Articles | Volume 18, issue 20
https://doi.org/10.5194/bg-18-5719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Photosynthetic activity in Devonian Foraminifera
Zofia Dubicka
Faculty of Geology, University of Warsaw, Warsaw, Poland
Ecological Chemistry, Alfred-Wegener-Institut, Helmholtz-Zentrum
für Polar- und Meeresforschung, Bremerhaven, Germany
Faculty of Geology, University of Warsaw, Warsaw, Poland
Wojciech Kozłowski
Faculty of Geology, University of Warsaw, Warsaw, Poland
Pamela Hallock
College of Marine Science, University of South Florida, St
Petersburg, Florida, USA
Johann Hohenegger
Department of Palaeontology, Universität Wien, Vienna, Austria
Related authors
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Simina Dumitriţa Dumitriu, Zofia Dubicka, and Viorel Ionesi
J. Micropalaeontol., 37, 153–166, https://doi.org/10.5194/jm-37-153-2018, https://doi.org/10.5194/jm-37-153-2018, 2018
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Simina Dumitriţa Dumitriu, Zofia Dubicka, and Viorel Ionesi
J. Micropalaeontol., 37, 153–166, https://doi.org/10.5194/jm-37-153-2018, https://doi.org/10.5194/jm-37-153-2018, 2018
Related subject area
Biodiversity and Ecosystem Function: Paleo
Comment on “The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the `boring billion' ” by Franz et al. (2023)
Rates of palaeoecological change can inform ecosystem restoration
Reply to Comment on Franz et al. (2023): A reinterpretation of the 1.5 billion year old Volyn ‘biota’ of Ukraine, and discussion of the evolution of the eukaryotes, by Head et al. (2023)
Ecological evolution in northern Iberia (SW Europe) during the Late Pleistocene through isotopic analysis on ungulate teeth
Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion
Late Neogene evolution of modern deep-dwelling plankton
Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats
Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology
Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa
Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions
Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene
Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus
Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic
Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline
The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008
Climate-related changes in peatland carbon accumulation during the last millennium
Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa)
Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian–Cambrian embryos
The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate
Martin J. Head, James B. Riding, Jennifer M. K. O'Keefe, Julius Jeiter, and Julia Gravendyck
Biogeosciences, 21, 1773–1783, https://doi.org/10.5194/bg-21-1773-2024, https://doi.org/10.5194/bg-21-1773-2024, 2024
Short summary
Short summary
A diverse suite of “fossils” associated with the ~1.5 Ga Volyn (Ukraine) kerite was published recently. We show that at least some of them represent modern contamination including plant hairs, pollen, and likely later fungal growth. Comparable diversity is shown to exist in moderm museum dust, calling into question whether any part of the Volyn biota is of biological origin while emphasising the need for scrupulous care in collecting, analysing, and identifying Precambrian microfossils.
Walter Finsinger, Christian Bigler, Christoph Schwörer, and Willy Tinner
Biogeosciences, 21, 1629–1638, https://doi.org/10.5194/bg-21-1629-2024, https://doi.org/10.5194/bg-21-1629-2024, 2024
Short summary
Short summary
Rate-of-change records based on compositional data are ambiguous as they may rise irrespective of the underlying trajectory of ecosystems. We emphasize the importance of characterizing both the direction and the rate of palaeoecological changes in terms of key features of ecosystems rather than solely on community composition. Past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chornousenko, and Ulrich Struck
EGUsphere, https://doi.org/10.5194/egusphere-2024-217, https://doi.org/10.5194/egusphere-2024-217, 2024
Short summary
Short summary
The Volyn biota (Ukraine), previously assumed to be an extreme case of natural, abiotic synthesis of organic matter, is more likely a diverse assemblage of fossils from the deep biosphere. Although contamination by modern organisms cannot completely be ruled out, it is unlikely, considering all aspects, i. e. their mode of occurrence in the deep biosphere, their fossilization and mature state of organic matter, their isotope signature, and their large morphological diversity.
Monica Fernández-Garcia, Sarah Pederzani, Kate Britton, Lucia Agudo-Pérez, Andrea Cicero, Jeanne Geiling, Joan Daura, Montse Sanz-Borrás, and Ana B. Marín-Arroyo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-128, https://doi.org/10.5194/bg-2023-128, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Significant climatic changes affected Europe's landscape, animals, and human groups during the Late Pleistocene. Reconstructing the local conditions humans faced is essential to understand adaptation processes and resilience. This study analyzed the chemical composition of animal teeth consumed by humans in northern Iberia, spanning 80,000 to 15,000 years, revealing the ecological changing conditios.
Adam Woodhouse, Frances A. Procter, Sophie L. Jackson, Robert A. Jamieson, Robert J. Newton, Philip F. Sexton, and Tracy Aze
Biogeosciences, 20, 121–139, https://doi.org/10.5194/bg-20-121-2023, https://doi.org/10.5194/bg-20-121-2023, 2023
Short summary
Short summary
This study looked into the regional and global response of planktonic foraminifera to the climate over the last 5 million years, when the Earth cooled significantly. These single celled organisms exhibit the best fossil record available to science. We document an abundance switch from warm water to cold water species as the Earth cooled. Moreover, a closer analysis of certain species may indicate higher fossil diversity than previously thought, which has implications for evolutionary studies.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Elizaveta Rivkina, Lada Petrovskaya, Tatiana Vishnivetskaya, Kirill Krivushin, Lyubov Shmakova, Maria Tutukina, Arthur Meyers, and Fyodor Kondrashov
Biogeosciences, 13, 2207–2219, https://doi.org/10.5194/bg-13-2207-2016, https://doi.org/10.5194/bg-13-2207-2016, 2016
Short summary
Short summary
A comparative analysis of the metagenomes from two 30,000-year-old permafrost samples, one of lake-alluvial origin and the other from late Pleistocene Ice Complex sediments, revealed significant differences within microbial communities. The late Pleistocene Ice Complex sediments (which are characterized by the absence of methane with lower values of redox potential and Fe2+ content) showed both a low abundance of methanogenic archaea and enzymes from the carbon, nitrogen, and sulfur cycles.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann
Biogeosciences, 12, 6945–6954, https://doi.org/10.5194/bg-12-6945-2015, https://doi.org/10.5194/bg-12-6945-2015, 2015
Short summary
Short summary
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays, chimaeras) from the Swiss Jura to get ecological information. The main finding is that the extinct shark Asteracanthus (Hybodontiformes) could inhabit reduced salinity areas, although previous studies on other European localities always resulted in a clear marine isotopic signal for this genus. We propose a mainly marine ecology coupled with excursions into areas of lower salinity in our study site.
L. Zhang, L. Zhao, Z.-Q. Chen, T. J. Algeo, Y. Li, and L. Cao
Biogeosciences, 12, 1597–1613, https://doi.org/10.5194/bg-12-1597-2015, https://doi.org/10.5194/bg-12-1597-2015, 2015
Short summary
Short summary
The Smithian--Spathian boundary was a key event in the recovery of marine environments and ecosystems following the end-Permian mass extinction ~1.5 million years earlier. Our analysis of the Shitouzhai section in South China reveals major changes in oceanographic conditions at the SSB intensification of oceanic circulation leading to enhanced upwelling of nutrient- and sulfide-rich deep waters and coinciding with an abrupt cooling that terminated the Early Triassic hothouse climate.
J. Quirk, J. R. Leake, S. A. Banwart, L. L. Taylor, and D. J. Beerling
Biogeosciences, 11, 321–331, https://doi.org/10.5194/bg-11-321-2014, https://doi.org/10.5194/bg-11-321-2014, 2014
D. Fredh, A. Broström, M. Rundgren, P. Lagerås, F. Mazier, and L. Zillén
Biogeosciences, 10, 3159–3173, https://doi.org/10.5194/bg-10-3159-2013, https://doi.org/10.5194/bg-10-3159-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
B. Van Bocxlaer, W. Salenbien, N. Praet, and J. Verniers
Biogeosciences, 9, 4497–4512, https://doi.org/10.5194/bg-9-4497-2012, https://doi.org/10.5194/bg-9-4497-2012, 2012
D. Hippler, N. Hu, M. Steiner, G. Scholtz, and G. Franz
Biogeosciences, 9, 1765–1775, https://doi.org/10.5194/bg-9-1765-2012, https://doi.org/10.5194/bg-9-1765-2012, 2012
J. M. Reed, A. Cvetkoska, Z. Levkov, H. Vogel, and B. Wagner
Biogeosciences, 7, 3083–3094, https://doi.org/10.5194/bg-7-3083-2010, https://doi.org/10.5194/bg-7-3083-2010, 2010
Cited articles
Baccaert, J.: Foraminiferal bio- and thanatocoenoses of reef flats, Lizard
Island, Great Barrier Reef, Australia, Nature of Substrate, Ann. Soc. Roy.
Zool. Bel., 116, 3–14, 1986.
Baker, R. D., Hallock, P., Moses, F. E., Williams, D. E., and Ramirez, A.:
Larger foraminifers of the Florida Reef Tract, USA: Distribution patterns on
reef-rubble habitats, J. Foramin. Res., 39, 267–277, 2009.
Biernat, G.: Middle Devonian brachiopods from the Bodzentyn Syncline (Holy
Cross Mountains, Poland), Acta Palaeontol. Pol., 17, 1–162, 1966.
Biernat, G.: Colour pattern in Middle Devonian rhynchonellid brachiopods
from the Holy Cross Mountains, Acta Geol. Pol., 34, 63–72, 1984.
BouDagher-Fadel, M. K.: Evolution and Geological Significance of Larger Benthic
Foraminifera, 2nd Edn., UCL Press, London, 704 pp., 2018.
Cesbron, E., Geslin, C., Le Kieffre, T., and Jauffrais, T.: Sequestered
chloroplasts in the benthic foraminifer Haynesina germanica: Cellular organization, oxygen
fluxes and potential ecological implications, J. Foramin. Res., 47,
268–278, 2017.
Cottey, T. L. and Hallock, P.: Test surface degradation in Archaias angulatus, J. Foramin.
Res., 18, 187–202, 1988.
Dettmering, C., Röttger, R., Hohenegger, J., and Schmaljohann, R.: The
trimorphic life cycle in foraminifera: Observations from cultures allow new
evaluation, Eur. J. Protistol., 34, 363–368, 1998.
Dubicka, Z., Gajewska, M., Kozłowski, W., and Mikhalevich, V.: Test
structure in some pioneer multichambered Paleozoic Foraminifera, P. Natl.
Acad. Sci. USA, 118, 1–6, 2021.
Dubinsky, Z. and Berman-Frank, I.: Uncoupling primary production from
population growth in photosynthesizing organisms in aquatic ecosystems,
Aquat. Sci., 63, 4–17, 2001.
Eder, W., Hohenegger, J., and Briguglio, A.: Test flattening in the larger
foraminifer Heterostegina depressa: Predicting bathymetry from axial sections, Paleobiology, 44,
76–88, 2018.
Fujita, K. and Fujimura, H.: Organic and inorganic carbon production by
algal symbiont-bearing foraminifera on northwest Pacific coral-reef flats,
J. Foramin. Res., 38, 117–126, 2008.
Goldstein, S. T.: Gametogenesis and the antiquity of reproductive pattern in
the Foraminiferida, J. Foramin. Res., 27, 319–328, 1997.
Goldstein, S. T., Bernhard, J. M., and Richardson, E. A.: Chloroplast
sequestration in the foraminifer Haynesina germanica: Application of high pressure freezing and
freeze substitution, Microsc. Microanal., 10, 1458–1459, 2004.
Gorzelak, P., Stolarski, J., Dubois, P., Kopp, C., and Meibom, A.: 26Mg
labeling of the sea urchin regenerating spine: Insights into echinoderm
biomineralization process, J. Struct. Biol., 176, 119–126, 2011.
Hallock, P.: Trends in test shape in large, symbiont-bearing foraminifera,
J. Foramin. Res., 9, 61–69, 1979.
Hallock, P.: Light dependence in Amphistegina, J. Foramin. Res., 11, 40–46, 1981a.
Hallock, P.: Algal symbiosis: a mathematical analysis, Mar. Biol., 6,
249–255, 1981b.
Hallock, P.: Fluctuations in the trophic resource continuum: a factor in
global diversity cycles?, Paleoceanography, 2, 457–471, 1987.
Hallock, P.: Symbiont-bearing foraminifera, in: Modern Foraminifera, edited
by: Sen Gupta, B. K., Springer, 123–39, 1999.
Hallock, P. and Hansen, H. J.: Depth adaptation in Amphistegina: Change in lamellar
thickness, Bull. Geol. Soc. Den., 27, 99–104, 1979.
Hallock, P. and Schlager, W.: Nutrient excess and the demise of coral reefs
and carbonate platforms, Palaios, 1, 389–398, 1986.
Hallock, P., and Seddighi, M.: Why did some larger benthic foraminifera
become so large and flat?, Sedimentology, 12837, 1–14, https://doi.org/10.1111/sed.12837, 2021.
Hammer, Ø., Harper, D., and Paul, D. R.: Past: Paleontological Statistics
Software Package for Education and Data Analysis, Palaeontol. Electron., 4,
1–9, 2001.
Hansen, H. J. and Buchhardt, B.: Depth distribution of Amphistegina in the Gulf of Elat,
Utrecht Micropaleontol. Bull., 30, 205–244, 1979.
Harney, J., Hallock, P., and Talge, H.K.: Observations on a trimorphic life
cycle in Amphistegina gibbosa populations from the Florida Keys, J. Foramin. Res., 28, 141–147,
1998.
Haynes, J.: Symbiosis, wall structure and habitat in foraminifera, Contrib.
Cushman Found. Foramin. Res., 16, 40–44, 1965.
Hohenegger, J.: Coenoclines of larger foraminifera, Micropaleontology, 46,
127–151, 2000.
Hohenegger, J.: Depth coenoclines and environmental considerations of
western Pacific larger foraminifera, J. Foramin. Res., 34, 9–34, 2004.
Hohenegger, J.: The importance of symbiont-bearing benthic foraminifera for
West Pacific carbonate beach environments, Mar. Micropaleontol., 61, 4–39,
2006.
Hohenegger, J.: Functional shell geometry of symbiont-bearing benthic
foraminifera, Galaxea JCRS, 11, 81–89, 2009.
Hohenegger, J.: Large Foraminifera: Greenhouse constructions and gardeners
in the oceanic microcosm, The Kagoshima University Museum, Kagoshima, Japan,
2011.
Hohenegger, J.: Foraminiferal growth and test development, Earth-Sci. Rev.,
185, 140–162, 2018.
Hohenegger, J., Yordanova, E., Nakano, Y., and Tatzreiter, F.: Habitats of
larger foraminifera on the upper reef slope of Sesoko Island, Okinawa,
Japan, Mar. Micropaleontol., 36, 109–168, 1999.
Hottinger, L.: Larger Foraminifera, giant cells with a historical
background, Naturwissenschaften, 69, 361–371, 1982.
Jarochowska, E., Tonarová, P., Munnecke, A., Ferrová, L.,
Sklenář, J., and Vodrážková, S.: An acid-free method of
microfossil extraction from clay-rich lithologies using the surfactant
Rewoquat, Palaeontol. Electron., 16, 1–16, 2013.
Jauffrais, T., Jesus, B., Metzger, E., Mouget, J.-L., Jorissen, F., and Geslin, E.: Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida), Biogeosciences, 13, 2715–2726, https://doi.org/10.5194/bg-13-2715-2016, 2016.
Jauffrais, T., LeKieffre, C., Koho, K. A., Tsuchiya, M., Schweizer, M.,
Bernhard, J. M., Meibom, A., and Geslin, E.: Ultrastructure and distribution
of kleptoplasts in benthic foraminifera from shallow-water (photic)
habitats, Mar. Micropaleontol., 138, 46–62, 2018.
Jauffrais, T., LeKieffre, C., Schweizer, M., Geslin, E., Metzger, E.,
Bernhard, J. M., Jesus, B., Filipsson, H. L., Maire, O., and Meibom, A.:
Kleptoplastidic benthic foraminifera from aphotic habitats: Insights into
assimilation of inorganic C, N and S studied with sub-cellular resolution,
Environ. Microbiol., 21, 125–141, 2019.
Kinoshita, S., Eder, W., Wo, J., Hohenegger, J., and Briguglio, A.: Growth,
chamber building rate and reproduction time of Palaeonummulites venosus (Foraminifera) under natural
conditions, Coral Reefs, 36, 1097–1109, 2017.
Krüger, R. Röttger, R. Lietz, R., and Hohenegger, J.: Biology and
reproductive process of the large foraminiferan Cycloclypeus carpenteri (Protozoa, Nummulitidae),
Arch. Protist Stud., 147, 307–321, 1996.
Langer, M. R., Silk, M. T., and Lipps, J. H.: Global ocean carbonate and
carbon dioxide production: the role of reef foraminifera, J. Foramin. Res.,
27, 271–277, 1997.
Larsen, A. R. and Drooger, C. W.: Relative thickness of the test in the
Amphistegina species of the Gulf of Elat, Utrecht Micropal. Bull., 15, 225–240, 1977.
Lee, J. J. and Anderson, O. R.: Symbiosis in Foraminifera, in: Biology of
Foraminifera, edited by: Lee, J. J. and Anderson, O. R., LA Press, London,
157–220, 1991.
Lee, J. J., Cervasco, M., Morales, J., Billik, M., and Fine, M.: Symbiosis
drove cellular evolution: Symbiosis fueled evolution of lineages of
Foraminifera (eukaryotic cells) into exceptionally complex giant protists,
Symbiosis, 51, 13–25, 2010.
McConnaughey, T. A. and Whelan, J. F.: Calcification generates protons for
nutrient and bicarbonate uptake, Earth-Sci. Rev., 42, 95–117, 1997.
Miller, A. K. and Carmer, A. M.: Devonian Foraminifera from Iowa, J.
Paleontol., 7, 423–431, 1933.
Narkiewicz, K. and Malec, J.: New conodont CAI database (CAI),
Przegląd Geologiczny, 53, 33–37, 2005 (in Polish).
Pajchlowa, M.: Dewon w profilu Grzegorzowice-Skały (in Polish with English
summary), Biuletyn Instytutu Geologicznego, 122, 145–254, 1957.
Papazzoni, C. A. and Seddighi, M.: What, if anything, is a Nummulite Bank?, J.
Foramin. Res., 48, 276–287, 2018.
Pillet, L., de Vargas, C., and Pawlowski, J.: Molecular identification of
sequestered diatom chloroplasts and kleptoplastidy in foraminifera, Protist, 162, 394–404, 2011.
Prazeres, M. and Renema, W.: Evolutionary significance of the microbial
assemblages of large benthic foraminifera, Biol. Rev., 94, 828–848, 2019.
Ravelo, A. C. and Fairbanks, R. G.: Carbon isotopic fractionation in
multiple species of planktonic foraminifera from core-tops in the tropical
Atlantic, J. Foramin. Res., 25, 53–74, 1995.
Ravelo, A. C. and Hillaire-Marcel, C.: The use of oxygen and carbon isotopes
of Foraminifera in paleoceanography, in: Proxies in Late Cenozoic
Paleoceanography, edited by: Hillaire–Marcel, C., and De Vernal, A., Elsevier
Science, 735–764, 2007.
Renema, W.: Terrestrial influence as a key driver of spatial variability in
large benthic foraminiferal assemblage composition in the central
Indo-Pacific, Earth-Sci. Rev., 177, 514–544, 2018.
Samsonowicz, J.: Sprawozdanie z badań w r, 1935 na północ od kopalni Staszic między Pokrzywianką, Psarką i Swiśliną (in Polish), Posiedzenie naukowe Państwowego Instytutu Geologicznego, 44, 41–45, 1936.
Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., and Thierstein, H.
R.: Size distribution of Holocene planktic foraminifer assemblages:
Biogeography, ecology and adaption, Mar. Micropaleontol., 50, 319–338, 2004.
Selosse, M. A., Charpin, A., and Not, F.: Mixotrophy everywhere on land and
in water. The grand écart hypothesis, Ecol. Lett., 20, 246–263, 2017.
Sims, P. A., Mann, D. G., and Medlin, L. K.: Evolution of the diatoms:
Insights from fossil, biological and molecular data, Phycologia, 45,
361–402, 2006.
Stasińska, A.: Tabulata. Heliolitida et Chaetetida du Devonien moyen des
monts de Sainte-Croix, Acta Palaeontol. Pol., 3, 161–282, 1958.
Szulczewski, M.: Depositional evolution of the Holy Cross Mts. (Poland) in
the Devonian and Carboniferous – a review, Geol. Q., 39, 471–488, 1995.
ter Kuile, B.: Mechanisms for calcification and carbon cycling in algal
symbiont-bearing foraminifera, in: Biology of Foraminifera, edited by: Lee,
J. J. and Anderson, O. R., London Academic Press, London, UK, 73–89, 1991.
Vachard, D., Haig, D. W, and Mory, A. J.: Lower Carboniferous (middle
Visean) foraminifers and algae from an interior sea, Southern Carnarvon
Basin, Australia, Geobios, 47, 57–74, 2014.
Vachard, D., Pille, L., and Gaillot, J.: Palaeozoic Foraminifera:
Systematics, palaeoecology and responses to global changes, Rev. de
Micropaleontol., 53, 209–254, 2010.
Wefer, G. and Berger, W. H.: Isotope paleontology: growth and composition of
extant calcareous species, Mar. Geol., 100, 207–248, 1991.
Wefer, G., Killingley, J. S., and Lutze, G. F.: Stable isotopes in recent
larger foraminifera, Palaeogeogr. Palaeocl., 33, 253–270,
1981.
Wooldridge, S. A.: Is the coral-algae symbiosis really “mutually beneficial”
for the partners?, Bioessays, 32, 615–625, 2010.
Zapalski, M. K., Wrzołek, T., Skompski, S., and Berkowski, B.: Deep in
shadows, deep in time: The oldest mesophotic coral ecosystems from the
Devonian of the Holy Cross Mountains (Poland), Coral Reefs, 36, 847–860,
2017.
Zeebe, R. E., Bijma, J., and Wolf-Gladrow, D. A.: A diffusion-reaction model
of carbon isotope fractionation in foraminifera, Mar. Chem., 64, 199–227,
1999.
Zeuschner, L.: Geognostische Beschreibung der mittleren devonischen
Schichten zwischen Grzegorzowice und Skaly-Zagaje bei Nowa Slupia, Z. Deut.
Geolog. G., 21, 263–274, 1869.
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their...
Altmetrics
Final-revised paper
Preprint