Articles | Volume 18, issue 24
https://doi.org/10.5194/bg-18-6589-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6589-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting patterns of carbon cycling and dissolved organic matter processing in two phytoplankton–bacteria communities
Tvärminne Zoological Station, University of Helsinki, Helsinki,
00014, Finland
Marine Research Centre, Finnish Environment Institute, Helsinki, 00790, Finland
Eeva Eronen-Rasimus
Marine Research Centre, Finnish Environment Institute, Helsinki, 00790, Finland
Eero Asmala
Tvärminne Zoological Station, University of Helsinki, Helsinki,
00014, Finland
current address: Geological Survey of Finland, Espoo, 02151, Finland
Tobias Tamelander
Tvärminne Zoological Station, University of Helsinki, Helsinki,
00014, Finland
Hermanni Kaartokallio
Marine Research Centre, Finnish Environment Institute, Helsinki, 00790, Finland
Related authors
No articles found.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Cited articles
Allers, E., Gómez-Consarnau, L., Pinhassi, J., Gasol, J. M., Šimek,
K., and Pernthaler, J.: Response of Alteromonadaceae and Rhodobacteriaceae to
glucose and phosphorus manipulation in marine mesocosms, Environ.
Microbiol., 9, 2417–2429, https://doi.org/10.1111/j.1462-2920.2007.01360.x, 2007.
Alonso-Sáez, L., Unanue, M., Latatu, A., Azua, I., Ayo, B., Artolozaga,
I., and Iriberri, J.: Changes in marine prokaryotic community induced by
varying types of dissolved organic matter and subsequent grazing pressure,
J. Plankton Res., 31, 1373–1383, https://doi.org/10.1093/plankt/fbp081, 2009.
Amin, S. A., Green, D. H., Hart, M. C., Küpper, F. C., Sunda, W. G., and
Carrano, C. J.: Photolysis of iron – siderophore chelates promotes
bacterial – algal mutualism, P. Natl. Acad. Sci. USA, 106, 17071–17076,
https://doi.org/10.1073/pnas.0905512106, 2009.
Anderson, M. J.: A new method for non-parametric multivariate analysis of
variance, Austral. Ecol., 26, 32–46,
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x, 2001.
Asmala, E., Haraguchi, L., Markager, S., Massicotte, P., Riemann, B.,
Staehr, P. A., and Carstensen, J.: Eutrophication Leads to Accumulation of
Recalcitrant Autochthonous Organic Matter in Coastal Environment, Global
Biogeochem. Cy., 32(11), 1673–1687, https://doi.org/10.1029/2017GB005848, 2018.
Azam, F., Fenchel, T. M., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and
Thingstad, F.: The ecological role of water-column microbes in the sea, Mar.
Ecol. Prog. Ser., 10, 257–263, https://doi.org/10.3354/meps010257, 1983.
Ballen-Segura, M., Felip, M., and Catalan, J.: Some mixotrophic flagellate
species selectively graze on archaea, Appl. Environ. Microbiol., 83,
1–11, https://doi.org/10.1128/AEM.02317-16, 2017.
Becker, J. W., Berube, P. M., Follett, C. L., Waterbury, J. B., Chisholm, S.
W., DeLong, E. F., and Repeta, D. J.: Closely related phytoplankton species
produce similar suites of dissolved organic matter, Front. Microbiol., 5,
1–14, https://doi.org/10.3389/fmicb.2014.00111, 2014.
Berggren, M., Laudon, H., and Jansson, M.: Aging of allochthonous organic
carbon regulates bacterial production in unproductive boreal lakes, Limnol.
Oceanogr., 54, 1333–1342, https://doi.org/10.4319/lo.2009.54.4.1333, 2009.
Bjørnsen, P. K.: Phytoplankton exudation of organic matter: Why do
healthy cells do it?, Limnol. Oceanogr., 33, 151–154,
https://doi.org/10.4319/lo.1988.33.1.0151, 1988.
Bronk, D. A. and Glibert, P. M.: Application of a 15N tracer method to the
study of dissolved organic nitrogen uptake during spring and summer in
Chesapeake Bay, Mar. Biol., 115, 501–508, 1993.
Buchan, A., LeCleir, G. R., Gulvik, C. A., and González, J. M.: Master
recyclers: features and functions of bacteria associated with phytoplankton
blooms, Nat. Rev. Microbiol., 12, 686–698, https://doi.org/10.1038/nrmicro3326, 2014.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data [code], Nat. Method., 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Camarena-Gómez, M. T., Lipsewers, T., Piiparinen, J., Eronen-Rasimus,
E., Perez-Quemaliños, D., Hoikkala, L., Sobrino, C., and Spilling, K.:
Shifts in phytoplankton community structure modify bacterial production ,
abundance and community composition, Aquat. Microb. Ecol., 81,
149–170, https://doi.org/10.3354/ame01868, 2018.
Camiro-vargas, T. K., Hernández-Ayón, J. M., Valenzuela-espinoza,
E., Delgadillo-hinojosa, F., and Ramón, C.-M.: Dissolved inorganic carbon
uptake by Rhodomonas sp. and Isochrysis aff . galbana determined by a
potentiometric technique, Aquac. Eng., 33, 83–95,
https://doi.org/10.1016/j.aquaeng.2004.10.001, 2005.
Chen, W. and Wangersky, P. J.: Production of dissolved organic carbon in
phytoplankton cultures as measured by high-temperature catalytic oxidation
and ultraviolet photo-oxidation methods, J. Plankton Res., 18,
1201–1211, 1996.
Chin-Leo, G. and Kirchman, D.: Unbalanced growth in natural assemblages of
marine bacterioplankton, Mar. Ecol. Prog. Ser., 63, 1–8,
https://doi.org/10.3354/meps063001, 1990.
Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J., and Scanlan, D.
J.: Nutrient recycling facilitates long-term stability of marine microbial
phototroph-heterotroph interactions, Nat. Microbiol., 2, 1–10,
https://doi.org/10.1038/nmicrobiol.2017.100, 2017.
Coble, P. G.: Characterization of marine and terrestrial DOM in the seawater
using exciting-emission matrix spectroscopy, Mar. Chem., 51, 325–346,
https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Cottrell, M. T. and Kirchman, D. L.: Natural Assemblages of Marine
Proteobacteria and Members of the Cytophaga-Flavobacter Cluster Consuming
Low- and High- Molecular-Weight Dissolved Organic Matter, Appl. Environ.
Microbiol., 66, 1692–1697, 2000.
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., and Smith, A.
G.: Algae acquire vitamin B12 through a symbiotic relationship with
bacteria, Nature, 438, 90–93, https://doi.org/10.1038/nature04056, 2005.
Ducklow, H. W. and Carlson, C. A.: Oceanic Bacterial Productivity, in
Advances in Microbial Ecology, Plenum Press, New York, NY, 1992.
Elovaara, S., Eronen-Rasimus, E., Asmala, E., Tamelander, T., and
Kaartokallio, H.: Phytoplankton and bacterial production, 14C-transfer and
optical characteristics of dissolved organic matter (DOM) from a microcosm
experiment, Gulf of Finland, Baltic Sea, PANGAEA,
https://doi.org/10.1594/PANGAEA.937723, 2021.
Elzenga, J. T. M., Prins, H. B. A., and Stefels, J.: The role of
extracellular carbonic anhydrase activity in inorganic carbon utilization of
Phaeocystis globosa ( Prymnesiophyceae ): A comparison with other marine
algae using the isotopic disequilibrium technique, Limnol. Oceanogr., 45,
372–380, 2000.
Emerson, S. R. and Hedges, J. I.: Chemical Oceanography and the Marine
Carbon Cycle, Campridge University Press, New York, NY, 2008.
Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E., and Zondervan, I.:
Polysaccharide aggregation as a potential sink of marine dissolved organic
carbon, Nature, 428, 929–932, https://doi.org/10.1038/nature02453, 2004.
Fernandes, T., Fernandes, I., Andrade, C. A. P., Ferreira, A., and Cordeiro,
N.: Marine microalgae monosaccharide fluctuations as a stress response to
nutrients inputs, Algal Res., 24, 340–346,
https://doi.org/10.1016/j.algal.2017.04.023, 2017.
Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., Bouvier, T., Bouvy, M.,
Got, P., Le Floc'h, E., Mostajir, B., Roques, C., Sempéré, R.,
Sime-Ngando, T., and Vidussi, F.: Bacterial carbon dependence on freshly
produced phytoplankton exudates under different nutrient availability and
grazing pressure conditions in coastal marine waters, FEMS Microbiol. Ecol.,
87, 757–769, https://doi.org/10.1111/1574-6941.12262, 2014.
Fox, B. G., Thorn, R. M. S., Anesio, A. M., and Reynolds, D. M.: The in situ
bacterial production of fluorescent organic matter; an investigation at a
species level, Water Res., 125, 350–359, https://doi.org/10.1016/j.watres.2017.08.040,
2017.
Fukuzaki, K., Imai, I., Fukushima, K., Ishii, K. I., Sawayama, S., and
Yoshioka, T.: Fluorescent characteristics of dissolved organic matter
produced by bloom-forming coastal phytoplankton, J. Plankton Res., 36,
685–694, https://doi.org/10.1093/plankt/fbu015, 2014.
Gargas, E.: A Manual for Phytoplankton Primary Production Studies in the
Baltic, Balt. Mar. Biol., 2, 1–88, 1975.
Gasol, J. M., Pinhassi, J., Alonso-Sáez, L., Ducklow, H., Herndl, G. J.,
Koblízek, M., Labrenz, M., Luo, Y., Morán, X. A. G., Reinthaler, T.,
and Simon, M.: Towards a better understanding of microbial carbon flux in
the sea, Aquat. Microb. Ecol., 53, 21–38, https://doi.org/10.3354/ame01230,
2008.
Goecke, F., Thiel, V., Wiese, J., Labes, A., and Imhoff, J. F.: Algae as an
important environment for bacteria – phylogenetic relationships among new
bacterial species isolated from algae, Phycologia, 52, 14–24,
2013.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis,
3rd Edn., Wiley-VCH, Weinheim, 1999.
Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W., and Brumer, H.:
Polysaccharide Utilization Loci: Fueling Microbial Communities, J.
Bacteriol., 199, 1–15, 2017.
Grossart, H., Levold, F., Allgaier, M., Simon, M., and Brinkhoff, T.: Marine
diatom species harbour distinct bacterial communities, Environ. Microbiol.,
7, 860–873, https://doi.org/10.1111/j.1462-2920.2005.00759.x, 2005.
Guillemette, F. and del Giorgio, P. A.: Simultaneous consumption and
production of fluorescent dissolved organic matter by lake bacterioplankton,
Environ. Microbiol., 14, 1432–1443,
https://doi.org/10.1111/j.1462-2920.2012.02728.x, 2012.
Hahn, M. W., Lünsdorf, H., Wu, Q., Schauer, M., Höfle, M. G.,
Boenigk, J., and Stadler, P.: Isolation of Novel Ultramicrobacteria
Classified as Actinobacteria from Five Freshwater Habitats in Europe and
Asia, Appl. Environ. Microbiol., 69, 1442–1451,
2003.
Hansell, D. A., Carlson, C. A., Repeta, D. J., and Schlitzer, R.: Dissolved
organic matter in the ocean: a controversy stimulates new insights,
Oceanography, 22, 202–211, 2009.
Haraguchi, L., Asmala, E., Jakobsen, H. H., and Carstensen, J.: Composition
of natural phytoplankton community has minor effects on autochthonous
dissolved organic matter characteristics, Mar. Biol. Res., 15, 357–375,
https://doi.org/10.1080/17451000.2019.1662449, 2019.
Hedges, J. I.: Global biogeochemical cycles: progress and problems, Mar.
Chem., 39, 67–93, 1992.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969,
https://doi.org/10.4319/lo.2009.54.3.1023, 2008.
Herlemann, D. P. R., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek,
J. J., and Andersson, A. F.: Transitions in bacterial communities along the
2000 km salinity gradient of the Baltic Sea, ISME J., 5, 1571–1579,
https://doi.org/10.1038/ismej.2011.41, 2011.
Herlemann, D. P. R., Manecki, M., Dittmar, T., and Jürgens, K.:
Differential responses of marine , mesohaline and oligohaline bacterial
communities to the addition of terrigenous carbon, Environ. Microbiol.,
19, 3098–3117, https://doi.org/10.1111/1462-2920.13784, 2017.
Holmfeldt, K., Dziallas, C., Titelman, J., Pohlmann, K., Grossart, H. P., and
Riemann, L.: Diversity and abundance of freshwater Actinobacteria along
environmental gradients in the brackish northern Baltic Sea, Environ.
Microbiol., 11, 2042–2054, https://doi.org/10.1111/j.1462-2920.2009.01925.x, 2009.
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and
Parlanti, E.: Properties of fluorescent dissolved organic matter in the
Gironde Estuary, Org. Geochem., 40, 706–719,
https://doi.org/10.1016/j.orggeochem.2009.03.002, 2009.
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm,
S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.:
Microbial production of recalcitrant dissolved organic matter: Long-term
carbon storage in the global ocean, Nat. Rev. Microbiol., 8, 593–599,
https://doi.org/10.1038/nrmicro2386, 2010.
Jørgensen, L., Stedmon, C. A., Kaartokallio, H., Middelboe, M., and
Thomas, D. N.: Changes in the composition and bioavailability of dissolved
organic matter during sea ice formation, Limnol. Oceanogr., 60, 817–830,
https://doi.org/10.1002/lno.10058, 2015.
Kawasaki, N. and Benner, R.: Bacterial release of dissolved organic matter
during cell growth and decline: Molecular origin and composition, Limnol.
Oceanogr., 51, 2170–2180, https://doi.org/10.4319/lo.2006.51.5.2170, 2006.
Kinsey, J. D., Corradino, G., Ziervogel, K., Schnetzer, A., and Osburn, C.
L.: Formation of Chromophoric Dissolved Organic Matter by Bacterial
Degradation of Phytoplankton-Derived Aggregates, Front. Mar. Sci.,
4, 1–16, https://doi.org/10.3389/fmars.2017.00430, 2018.
Klais, R., Tamminen, T., Kremp, A., Spilling, K., and Olli, K.: Decadal-scale
changes of Dinoflagellates and Diatoms in the Anomalous Baltic Sea spring
bloom, PLoS One, 6, e21567, https://doi.org/10.1371/journal.pone.0021567, 2011.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M.,
and Glöckner, F. O.: Evaluation of general 16S ribosomal RNA gene PCR
primers for classical and next-generation sequencing-based diversity
studies, Nucl. Acid. Res., 41, 1–11, https://doi.org/10.1093/nar/gks808, 2013.
Kremp, A. and Heiskanen, A. S.: Sexuality and cyst formation of the
spring-bloom dinoflagellate Scrippsiella hangoei in the coastal northern
Baltic Sea, Mar. Biol., 134, 771–777, https://doi.org/10.1007/s002270050594, 1999.
Kremp, A., Rengefors, K., and Montresor, M.: Species-specific encystment
patterns in three Baltic cold-water dinoflagellates: The role of multiple
cues in resting cyst formation, Limnol. Oceanogr., 54, 1125–1138,
https://doi.org/10.4319/lo.2009.54.4.1125, 2009.
Krohn-Molt, I., Alawi, M., Förstner, K. U., Wiegandt, A., Burkhardt, L.,
Indenbirken, D., Thieß, M., Grundhoff, A., Kehr, J., Tholey, A., and
Streit, W. R.: Insights into Microalga and bacteria interactions of selected
phycosphere biofilms using metagenomic, transcriptomic, and proteomic
approaches, Front. Microbiol., 8, 1–14, https://doi.org/10.3389/fmicb.2017.01941,
2017.
Kujawinski, E. B.: The Impact of Microbial Metabolism on Marine Dissolved
Organic Matter, Ann. Rev. Mar. Sci., 3, 567–599,
https://doi.org/10.1146/annurev-marine-120308-081003, 2011.
Kujawinski, E. B., Longnecker, K., Barott, K. L., Weber, R. J. M., and Kido
Soule, M. C.: Microbial community structure affects marine dissolved organic
matter composition, Front. Mar. Sci., 3, 1–15,
https://doi.org/10.3389/fmars.2016.00045, 2016.
Kuparinen, J.: Development of bacterioplankton during winter and early
spring at the entrance to the Gulf of Finland, Baltic Sea, Int. Vereinigung
für Theor. und Angew. Limnol. Verhandlungen, 23, 1869–1878, 1988.
Lauro, F. M., Mcdougald, D., Thomas, T., Williams, T. J., Egan, S., Rice,
S., Demaere, M. Z., Ting, L., Ertan, H., Johnson, J., Ferriera, S., Lapidus,
A., Anderson, I., Kyrpides, N., Munk, A. C., Detter, C., Han, C. S., Brown,
M. V, Robb, F. T., Kjelleberg, S., and Cavicchioli, R.: The genomic basis of
trophic strategy in marine bacteria, P. Natl. Acad. Sci. USA, 106,
15527–15533, 2009.
Li, W. K. W., Mclaughlin, F. A., Lovejoy, C., and Carmack, E. C.: Smallest
Algae Thrive As the Arctic Ocean Freshens, Science, 326, p. 539,
https://doi.org/10.1126/science.1179798, 2009.
Mari, X., Passow, U., Migon, C., Burd, A. B., and Legendre, L.: Transparent
exopolymer particles: Effects on carbon cycling in the ocean, Prog.
Oceanogr., 151, 13–37, https://doi.org/10.1016/j.pocean.2016.11.002, 2017.
Martin, M.: Cutadapt removes adapter sequences from high-throughput
sequencing reads, EMBnet Journal, 17, 10–12, 2011.
Massicotte, P.: eemR: Tools for Pre-Processing Emission-Excitation-Matrix
(EEM) Fluorescence Data, R package version 0.1.5.9000 [code], available at:
https://github.com/PMassicotte/eemR (last access: 24 May 2019), 2016.
Mcknight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T.,
and Andersen, D. T.: Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and aromaticity, Limnol. Oceanogr., 46, 38–48, 2001.
McMurdie, P. J. and Holmes, S.: phyloseq: An R Package for Reproducible
Interactive Analysis and Graphics of Microbiome Census Data [code], PLoS One, 8,
e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Moneta, A., Veuger, B., van Rijswijk, P., Meysman, F., Soetaert, K., and
Middelburg, J. J.: Dissolved inorganic and organic nitrogen uptake in the
coastal North Sea: A seasonal study, Estuar. Coast. Shelf Sci., 147,
78–86, https://doi.org/10.1016/j.ecss.2014.05.022, 2014.
Mönnich, J., Tebben, J., Bergemann, J., Case, R., Wolhlrab, S., and
Harder, T.: Niche-based assembly of bacterial consortia on the diatom
Thalassiosira rotula is stable and reproducible, ISME J., 14, 1614–1625,
https://doi.org/10.1038/s41396-020-0631-5, 2020.
Morris, R. M., Rappé, M. S., Connon, S. A., Vergin, K. L., Siebold, W.
A., Carlson, C. A., and Giovannoni, S. J.: SAR11 clade dominates ocean
surface bacterioplankton communities, Nature, 420, 806–810,
https://doi.org/10.1038/nature01281.1., 2002.
Mühlenbruch, M., Grossart, H. P., Eigemann, F., and Voss, M.:
Mini-review: Phytoplankton-derived polysaccharides in the marine environment
and their interactions with heterotrophic bacteria, Environ. Microbiol.,
20, 2671–2685, https://doi.org/10.1111/1462-2920.14302, 2018.
Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J.
R., and Aiken, G. R.: Measurement of dissolved organic matter fluorescence in
aquatic environments: An interlaboratory comparison, Environ. Sci. Technol.,
44, 9405–9412, https://doi.org/10.1021/es102362t, 2010.
Nieto-Cid, M., Álvarez-Salgado, X. A., and Pérez, F. F.: Microbial
and photochemical reactivity of fluorescent dissolved organic matter in a
coastal upwelling system, Limnol. Oceanogr., 51, 1391–1400, 2006.
Nimer, N. A., Iglesias-rodriguez, M. D., and Merrett, M. J.: Bicarbonate
utilization by marine phytoplankton species, J. Phycol., 631, 625–631,
1997.
Norland, S.: The Relationship Between Biomass and Volume of Bacteria, in
Handbook of Methods in Aquatic Microbial Ecology, Routledge, 303–306,
1993.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology
Package, R package version 2.5-5 [code], available at:
https://CRAN.R-project.org/package=vegan (last access: 23 April 2020), 2019.
Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S.,
Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen,
P., Ledaine, I., and Niemkiewicz, E.: Biovolumes and Size-Classes of
Phytoplankton in the Baltic Sea, HELCOM Balt, Sea Environ. Proc., 106, 1–144, 2006.
Orellana, M. V, Pang, W. L., Durand, P. M., Whitehead, K., and Baliga, N. S.:
A Role for Programmed Cell Death in the Microbial Loop, PLoS One, 8,
e62595, https://doi.org/10.1371/journal.pone.0062595, 2013.
Pedler, B. E., Aluwihare, L. I., and Azam, F.: Single bacterial strain
capable of significant contribution to carbon cycling in the surface ocean,
P. Natl. Acad. Sci. USA, 111, 7202–7207, https://doi.org/10.1073/pnas.1401887111,
2014.
Pérez, M. T. and Sommaruga, R.: Differential effect of algal- and
soil-derived dissolved organic matter on alpine lake bacterial community
composition and activity, Limnol. Oceanogr., 51, 2527–2537,
https://doi.org/10.4319/lo.2006.51.6.2527, 2006.
Peters, G.: userfriendlyscience: Quantitative analysis made
accessible, R package version 0.7.2 [code], https://doi.org/10.17605/osf.io/txequ,
2018.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: improved data processing and web-based tools [data set], Nucl. Acid. Res.,
41, 590–596, https://doi.org/10.1093/nar/gks1219, 2013.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing [code], Vienna, Austria, available at:
https://www.R-project.org/ (last access: 1 March 2020), 2019.
Riemann, B., Bjørnsen, P. K., Newell, S., and Fallon, R.: Calculation of
cell production of coastal marine bacteria based on measured incorporation
of [3H]thymidine, Limnol. Oceanogr., 32, 471–476,
https://doi.org/10.4319/lo.1987.32.2.0471, 1987.
Riemann, L., Leitet, C., Pommier, T., Simu, K., Holmfeldt, K., Larsson, U.,
and Hagstro, Å.: The Native Bacterioplankton Community in the Central
Baltic Sea Is Influenced by Freshwater Bacterial Species?, Appl. Environ. Microbiol.,
74, 503–515, https://doi.org/10.1128/AEM.01983-07, 2008.
Rintala, J. M., Spilling, K., and Blomster, J.: Temporary cyst enables
long-term dark survival of Scrippsiella hangoei (Dinophyceae), Mar. Biol.,
152, 57–62, https://doi.org/10.1007/s00227-007-0652-x, 2007.
Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M.,
and Marrase, C.: Production of chromophoric dissolved organic matter by
marine phytoplankton, Limnol. Oceanogr., 55, 446–454, 2010.
Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M.,
and Marrase, C.: Net Production and Consumption of Fluorescent Colored
Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine
Phytoplankton Exudates, Appl. Environ. Microbiol., 77, 7490–7498,
https://doi.org/10.1128/AEM.00200-11, 2011.
Saad, E. M., Longo, A. F., Chambers, L. R., Huang, R., Benitez-Nelson, C.,
Dyhrman, S. T., Diaz, J. M., Tang, Y., and Ingall, E. D.: Understanding
marine dissolved organic matter production: Compositional insights from
axenic cultures of Thalassiosira pseudonana, Limnol. Oceanogr., 61,
2222–2233, https://doi.org/10.1002/lno.10367, 2016.
Sapp, M., Schwaderer, A. S., Wiltshire, K. H., Hoppe, H.-G., Gerdts, G., and
Wichels, A.: Species-specific bacterial communities in the phycosphere of
microalgae?, Microb. Ecol., 53, 683–699, https://doi.org/10.1007/s00248-006-9162-5,
2007.
Sarmento, H. and Gasol, J. M.: Use of phytoplankton-derived dissolved
organic carbon by different types of bacterioplankton, Environ. Microbiol.,
14, 2348–2360, https://doi.org/10.1111/j.1462-2920.2012.02787.x, 2012.
Sarmento, H., Romera-Castillo, C., Lindh, M., Pinhassi, J., Sala, M. M.,
Gasol, J. M., Marrasé, C., and Taylor, G. T.: Phytoplankton
species-specific release of dissolved free amino acids and their selective
consumption by bacteria, Limnol. Oceanogr., 58, 1123–1135,
https://doi.org/10.4319/lo.2013.58.3.1123, 2013.
Schäfer, H., Abbas, B., Witte, H., and Muyzer, G.: Genetic diversity of
“satellite” bacteria present in cultures of marine diatoms, FEMS
Microbiol. Ecol., 42, 25–35, https://doi.org/10.1016/S0168-6496(02)00298-2, 2002.
Seymour, J. R., Amin, S. A., Raina, J. B., and Stocker, R.: Zooming in on the
phycosphere: The ecological interface for phytoplankton-bacteria
relationships, Nat. Microbiol., 2, 1–12,
https://doi.org/10.1038/nmicrobiol.2017.65, 2017.
Smith, D. C. and Azam, F.: A simple, economical method for measuring
bacterial protein synthesis rates in seawater using 3H-leucine, Mar. Microb.
Food Webs, 6, 107–114, 1992.
Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander,
T., Klais, R., Peltonen, H., and Tamminen, T.: Shifting
Diatom – Dinoflagellate Dominance During Spring Bloom in the Baltic Sea and
its Potential Effects on Biogeochemical Cycling, Front. Mar. Sci., 5, 327,
https://doi.org/10.3389/fmars.2018.00327, 2018.
Spilling, K., Fuentes-Lema, A., Quemaliños, D., Klais, R., and Sobrino,
C.: Primary production, carbon release, and respiration during spring bloom
in the Baltic Sea, Limnol. Oceanogr., 64, 1779–1789,
https://doi.org/10.1002/lno.11150, 2019.
Stedmon, C. A. and Markager, S.: Tracing the production and degradation of
autochthonous fractions of dissolved organic matter by fluorescence
analysis, Limnol. Oceanogr., 50, 1415–1426, 2005.
Storch, T. A. and Saunders, G. W.: Phytoplankton extracellular release and
its relation to the seasonal cycle of dissolved organic carbon in a
eutrophic lake, Limnol. Oceanogr., 23, 112–119,
https://doi.org/10.4319/lo.1978.23.1.0112, 1978.
Strom, S. L., Benner, R., Ziegler, S., and Dagg, M. J.: Planktonic grazers
are a potentially important source of marine dissolved organic carbon,
Limnol. Oceanogr., 42, 1364–1374, https://doi.org/10.4319/lo.1997.42.6.1364, 1997.
Suikkanen, S., Hakanen, P., Spilling, K., and Kremp, A.: Allelopathic effects
of Baltic Sea spring bloom dinoflagellates on co-occurring phytoplankton,
Mar. Ecol. Prog. Ser., 439, 45–55, https://doi.org/10.3354/meps09356, 2011.
Suksomjit, M., Nagao, S., Ichimi, K., Yamada, T., and Tada, K.: Variation of
dissolved organic matter and fluorescence characteristics before, during and
after phytoplankton bloom, J. Oceanogr., 65, 835–846,
https://doi.org/10.1007/s10872-009-0069-x, 2009.
Tada, Y., Nakaya, R., Goto, S., Yamashita, Y., and Suzuki, K.: Distinct
bacterial community and diversity shifts after phytoplankton-derived
dissolved organic matter addition in a coastal environment, J. Exp. Mar.
Bio. Ecol., 495, 119–128, https://doi.org/10.1016/j.jembe.2017.06.006,
2017.
Taylor, F. J. R. and Pollingher, U.: Ecology of Dinoflagellates, in: Biology
of Dinoflagellates, Blackwell Scientific Publications, Oxford, 1987.
Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke,
C. M., Kassabgy, M., Huang, S., Mann, A. J., Waldmann, J., Weber, M.,
Klindworth, A., Otto, A., Lange, J., Bernhardt, J., Reinsch, C., Hecker, M.,
Peplies, J., Bockelmann, F. D., Callies, U., Gerdts, G., Wichels, A.,
Wiltshire, K. H., Glöckner, F. O., Schweder, T., and Amann, R.:
Substrate-controlled succession of marine bacterioplankton populations
induced by a phytoplankton bloom, Science, 336, 608–611,
https://doi.org/10.1126/science.1218344, 2012.
Thornton, D. C. O.: Dissolved organic matter (DOM) release by phytoplankton
in the contemporary and future ocean, Eur. J. Phycol., 49, 20–46,
https://doi.org/10.1080/09670262.2013.875596, 2014.
Urbani, R., Magaletti, E., Sist, P., and Cicero, A. M.: Extracellular
carbohydrates released by the marine diatoms Cylindrotheca closterium,
Thalassiosira pseudonana and Skeletonema costatum: Effect of P-depletion and
growth status, Sci. Total Environ., 353, 300–306,
https://doi.org/10.1016/j.scitotenv.2005.09.026, 2005.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of specific ultraviolet absorbance as an
indicator of the chemical composition and reactivity of dissolved organic
carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, 2016.
Yamashita, Y. and Tanoue, E.: Chemical characteristics of amino
acid-containing dissolved organic matter in seawater, Org. Geochem., 35,
679–692, https://doi.org/10.1016/j.orggeochem.2004.02.007, 2004a.
Yamashita, Y. and Tanoue, E.: In situ production of chromophoric dissolved
organic matter in coastal environments, Geophys. Res. Lett., 31, 1–5,
https://doi.org/10.1029/2004GL019734, 2004b.
Yamashita, Y., Hashihama, F., Saito, H., Fukuda, H., and Ogawa, H.: Factors
controlling the geographical distribution of fluorescent dissolved organic
matter in the surface waters of the Pacific Ocean, Limnol. Oceanogr., 62,
2360–2374, https://doi.org/10.1002/lno.10570, 2017.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F.:
Differentiating with fluorescence spectroscopy the sources of dissolved
organic matter in soils subjected to drying, Chemosphere, 38, 45–50,
https://doi.org/10.1016/S0045-6535(98)00166-0, 1999.
Short summary
Dissolved organic matter (DOM) is a significant carbon pool in the marine environment. The composition of the DOM pool, as well as its interaction with microbes, is complex, yet understanding it is important for understanding global carbon cycling. This study shows that two phytoplankton species have different effects on the composition of the DOM pool and, through the DOM they produce, on the ensuing microbial community. These communities in turn have different effects on DOM composition.
Dissolved organic matter (DOM) is a significant carbon pool in the marine environment. The...
Altmetrics
Final-revised paper
Preprint