Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Key Laboratory of Land Resources Evaluation and Monitoring in
Southwest, Ministry of Education, Sichuan Normal University, Chengdu,
610068, China
Institute of Plant Science and Microbiology, Universität Hamburg,
Hamburg, 22609, Germany
Susanne Liebner
GFZ German Research Centre for Geosciences, Geomicrobiology, Potsdam,
14469, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam,
14469, Germany
Svenja Reents
Institute of Plant Science and Microbiology, Universität Hamburg,
Hamburg, 22609, Germany
Stefanie Nolte
School of Environmental Sciences, University of East Anglia, Norwich,
NR47TJ, UK
Centre for Environment, Fisheries and Aquaculture Science, Pakefield
Rd, Lowestoft, UK
Kai Jensen
Institute of Plant Science and Microbiology, Universität Hamburg,
Hamburg, 22609, Germany
Fabian Horn
GFZ German Research Centre for Geosciences, Geomicrobiology, Potsdam,
14469, Germany
Peter Mueller
CORRESPONDING AUTHOR
Institute of Plant Science and Microbiology, Universität Hamburg,
Hamburg, 22609, Germany
Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
Related authors
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Cited articles
Anderson, M. J.: Permutational Multivariate Analysis of Variance (PERMANOVA), Wiley StatsRef Stat. Ref. Online, 1–15,
https://doi.org/10.1002/9781118445112.stat07841, 2017.
Bardgett, R. D., Freeman, C., and Ostle, N. J.: Microbial contributions to
climate change through carbon cycle feedbacks, ISME J., 2, 805–814,
https://doi.org/10.1038/ismej.2008.58, 2008.
Bauerle, W. L., Bowden, J. D., and Wang, G. G.: The influence of temperature
on within-canopy acclimation and variation in leaf photosynthesis: Spatial
acclimation to microclimate gradients among climatically divergent Acer
rubrum L. genotypes, J. Exp. Bot., 58, 3285–3298,
https://doi.org/10.1093/jxb/erm177, 2007.
Bockelmann, A. C. and Neuhaus, R.: Competitive exclusion of Elymus athericus
from a high-stress habitat in a European salt marsh, J. Ecol., 87,
503–513, https://doi.org/10.1046/j.1365-2745.1999.00368.x, 1999.
Bockelmann, A. C., Reusch, B. H., Bijlsma, R., and Bakker, J. P.: Habitat
differentiation vs. isolation-by-distance: The genetic population structure
of Elymus athericus in European salt marshes, Mol. Ecol., 12, 505–515,
https://doi.org/10.1046/j.1365-294X.2003.01706.x, 2003.
Box, G. E. P.: Some Theorems on Quadratic Forms Applied in the Study of
Analysis of Variance Problems, I. Effect of Inequality of Variance in the
One-Way Classification, Ann. Math. Stat., 25, 290–302,
https://doi.org/10.1214/aoms/1177728786, 1954.
Bustos-Korts, D., Romagosa, I., Borràs-Gelonch, G., Casas, A. M.,
Slafer, G. A., and van Eeuwijk, F.: Genotype by Environment Interaction and
Adaptation, in: Encyclopedia of Sustainability Science and Technology, edited
by: Meyers, R. A., Springer New York, New York, NY, 1–44, 2018.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.
D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon,
J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R.
E., Lozupone, C. A., Mcdonald, D., Muegge, B. D., Pirrung, M., Reeder, J.,
Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko,
T., Zaneveld, J. and Knight, R.: correspondence QIIME allows analysis of
high- throughput community sequencing data Intensity normalization improves
color calling in SOLiD sequencing, Nat. Publ. Gr., 7, 335–336,
https://doi.org/10.1038/nmeth0510-335, 2010.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global
carbon sequestration in tidal, saline wetland soils, Global Biogeochem.
Cycles, 17, 1–11, https://doi.org/10.1029/2002gb001917, 2003.
Clark, F. E.: Decomposition of organic materials in grassland soil, Tech.
Rep. (US Int. Biol. Progr. Grassl. Biome), no 61, 1970.
Crutsinger, G. M., Collins, M. D., Fordyce, J. A., Gompert, Z., Nice, C. C.,
and Sanders, N. J.: Plant genotypic diversity predicts community structure
and governs an ecosystem process, Science, 313, 966–968,
https://doi.org/10.1126/science.1128326, 2006.
Curasi, S. R., Parker, T. C., Rocha, A. V., Moody, M. L., Tang, J., and
Fetcher, N.: Differential responses of ecotypes to climate in a ubiquitous
Arctic sedge: implications for future ecosystem C cycling, New Phytol.,
223, 180–192, https://doi.org/10.1111/nph.15790, 2019.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Dijkstra, F. A., Blumenthal, D., Morgan, J. A., Pendall, E., Carrillo, Y.
and Follett, R. F.: Contrasting effects of elevated CO2 and warming on
nitrogen cycling in a semiarid grassland, New Phytol., 187, 426–437,
https://doi.org/10.1111/j.1469-8137.2010.03293.x, 2010.
Dinter, T., Geihser, S., Gube, M., Daniel, R., and Kuzyakov, Y.: Impact of sea level change on coastal soil organic matter, priming effects and prokaryotic community assembly, FEMS Microbiol. Ecol., 95, fiz129, https://doi.org/10.1093/femsec/fiz129, 2019.
Fischer, D. G., Chapman, S. K., Classen, A. T., Gehring, C. A., Grady, K.
C., Schweitzer, J. A., and Whitham, T. G.: Plant genetic effects on soils
under climate change, Plant Soil, 379, 1–19,
https://doi.org/10.1007/s11104-013-1972-x, 2014.
Freeman, C., Ostle, N., and Kang, H.: An enzymic “latch” on a global carbon
store: A shortage of oxygen locks up carbon in peatlands by restraining a
single enzymes, Nature, 409, 149, https://doi.org/10.1038/35051650, 2001.
Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R., and Richter, A.:
Experimental drought reduces the transfer of recently fixed plant carbon to
soil microbes and alters the bacterial community composition in a mountain
meadow, New Phytol., 201, 916–927, https://doi.org/10.1111/nph.12569, 2014.
Henneron, L., Cros, C., Picon-Cochard, C., Rahimian, V., and Fontaine, S.:
Plant economic strategies of grassland species control soil carbon dynamics
through rhizodeposition, J. Ecol., 108, 528–545,
https://doi.org/10.1111/1365-2745.13276, 2020.
Holm, S., Walz, J., Horn, F., Yang, S., Grigoriev, M. N., Wagner, D.,
Knoblauch, C., and Liebner, S.: Methanogenic response to long-term permafrost
thaw is determined by paleoenvironment, FEMS Microbiol. Ecol., 96, 1–13,
https://doi.org/10.1093/femsec/fiaa021, 2020.
Huang, G., Rymer, P. D., Duan, H., Smith, R. A., and Tissue, D. T.: Elevated
temperature is more effective than elevated [CO2] in exposing genotypic
variation in Telopea speciosissima growth plasticity: Implications for woody
plant populations under climate change, Glob. Chang. Biol., 21,
3800–3813, https://doi.org/10.1111/gcb.12990, 2015.
Janousek, C. N., Buffington, K. J., Guntenspergen, G. R., Thorne, K. M.,
Dugger, B. D., and Takekawa, J. Y.: Inundation, Vegetation, and Sediment
Effects on Litter Decomposition in Pacific Coast Tidal Marshes, Ecosystems,
20, 1296–1310, https://doi.org/10.1007/s10021-017-0111-6, 2017.
Jones, D. L., Hodge, A., and Kuzyakov, Y.: Plant and mycorrhizal regulation
of rhizodeposition, New Phytol., 163, 459–480,
https://doi.org/10.1111/j.1469-8137.2004.01130.x, 2004.
Jones, S. F., Stagg, C. L., Krauss, K. W., and Hester, M. W.: Flooding Alters
Plant-Mediated Carbon Cycling Independently of Elevated Atmospheric CO2
Concentrations, J. Geophys. Res.-Biogeo., 123, 1976–1987,
https://doi.org/10.1029/2017JG004369, 2018.
Jump, A. S. and Peñuelas, J.: Running to stand still: Adaptation and the
response of plants to rapid climate change, Ecol. Lett., 8, 1010–1020,
https://doi.org/10.1111/j.1461-0248.2005.00796.x, 2005.
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and
Hefting, M. M.: Tea Bag Index: A novel approach to collect uniform
decomposition data across ecosystems, Methods Ecol. Evol., 4,
1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Kirwan, M. L. and Guntenspergen, G. R.: Feedbacks between inundation, root
production, and shoot growth in a rapidly submerging brackish marsh, J.
Ecol., 100, 764–770, https://doi.org/10.1111/j.1365-2745.2012.01957.x, 2012.
Kirwan, M. L. and Megonigal, J. P.: Tidal wetland stability in the face of
human impacts and sea-level rise, Nature, 504, 53–60,
https://doi.org/10.1038/nature12856, 2013.
Kirwan, M. L., Langley, J. A., Guntenspergen, G. R., and Megonigal, J. P.: The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes, Biogeosciences, 10, 1869–1876, https://doi.org/10.5194/bg-10-1869-2013, 2013.
Kirwan, M. L., Guntenspergen, G. R., and Langley, J. A.: Temperature sensitivity of organic-matter decay in tidal marshes, Biogeosciences, 11, 4801–4808, https://doi.org/10.5194/bg-11-4801-2014, 2014.
Koelbener, A., Ström, L., Edwards, P. J., and Olde Venterink, H.: Plant
species from mesotrophic wetlands cause relatively high methane emissions
from peat soil, Plant Soil, 326, 147–158, https://doi.org/10.1007/s11104-009-9989-x,
2010.
Kuzyakov, Y.: Review: Factors affecting rhizosphere priming effects, J.
Plant Nutr. Soil Sci., 165, 382–396, 2002.
Kuzyakov, Y. and Xu, X.: Competition between roots and microorganisms for
nitrogen: Mechanisms and ecological relevance, New Phytol., 198,
656–669, https://doi.org/10.1111/nph.12235, 2013.
Di Lonardo, D. P., Manrubia, M., De Boer, W., Zweers, H., Veen, G. F., and
Van der Wal, A.: Relationship between home-field advantage of litter
decomposition and priming of soil organic matter, Soil Biol. Biochem.,
126, 49–56, https://doi.org/10.1016/j.soilbio.2018.07.025, 2018.
Madritch, M. D. and Lindroth, R. L.: Soil microbial communities adapt to
genetic variation in leaf litter inputs, Oikos, 120, 1696–1704,
https://doi.org/10.1111/j.1600-0706.2011.19195.x, 2011.
Martin, M.: Cutadapt removes adapter sequences from high-throughput
sequencing reads, EMBnet.journal, 17, 10, https://doi.org/10.14806/ej.17.1.200, 2011.
McGuinness, K. A.: Of rowing boats, ocean liners and tests of the ANOVA
homogeneity of variance assumption, Austral Ecol., 27, 681–688,
https://doi.org/10.1046/j.1442-9993.2002.01233.x, 2002.
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C.
M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for
blue carbon: Toward an improved understanding of the role of vegetated
coastal habitats in sequestering CO2, Front. Ecol. Environ., 9,
552–560, https://doi.org/10.1890/110004, 2011.
Megonigal, J. P., Hines, M. E., and Visscher, P. T.: Anaerobic Metabolism:
Linkages to Trace Gases and Aerobic Processes, Treatise on Geochemistry,
8, 317–424, https://doi.org/10.1016/B0-08-043751-6/08132-9, 2003.
Meier, L. A., Krauze, P., Prater, I., Horn, F., Schaefer, C. E. G. R., Scholten, T., Wagner, D., Mueller, C. W., and Kühn, P.: Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region, Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019, 2019.
Micallef, S. A., Shiaris, M. P., and Colón-Carmona, A.: Influence of
Arabidopsis thaliana accessions on rhizobacterial communities and natural
variation in root exudates, J. Exp. Bot., 60, 1729–1742,
https://doi.org/10.1093/jxb/erp053, 2009.
Morris, J. T., Sundberg, K., and Hopkinson, C. S.: Salt marsh primary
production and its responses to relative sea level and nutrientsin estuaries
at plum island, Massachusetts, and North Inlet, South Carolina, USA,
Oceanography, 26, 78–84, https://doi.org/10.5670/oceanog.2013.48, 2013.
Mueller, P., Jensen, K., and Megonigal, J. P.: Plants mediate soil organic
matter decomposition in response to sea level rise, Glob. Chang. Biol.,
22, 404–414, https://doi.org/10.1111/gcb.13082, 2016.
Mueller, P., Granse, D., Nolte, S., Do, H. T., Weingartner, M., Hoth, S., and
Jensen, K.: Top-down control of carbon sequestration: Grazing affects
microbial structure and function in salt marsh soils: Grazing, Ecol. Appl.,
27, 1435–1450, https://doi.org/10.1002/eap.1534, 2017.
Mueller, P., Schile-Beers, L. M., Mozdzer, T. J., Chmura, G. L., Dinter, T., Kuzyakov, Y., de Groot, A. V., Esselink, P., Smit, C., D'Alpaos, A., Ibáñez, C., Lazarus, M., Neumeier, U., Johnson, B. J., Baldwin, A. H., Yarwood, S. A., Montemayor, D. I., Yang, Z., Wu, J., Jensen, K., and Nolte, S.: Global-change effects on early-stage decomposition processes in tidal wetlands – implications from a global survey using standardized litter, Biogeosciences, 15, 3189–3202, https://doi.org/10.5194/bg-15-3189-2018, 2018.
Mueller, P., Ladiges, N., Jack, A., Schmiedl, G., Kutzbach, L., Jensen, K. and Nolte, S.: Assessing the long-term carbon-sequestration potential of the semi-natural salt marshes in the European Wadden Sea, Ecosphere, 10, e02556, https://doi.org/10.1002/ecs2.2556, 2019.
Mueller, P., Mozdzer, T. J., Langley, J. A., Aoki, L. R., Noyce, G. L., and
Megonigal, J. P.: Plant species determine tidal wetland methane response to
sea level rise, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-18763-4,
2020.
Mueller, P., Do, H. T., Smit, C., Reisdorff, C., Jensen, K., and Nolte, S.:
With a little help from my friends: physiological integration facilitates
invasion of wetland grass Elymus athericus into flooded soils, Oikos,
130, 431–439, https://doi.org/10.1111/oik.07863, 2021.
Van Nuland, M. E., Wooliver, R. C., Pfennigwerth, A. A., Read, Q. D., Ware,
I. M., Mueller, L., Fordyce, J. A., Schweitzer, J. A., and Bailey, J. K.:
Plant–soil feedbacks: connecting ecosystem ecology and evolution, Funct.
Ecol., 30, 1032–1042, https://doi.org/10.1111/1365-2435.12690, 2016.
Ochoa-Hueso, R., Borer, E. T., Seabloom, E. W., Hobbie, S. E., Risch, A. C., Collins, S. L., Alberti, J., Bahamonde, H. A., Brown, C. S., Caldeira, M. C., Daleo, P., Dickman, C. R., Ebeling, A., Eisenhauer, N., Esch, E. H., Eskelinen, A., Fernández, V., Güsewell, S., Gutierrez-Larruga, B., Hofmockel, K., Laungani, R., Lind, E., López, A., McCulley, R. L., Moore, J. L., Peri, P. L., Power, S. A., Price, J. N., Prober, S. M., Roscher, C., Sarneel, J. M., Schütz, M., Siebert, J., Standish, R. J., Velasco Ayuso, S., Virtanen, R., Wardle, G. M., Wiehl, G., Yahdjian, L., and Zamin, T.: Microbial processing of plant remains is co-limited by multiple nutrients in global grasslands, Glob. Chang. Biol., 1–11, https://doi.org/10.1111/gcb.15146, 2020.
Pérez-Izquierdo, L., Zabal-Aguirre, M., González-Martínez, S.
C., Buée, M., Verdú, M., Rincón, A., and Goberna, M.: Plant
intraspecific variation modulates nutrient cycling through its below ground
rhizospheric microbiome, J. Ecol., 107, 1594–1605,
https://doi.org/10.1111/1365-2745.13202, 2019.
Philippot, L., Raaijmakers, J. M., Lemanceau, P., and Van Der Putten, W. H.:
Going back to the roots: The microbial ecology of the rhizosphere, Nat. Rev.
Microbiol., 11, 789–799, https://doi.org/10.1038/nrmicro3109, 2013.
Pregitzer, C. C., Bailey, J. K., and Schweitzer, J. A.: Genetic by
environment interactions affect plant-soil linkages, Ecol. Evol., 3,
2322–2333, https://doi.org/10.1002/ece3.618, 2013.
Pugnaire, F. I., Morillo, J. A., Peñuelas, J., Reich, P. B., Bardgett,
R. D., Gaxiola, A., Wardle, D. A., and van der Putten, W. H.: Climate change
effects on plant-soil feedbacks and consequences for biodiversity and
functioning of terrestrial ecosystems, Sci. Adv., 5, eaaz1834,
https://doi.org/10.1126/sciadv.aaz1834, 2019.
Van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M.,
Casper, B. B., Fukami, T., Kardol, P., Klironomos, J. N., Kulmatiski, A.,
Schweitzer, J. A., Suding, K. N., Van de Voorde, T. F. J., and Wardle, D. A.:
Plant-soil feedbacks: The past, the present and future challenges, J. Ecol.,
101, 265–276, https://doi.org/10.1111/1365-2745.12054, 2013.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: Improved data processing and web-based tools, Nucleic Acids Res.,
41, 590–596, https://doi.org/10.1093/nar/gks1219, 2013.
Reents, S., Mueller, P., Tang, H., Jensen, K., and Nolte, S.: Plant genotype determines biomass response to flooding frequency in tidal wetlands, Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, 2021.
Risch, A. C., Jurgensen, M. F., and Frank, D. A.: Effects of grazing and soil
micro-climate on decomposition rates in a spatio-temporally heterogeneous
grassland, Plant Soil, 298, 191–201, https://doi.org/10.1007/s11104-007-9354-x,
2007.
Rogers, K., Kelleway, J. J., Saintilan, N., Megonigal, J. P., Adams, J. B.,
Holmquist, J. R., Lu, M., Schile-Beers, L., Zawadzki, A., Mazumder, D. and
Woodroffe, C. D.: Wetland carbon storage controlled by millennial-scale
variation in relative sea-level rise, Nature, 567, 91–95,
https://doi.org/10.1038/s41586-019-0951-7, 2019.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F.: VSEARCH: A versatile open source tool for metagenomics, PeerJ, 10, 1–22, https://doi.org/10.7717/peerj.2584, 2016.
Schile, L. M., Callaway, J. C., Morris, J. T., Stralberg, D., Thomas Parker, V., and Kelly, M.: Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency, PLoS One, 9, e88760, https://doi.org/10.1371/journal.pone.0088760, 2014.
Schweitzer, J. A., Bailey, J. K., Fischer, D. G., LeRoy, C. J., Lonsdorf, E.
V., Whitham, T. G., and Hart, S. C.: Plant-soil-microorganism interactions:
Heritable relationship between plant genotype and associated soil
microorganisms, Ecology, 89, 773–781, https://doi.org/10.1890/07-0337.1, 2008.
Seliskar, D. M., Gallagher, J. L., Burdick, D. M., and Mutz, L. A.: The
regulation of ecosystem functions by ecotypic variation in the dominant
plant: A Spartina alterniflora salt-marsh case study, J. Ecol., 90,
1–11, https://doi.org/10.1046/j.0022-0477.2001.00632.x, 2002.
Sinsabaugh, R. L., Saiya-Cork, K., Long, T., Osgood, M. P., Neher, D. A.,
Zak, D. R., and Norby, R. J.: Soil microbial activity in a Liquidambar
plantation unresponsive to CO2-driven increases in primary production,
Appl. Soil Ecol., 24, 263–271, https://doi.org/10.1016/S0929-1393(03)00002-7, 2003.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S.
D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E.,
Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S.,
Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak,
D. R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global
scale, Ecol. Lett., 11, 1252–1264,
https://doi.org/10.1111/j.1461-0248.2008.01245.x, 2008.
Sinsabaugh, R. L., Hill, B. H., and Follstad Shah, J. J.: Ecoenzymatic
stoichiometry of microbial organic nutrient acquisition in soil and
sediment, Nature, 462, 795–798, https://doi.org/10.1038/nature08632, 2009.
Sinsabaugh, R. L., Follstad Shah, J. J., Hill, B. H., and Elonen, C. M.:
Ecoenzymatic stoichiometry of stream sediments with comparison to
terrestrial soils, Biogeochemistry, 111, 455–467,
https://doi.org/10.1007/s10533-011-9676-x, 2012.
Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A., and Hopkinson, C.
S.: Global-change controls on soil-carbon accumulation and loss in coastal
vegetated ecosystems, Nat. Geosci., 12, 685–692,
https://doi.org/10.1038/s41561-019-0435-2, 2019.
Stagg, C. L., Schoolmaster, D. R., Krauss, K. W., Cormier, N., and Conner, W.
H.: Causal mechanisms of soil organic matter decomposition: deconstructing
salinity and flooding impacts in coastal wetlands, Ecology, 98,
2003–2018, https://doi.org/10.1002/ecy.1890, 2017.
Stagg, C. L., Baustian, M. M., Perry, C. L., Carruthers, T. J. B., Hall, C.
T., and Zanne, A.: Direct and indirect controls on organic matter
decomposition in four coastal wetland communities along a landscape salinity
gradient, J. Ecol., 106, 655–670, https://doi.org/10.1111/1365-2745.12901, 2018.
Swanson, K. M., Drexler, J. Z., Schoellhamer, D. H., Thorne, K. M., Casazza,
M. L., Overton, C. T., Callaway, J. C., and Takekawa, J. Y.: Wetland
Accretion Rate Model of Ecosystem Resilience (WARMER) and Its Application to
Habitat Sustainability for Endangered Species in the San Francisco Estuary,
Estuar. Coasts, 37, 476–492, https://doi.org/10.1007/s12237-013-9694-0, 2014.
Tang, H., Nolte, S., Jensen, K., Yang, Z., Wu, J., and Mueller, P.: Grazing mediates soil microbial activity and litter decomposition in salt marshes, Sci. Total Environ., 720, 137559, https://doi.org/10.1016/j.scitotenv.2020.137559, 2020.
Taylor, M. A., Cooper, M. D., and Schmitt, J.: Phenological and fitness
responses to climate warming depend upon genotype and competitive
neighbourhood in Arabidopsis thaliana, Funct. Ecol., 33, 308–322,
https://doi.org/10.1111/1365-2435.13262, 2019.
terHorst, C. P. and Zee, P. C.: Eco-evolutionary dynamics in plant–soil
feedbacks, Funct. Ecol., 30, 1062–1072, https://doi.org/10.1111/1365-2435.12671,
2016.
terHorst, C. P., Lennon, J. T., and Lau, J. A.: The relative importance of rapid evolution for plant-microbe interactions depends on ecological context, Proc. R. Soc. B Biol. Sci., 281, 20140028, https://doi.org/10.1098/rspb.2014.0028, 2014.
Walker, T. W. N., Weckwerth, W., Bragazza, L., Fragner, L., Forde, B. G.,
Ostle, N. J., Signarbieux, C., Sun, X., Ward, S. E., and Bardgett, R. D.:
Plastic and genetic responses of a common sedge to warming have contrasting
effects on carbon cycle processes, Ecol. Lett., 22, 159–169,
https://doi.org/10.1111/ele.13178, 2019.
Wanner, A., Suchrow, S., Kiehl, K., Meyer, W., Pohlmann, N., Stock, M., and
Jensen, K.: Scale matters: Impact of management regime on plant species
richness and vegetation type diversity in Wadden Sea salt marshes, Agric.
Ecosyst. Environ., 182, 69–79, https://doi.org/10.1016/j.agee.2013.08.014, 2014.
Ward, S. E., Ostle, N. J., Oakley, S., Quirk, H., Henrys, P. A., and
Bardgett, R. D.: Warming effects on greenhouse gas fluxes in peatlands are
modulated by vegetation composition, Ecol. Lett., 16, 1285–1293,
https://doi.org/10.1111/ele.12167, 2013.
Ware, I. M., Van Nuland, M. E., Schweitzer, J. A., Yang, Z., Schadt, C. W.,
Sidak-Loftis, L. C., Stone, N. E., Busch, J. D., Wagner, D. M., and Bailey,
J. K.: Climate-driven reduction of genetic variation in plant phenology
alters soil communities and nutrient pools, Glob. Chang. Biol., 25,
1514–1528, https://doi.org/10.1111/gcb.14553, 2019.
Warner, B. G. and Asada, T.: Biological diversity of peatlands in Canada,
Aquat. Sci., 68, 240–253, https://doi.org/10.1007/s00027-006-0853-2, 2006.
Wieder, W.: Soil carbon: Microbes, roots and global carbon, Nat. Clim.
Chang., 4, 1052–1053, https://doi.org/10.1038/nclimate2454, 2014.
Wolf, A. A., Drake, B. G., Erickson, J. E., and Megonigal, J. P.: An
oxygen-mediated positive feedback between elevated carbon dioxide and soil
organic matter decomposition in a simulated anaerobic wetland, Glob. Chang.
Biol., 13, 2036–2044, https://doi.org/10.1111/j.1365-2486.2007.01407.x, 2007.
Zogg, G. P., Travis, S. E., and Brazeau, D. A.: Strong associations between
plant genotypes and bacterial communities in a natural salt marsh, Ecol.
Evol., 8, 4721–4730, https://doi.org/10.1002/ece3.4105, 2018.
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning...
Altmetrics
Final-revised paper
Preprint