Articles | Volume 18, issue 20
https://doi.org/10.5194/bg-18-5719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Photosynthetic activity in Devonian Foraminifera
Zofia Dubicka
Faculty of Geology, University of Warsaw, Warsaw, Poland
Ecological Chemistry, Alfred-Wegener-Institut, Helmholtz-Zentrum
für Polar- und Meeresforschung, Bremerhaven, Germany
Faculty of Geology, University of Warsaw, Warsaw, Poland
Wojciech Kozłowski
Faculty of Geology, University of Warsaw, Warsaw, Poland
Pamela Hallock
College of Marine Science, University of South Florida, St
Petersburg, Florida, USA
Johann Hohenegger
Department of Palaeontology, Universität Wien, Vienna, Austria
Related authors
Marion Peral, Marta Marchegiano, Weronika Wierny, Inigo A. Müller, Johan Vellekoop, Zofia Dubicka, Maciej J. Bojanowski, Steven Goderis, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-502, https://doi.org/10.5194/egusphere-2025-502, 2025
Short summary
Short summary
Around 70 million years ago, during the Late Cretaceous, Earth’s climate was undergoing long-term cooling despite high CO₂ levels. Using an advanced temperature reconstruction technique, we analyzed foraminifer fossils from the European Chalk Sea. Our results show highly variable surface waters, likely influenced by freshwater inputs or upwelling, while deeper waters remained warm and stable, possibly influenced by shifting ocean currents. This improves our understanding of past ocean dynamics.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Marion Peral, Marta Marchegiano, Weronika Wierny, Inigo A. Müller, Johan Vellekoop, Zofia Dubicka, Maciej J. Bojanowski, Steven Goderis, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-502, https://doi.org/10.5194/egusphere-2025-502, 2025
Short summary
Short summary
Around 70 million years ago, during the Late Cretaceous, Earth’s climate was undergoing long-term cooling despite high CO₂ levels. Using an advanced temperature reconstruction technique, we analyzed foraminifer fossils from the European Chalk Sea. Our results show highly variable surface waters, likely influenced by freshwater inputs or upwelling, while deeper waters remained warm and stable, possibly influenced by shifting ocean currents. This improves our understanding of past ocean dynamics.
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Cited articles
Baccaert, J.: Foraminiferal bio- and thanatocoenoses of reef flats, Lizard
Island, Great Barrier Reef, Australia, Nature of Substrate, Ann. Soc. Roy.
Zool. Bel., 116, 3–14, 1986.
Baker, R. D., Hallock, P., Moses, F. E., Williams, D. E., and Ramirez, A.:
Larger foraminifers of the Florida Reef Tract, USA: Distribution patterns on
reef-rubble habitats, J. Foramin. Res., 39, 267–277, 2009.
Biernat, G.: Middle Devonian brachiopods from the Bodzentyn Syncline (Holy
Cross Mountains, Poland), Acta Palaeontol. Pol., 17, 1–162, 1966.
Biernat, G.: Colour pattern in Middle Devonian rhynchonellid brachiopods
from the Holy Cross Mountains, Acta Geol. Pol., 34, 63–72, 1984.
BouDagher-Fadel, M. K.: Evolution and Geological Significance of Larger Benthic
Foraminifera, 2nd Edn., UCL Press, London, 704 pp., 2018.
Cesbron, E., Geslin, C., Le Kieffre, T., and Jauffrais, T.: Sequestered
chloroplasts in the benthic foraminifer Haynesina germanica: Cellular organization, oxygen
fluxes and potential ecological implications, J. Foramin. Res., 47,
268–278, 2017.
Cottey, T. L. and Hallock, P.: Test surface degradation in Archaias angulatus, J. Foramin.
Res., 18, 187–202, 1988.
Dettmering, C., Röttger, R., Hohenegger, J., and Schmaljohann, R.: The
trimorphic life cycle in foraminifera: Observations from cultures allow new
evaluation, Eur. J. Protistol., 34, 363–368, 1998.
Dubicka, Z., Gajewska, M., Kozłowski, W., and Mikhalevich, V.: Test
structure in some pioneer multichambered Paleozoic Foraminifera, P. Natl.
Acad. Sci. USA, 118, 1–6, 2021.
Dubinsky, Z. and Berman-Frank, I.: Uncoupling primary production from
population growth in photosynthesizing organisms in aquatic ecosystems,
Aquat. Sci., 63, 4–17, 2001.
Eder, W., Hohenegger, J., and Briguglio, A.: Test flattening in the larger
foraminifer Heterostegina depressa: Predicting bathymetry from axial sections, Paleobiology, 44,
76–88, 2018.
Fujita, K. and Fujimura, H.: Organic and inorganic carbon production by
algal symbiont-bearing foraminifera on northwest Pacific coral-reef flats,
J. Foramin. Res., 38, 117–126, 2008.
Goldstein, S. T.: Gametogenesis and the antiquity of reproductive pattern in
the Foraminiferida, J. Foramin. Res., 27, 319–328, 1997.
Goldstein, S. T., Bernhard, J. M., and Richardson, E. A.: Chloroplast
sequestration in the foraminifer Haynesina germanica: Application of high pressure freezing and
freeze substitution, Microsc. Microanal., 10, 1458–1459, 2004.
Gorzelak, P., Stolarski, J., Dubois, P., Kopp, C., and Meibom, A.: 26Mg
labeling of the sea urchin regenerating spine: Insights into echinoderm
biomineralization process, J. Struct. Biol., 176, 119–126, 2011.
Hallock, P.: Trends in test shape in large, symbiont-bearing foraminifera,
J. Foramin. Res., 9, 61–69, 1979.
Hallock, P.: Light dependence in Amphistegina, J. Foramin. Res., 11, 40–46, 1981a.
Hallock, P.: Algal symbiosis: a mathematical analysis, Mar. Biol., 6,
249–255, 1981b.
Hallock, P.: Fluctuations in the trophic resource continuum: a factor in
global diversity cycles?, Paleoceanography, 2, 457–471, 1987.
Hallock, P.: Symbiont-bearing foraminifera, in: Modern Foraminifera, edited
by: Sen Gupta, B. K., Springer, 123–39, 1999.
Hallock, P. and Hansen, H. J.: Depth adaptation in Amphistegina: Change in lamellar
thickness, Bull. Geol. Soc. Den., 27, 99–104, 1979.
Hallock, P. and Schlager, W.: Nutrient excess and the demise of coral reefs
and carbonate platforms, Palaios, 1, 389–398, 1986.
Hallock, P., and Seddighi, M.: Why did some larger benthic foraminifera
become so large and flat?, Sedimentology, 12837, 1–14, https://doi.org/10.1111/sed.12837, 2021.
Hammer, Ø., Harper, D., and Paul, D. R.: Past: Paleontological Statistics
Software Package for Education and Data Analysis, Palaeontol. Electron., 4,
1–9, 2001.
Hansen, H. J. and Buchhardt, B.: Depth distribution of Amphistegina in the Gulf of Elat,
Utrecht Micropaleontol. Bull., 30, 205–244, 1979.
Harney, J., Hallock, P., and Talge, H.K.: Observations on a trimorphic life
cycle in Amphistegina gibbosa populations from the Florida Keys, J. Foramin. Res., 28, 141–147,
1998.
Haynes, J.: Symbiosis, wall structure and habitat in foraminifera, Contrib.
Cushman Found. Foramin. Res., 16, 40–44, 1965.
Hohenegger, J.: Coenoclines of larger foraminifera, Micropaleontology, 46,
127–151, 2000.
Hohenegger, J.: Depth coenoclines and environmental considerations of
western Pacific larger foraminifera, J. Foramin. Res., 34, 9–34, 2004.
Hohenegger, J.: The importance of symbiont-bearing benthic foraminifera for
West Pacific carbonate beach environments, Mar. Micropaleontol., 61, 4–39,
2006.
Hohenegger, J.: Functional shell geometry of symbiont-bearing benthic
foraminifera, Galaxea JCRS, 11, 81–89, 2009.
Hohenegger, J.: Large Foraminifera: Greenhouse constructions and gardeners
in the oceanic microcosm, The Kagoshima University Museum, Kagoshima, Japan,
2011.
Hohenegger, J.: Foraminiferal growth and test development, Earth-Sci. Rev.,
185, 140–162, 2018.
Hohenegger, J., Yordanova, E., Nakano, Y., and Tatzreiter, F.: Habitats of
larger foraminifera on the upper reef slope of Sesoko Island, Okinawa,
Japan, Mar. Micropaleontol., 36, 109–168, 1999.
Hottinger, L.: Larger Foraminifera, giant cells with a historical
background, Naturwissenschaften, 69, 361–371, 1982.
Jarochowska, E., Tonarová, P., Munnecke, A., Ferrová, L.,
Sklenář, J., and Vodrážková, S.: An acid-free method of
microfossil extraction from clay-rich lithologies using the surfactant
Rewoquat, Palaeontol. Electron., 16, 1–16, 2013.
Jauffrais, T., Jesus, B., Metzger, E., Mouget, J.-L., Jorissen, F., and Geslin, E.: Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida), Biogeosciences, 13, 2715–2726, https://doi.org/10.5194/bg-13-2715-2016, 2016.
Jauffrais, T., LeKieffre, C., Koho, K. A., Tsuchiya, M., Schweizer, M.,
Bernhard, J. M., Meibom, A., and Geslin, E.: Ultrastructure and distribution
of kleptoplasts in benthic foraminifera from shallow-water (photic)
habitats, Mar. Micropaleontol., 138, 46–62, 2018.
Jauffrais, T., LeKieffre, C., Schweizer, M., Geslin, E., Metzger, E.,
Bernhard, J. M., Jesus, B., Filipsson, H. L., Maire, O., and Meibom, A.:
Kleptoplastidic benthic foraminifera from aphotic habitats: Insights into
assimilation of inorganic C, N and S studied with sub-cellular resolution,
Environ. Microbiol., 21, 125–141, 2019.
Kinoshita, S., Eder, W., Wo, J., Hohenegger, J., and Briguglio, A.: Growth,
chamber building rate and reproduction time of Palaeonummulites venosus (Foraminifera) under natural
conditions, Coral Reefs, 36, 1097–1109, 2017.
Krüger, R. Röttger, R. Lietz, R., and Hohenegger, J.: Biology and
reproductive process of the large foraminiferan Cycloclypeus carpenteri (Protozoa, Nummulitidae),
Arch. Protist Stud., 147, 307–321, 1996.
Langer, M. R., Silk, M. T., and Lipps, J. H.: Global ocean carbonate and
carbon dioxide production: the role of reef foraminifera, J. Foramin. Res.,
27, 271–277, 1997.
Larsen, A. R. and Drooger, C. W.: Relative thickness of the test in the
Amphistegina species of the Gulf of Elat, Utrecht Micropal. Bull., 15, 225–240, 1977.
Lee, J. J. and Anderson, O. R.: Symbiosis in Foraminifera, in: Biology of
Foraminifera, edited by: Lee, J. J. and Anderson, O. R., LA Press, London,
157–220, 1991.
Lee, J. J., Cervasco, M., Morales, J., Billik, M., and Fine, M.: Symbiosis
drove cellular evolution: Symbiosis fueled evolution of lineages of
Foraminifera (eukaryotic cells) into exceptionally complex giant protists,
Symbiosis, 51, 13–25, 2010.
McConnaughey, T. A. and Whelan, J. F.: Calcification generates protons for
nutrient and bicarbonate uptake, Earth-Sci. Rev., 42, 95–117, 1997.
Miller, A. K. and Carmer, A. M.: Devonian Foraminifera from Iowa, J.
Paleontol., 7, 423–431, 1933.
Narkiewicz, K. and Malec, J.: New conodont CAI database (CAI),
Przegląd Geologiczny, 53, 33–37, 2005 (in Polish).
Pajchlowa, M.: Dewon w profilu Grzegorzowice-Skały (in Polish with English
summary), Biuletyn Instytutu Geologicznego, 122, 145–254, 1957.
Papazzoni, C. A. and Seddighi, M.: What, if anything, is a Nummulite Bank?, J.
Foramin. Res., 48, 276–287, 2018.
Pillet, L., de Vargas, C., and Pawlowski, J.: Molecular identification of
sequestered diatom chloroplasts and kleptoplastidy in foraminifera, Protist, 162, 394–404, 2011.
Prazeres, M. and Renema, W.: Evolutionary significance of the microbial
assemblages of large benthic foraminifera, Biol. Rev., 94, 828–848, 2019.
Ravelo, A. C. and Fairbanks, R. G.: Carbon isotopic fractionation in
multiple species of planktonic foraminifera from core-tops in the tropical
Atlantic, J. Foramin. Res., 25, 53–74, 1995.
Ravelo, A. C. and Hillaire-Marcel, C.: The use of oxygen and carbon isotopes
of Foraminifera in paleoceanography, in: Proxies in Late Cenozoic
Paleoceanography, edited by: Hillaire–Marcel, C., and De Vernal, A., Elsevier
Science, 735–764, 2007.
Renema, W.: Terrestrial influence as a key driver of spatial variability in
large benthic foraminiferal assemblage composition in the central
Indo-Pacific, Earth-Sci. Rev., 177, 514–544, 2018.
Samsonowicz, J.: Sprawozdanie z badań w r, 1935 na północ od kopalni Staszic między Pokrzywianką, Psarką i Swiśliną (in Polish), Posiedzenie naukowe Państwowego Instytutu Geologicznego, 44, 41–45, 1936.
Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., and Thierstein, H.
R.: Size distribution of Holocene planktic foraminifer assemblages:
Biogeography, ecology and adaption, Mar. Micropaleontol., 50, 319–338, 2004.
Selosse, M. A., Charpin, A., and Not, F.: Mixotrophy everywhere on land and
in water. The grand écart hypothesis, Ecol. Lett., 20, 246–263, 2017.
Sims, P. A., Mann, D. G., and Medlin, L. K.: Evolution of the diatoms:
Insights from fossil, biological and molecular data, Phycologia, 45,
361–402, 2006.
Stasińska, A.: Tabulata. Heliolitida et Chaetetida du Devonien moyen des
monts de Sainte-Croix, Acta Palaeontol. Pol., 3, 161–282, 1958.
Szulczewski, M.: Depositional evolution of the Holy Cross Mts. (Poland) in
the Devonian and Carboniferous – a review, Geol. Q., 39, 471–488, 1995.
ter Kuile, B.: Mechanisms for calcification and carbon cycling in algal
symbiont-bearing foraminifera, in: Biology of Foraminifera, edited by: Lee,
J. J. and Anderson, O. R., London Academic Press, London, UK, 73–89, 1991.
Vachard, D., Haig, D. W, and Mory, A. J.: Lower Carboniferous (middle
Visean) foraminifers and algae from an interior sea, Southern Carnarvon
Basin, Australia, Geobios, 47, 57–74, 2014.
Vachard, D., Pille, L., and Gaillot, J.: Palaeozoic Foraminifera:
Systematics, palaeoecology and responses to global changes, Rev. de
Micropaleontol., 53, 209–254, 2010.
Wefer, G. and Berger, W. H.: Isotope paleontology: growth and composition of
extant calcareous species, Mar. Geol., 100, 207–248, 1991.
Wefer, G., Killingley, J. S., and Lutze, G. F.: Stable isotopes in recent
larger foraminifera, Palaeogeogr. Palaeocl., 33, 253–270,
1981.
Wooldridge, S. A.: Is the coral-algae symbiosis really “mutually beneficial”
for the partners?, Bioessays, 32, 615–625, 2010.
Zapalski, M. K., Wrzołek, T., Skompski, S., and Berkowski, B.: Deep in
shadows, deep in time: The oldest mesophotic coral ecosystems from the
Devonian of the Holy Cross Mountains (Poland), Coral Reefs, 36, 847–860,
2017.
Zeebe, R. E., Bijma, J., and Wolf-Gladrow, D. A.: A diffusion-reaction model
of carbon isotope fractionation in foraminifera, Mar. Chem., 64, 199–227,
1999.
Zeuschner, L.: Geognostische Beschreibung der mittleren devonischen
Schichten zwischen Grzegorzowice und Skaly-Zagaje bei Nowa Slupia, Z. Deut.
Geolog. G., 21, 263–274, 1869.
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their...
Altmetrics
Final-revised paper
Preprint