
and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review of
advances over 50 years, Remote Sens. Environ., 233, 111383,
https://doi.org/10.1016/j.rse.2019.111383, 2019.
Xu, W., Wooster, M. J., Roberts, G., and Freeborn, P.: New GOES imager
algorithms for cloud and active fire detection and fire radiative power
assessment across North, South and Central America, Remote Sens.
Environ., 114, 1876–1895, https://doi.org/10.1016/j.rse.2010.03.012,
2010.
Xu, X., Riley, W. J., Koven, C. D., Jia, G., and Zhang, X.: Earlier leaf-out
warms air in the north, Nat. Clim. Change, 10, 370–375,
https://doi.org/10.1038/s41558-020-0713-4, 2020.
Yang, Y., Anderson, M. C., Gao, F., Wardlow, B., Hain, C. R., Otkin, J. A.,
Alfieri, J., Yang, Y., Sun, L., and Dulaney, W.: Field-scale mapping of
evaporative stress indicators of crop yield: An application over Mead, NE,
USA, Remote Sens. Environ., 210, 387–402,
https://doi.org/10.1016/j.rse.2018.02.020, 2018.
Yang, Y., Anderson, M., Gao, F., Hain, C., Noormets, A., Sun, G., Wynne, R.,
Thomas, V., and Sun, L.: Investigating impacts of drought and disturbance on
evapotranspiration over a forested landscape in North Carolina, USA using
high spatiotemporal resolution remotely sensed data, Remote Sens.
Environ., 238, 111018, https://doi.org/10.1016/j.rse.2018.12.017, 2020.
Yan, D., Zhang, X., Yu, Y., and Guo, W.: A Comparison of Tropical Rainforest
Phenology Retrieved From Geostationary (SEVIRI) and Polar-Orbiting (MODIS)
Sensors Across the Congo Basin, IEEE Trans. Geosci. Remote Sens., 54,
4867–4881, https://doi.org/10.1109/TGRS.2016.2552462, 2016.
Yan, D., Zhang, X., Nagai, S., Yu, Y., Akitsu, T., Nasahara, K. N., Ide, R.,
and Maeda, T.: Evaluating land surface phenology from the Advanced Himawari
Imager using observations from MODIS and the Phenological Eyes Network,
Int. J. Appl. Earth Obs., 79,
71–83, https://doi.org/10.1016/j.jag.2019.02.011, 2019.
Yeom, J.-M. and Kim, H.-O.: Comparison of NDVIs from GOCI and MODIS Data
towards Improved Assessment of Crop Temporal Dynamics in the Case of Paddy
Rice, Remote Sens., 7(9), 11326–11343,
https://doi.org/10.3390/rs70911326, 2015.
Yeom, J.-M., Ko, J., and Kim, H.-O.: Application of GOCI-derived vegetation
index profiles to estimation of paddy rice yield using the GRAMI rice model,
Comput. Electron. Agr., 118, 1–8,
https://doi.org/10.1016/j.compag.2015.08.017, 2015.
Yeom, J.-M., Jeong, S., Jeong, G., Ng, C. T., Deo, R. C., and Ko, J.:
Monitoring paddy productivity in North Korea employing geostationary
satellite images integrated with GRAMI-rice model, Sci. Rep., 8, 16121,
https://doi.org/10.1038/s41598-018-34550-0, 2018.
Yeom, J.-M., Roujean, J.-L., Han, K.-S., Lee, K.-S., and Kim, H.-W.: Thin
cloud detection over land using background surface reflectance based on the
BRDF model applied to Geostationary Ocean Color Imager (GOCI) satellite data
sets, Remote Sens. Environ., 239, 111610,
https://doi.org/10.1016/j.rse.2019.111610, 2020.
Yu, F., Wu, X., Yoo, H., Wang, Z., Qian, H., and Shao, X.: Radiometric
calibration performance of GOES-17 Advanced Baseline Imager (ABI), in: Earth
Observing Systems XXIV, edited by: Butler, J. J., (Jack) Xiong, X., and Gu, X.,
SPIE, p. 48, https://doi.org/10.1117/12.2531407, 2019.
Yu, Y., Tarpley, D., Privette, J. L., Goldberg, M. D., Rama Varma Raja, M.
K., Vinnikov, K. Y., and Hui Xu: Developing Algorithm for Operational GOES-R
Land Surface Temperature Product, IEEE Trans. Geosci. Remote Sens., 47,
936–951, https://doi.org/10.1109/TGRS.2008.2006180, 2009.
Yu, Y., Tarpley, D., and Xu, H.: GOES-R Advanced Baseline Imager (ABI)
Algorithm Theoretical Basis Document For Land Surface Temperature (Version
2.5), Noaa Nesdis Center For Satellite Applications And Research, 2012.
Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D.,
Bernhofer, C., Gholz, H., Goldstein, A. H., Goulden, M. L., Hollinger, D.
Y., Hu, Y., Law, B. E., Stoy, P. C., Vesala, T., and Wofsy, S. C.: Deriving a
light use efficiency model from eddy covariance flux data for predicting
daily gross primary production across biomes, Agr. Forest
Meteorol., 143, 189–207,
https://doi.org/10.1016/j.agrformet.2006.12.001, 2007.
Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold, L., Law,
B., Arain, A., Beringer, J., Bernhofer, C., Black, A., Blanken, P. D.,
Cescatti, A., Chen, Y., Francois, L., Gianelle, D., Janssens, I. A., Jung,
M., Kato, T., and Wohlfahrt, G.: Global comparison of light use efficiency
models for simulating terrestrial vegetation gross primary production based
on the LaThuile database, Agr. Forest Meteorol., 192/193,
108–120, https://doi.org/10.1016/j.agrformet.2014.03.007, 2014.
Zakšek, K., Hort, M., Zaletelj, J., and Langmann, B.: Monitoring volcanic
ash cloud top height through simultaneous retrieval of optical data from
polar orbiting and geostationary satellites, Atmos. Chem.
Phys., 13, 2589–2606, https://doi.org/10.5194/acp-13-2589-2013, 2013.
Zeng, L., Wardlow, B. D., Xiang, D., Hu, S., and Li, D.: A review of
vegetation phenological metrics extraction using time-series, multispectral
satellite data, Remote Sens. Environ., 237, 111511,
https://doi.org/10.1016/j.rse.2019.111511, 2020.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F.,
Gao, F., Reed, B. C., and Huete, A.: Monitoring vegetation phenology using
MODIS, Remote Sens. Environ., 84, 471–475,
https://doi.org/10.1016/S0034-4257(02)00135-9, 2003.
Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C.:
Near-real-time global biomass burning emissions product from geostationary
satellite constellation, J. Geophys. Res., 117, D14201,
https://doi.org/10.1029/2012JD017459, 2012.
Zhang, X., Liang, S., Zhou, G., Wu, H., and Zhao, X.: Generating Global LAnd
Surface Satellite incident shortwave radiation and photosynthetically active
radiation products from multiple satellite data, Remote Sens.
Environ., 152, 318–332, https://doi.org/10.1016/j.rse.2014.07.003, 2014.
Zhang, Y., Song, C., Sun, G., Band, L. E., McNulty, S., Noormets, A., Zhang,
Q., and Zhang, Z.: Development of a coupled carbon and water model for
estimating global gross primary productivity and evapotranspiration based on
eddy flux and remote sensing data, Agr. Forest Meteorol., 223,
116–131, https://doi.org/10.1016/j.agrformet.2016.04.003, 2016.
Zhao, J., Chen, X., Zhang, J., Zhao, H., and Song, Y.: Higher temporal
evapotranspiration estimation with improved SEBS model from geostationary
meteorological satellite data, Sci. Rep., 9, 14981,
https://doi.org/10.1038/s41598-019-50724-w, 2019.
Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of
the MODIS terrestrial gross and net primary production global data set,
Remote Sens. Environ., 95, 164–176,
https://doi.org/10.1016/j.rse.2004.12.011, 2005.
Zhao, W. and Duan, S.-B.: Reconstruction of daytime land surface
temperatures under cloud-covered conditions using integrated MODIS/Terra
land products and MSG geostationary satellite data, Remote Sens.
Environ., 247, 111931, https://doi.org/10.1016/j.rse.2020.111931, 2020.
Zheng, T., Liang, S., and Wang, K.: Estimation of Incident Photosynthetically
Active Radiation from GOES Visible Imagery, J. Appl. Meteor. Climatol.,
47, 853–868, https://doi.org/10.1175/2007JAMC1475.1, 2008.
Zhou, Y., Zhang, L., Xiao, J., Chen, S., Kato, T., and Zhou, G.: A Comparison
of Satellite-Derived Vegetation Indices for Approximating Gross Primary
Productivity of Grasslands, Rangeland Ecol. Manag., 67, 9–18,
https://doi.org/10.2111/REM-D-13-00059.1, 2014.
Zscheischler, J., Fatichi, S., Wolf, S., Blanken, P. D., Bohrer, G., Clark,
K., Desai, A. R., Hollinger, D., Keenan, T., Novick, K. A., and Seneviratne,
S. I.: Short-term favorable weather conditions are an important control of
interannual variability in carbon and water fluxes, J. Geophys. Res.-Biogeo., 121, 2186–2198, https://doi.org/10.1002/2016JG003503, 2016.
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Remote sensing has played an important role in the study of land surface processes....
Altmetrics
Final-revised paper
Preprint