Articles | Volume 19, issue 4
https://doi.org/10.5194/bg-19-1047-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1047-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Growth rate rather than temperature affects the B∕Ca ratio in the calcareous red alga Lithothamnion corallioides
Giulia Piazza
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, University of
Milano–Bicocca, CoNISMa
Research Unit of Milano–Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Department of Earth and Ocean Dynamics, University of Barcelona,
Martí i Franquès s/n, 08028 Barcelona, Spain
Valentina A. Bracchi
Department of Earth and Environmental Sciences, University of
Milano–Bicocca, CoNISMa
Research Unit of Milano–Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Antonio Langone
CNR – Institute of Geosciences and Earth Resources, Via Ferrata 1,
27100 Pavia, Italy
Agostino N. Meroni
Department of Civil and Environmental Engineering, Politecnico of
Milan, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
Daniela Basso
Department of Earth and Environmental Sciences, University of
Milano–Bicocca, CoNISMa
Research Unit of Milano–Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Related authors
Valentina Alice Bracchi, Giulia Piazza, and Daniela Basso
Biogeosciences, 18, 6061–6076, https://doi.org/10.5194/bg-18-6061-2021, https://doi.org/10.5194/bg-18-6061-2021, 2021
Short summary
Short summary
Ultrastructures of Lithothamnion corallioides, a crustose coralline alga collected from the Atlantic and Mediterranean Sea at different depths, show high-Mg-calcite cell walls formed by crystals with a specific shape and orientation that are unaffected by different environmental conditions of the living sites. This suggests that the biomineralization process is biologically controlled in coralline algae and can have interesting applications in paleontology.
Giuseppe Maruca, Mara Cipriani, Rocco Dominici, Gianpietro Imbrogno, Giovanni Vespasiano, Carmine Apollaro, Francesco Perri, Fabio Bruno, Antonio Lagudi, Umberto Severino, Valentina A. Bracchi, Daniela Basso, Emilio Cellini, Fabrizio Mauri, Antonietta Rosso, Rossana Sanfilippo, and Adriano Guido
EGUsphere, https://doi.org/10.5194/egusphere-2025-1547, https://doi.org/10.5194/egusphere-2025-1547, 2025
Short summary
Short summary
This study shows a new method for mapping coralligenous bioconstructions using high-resolution acoustic data. The protocol integrates bathymetry, backscatter, and geomorphological indices, providing detailed information on the spatial and volumetric distribution of benthic habitats. This approach offers valuable insights for monitoring and conserving Mediterranean ecosystems, with potential applications in understanding habitat structure and guiding future conservation actions.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022, https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary
Short summary
Amphibole–liquid partitioning of elements of geological relevance is experimentally derived at conditions compatible with those of the Earth's upper mantle. Experiments are carried out at different oxygen fugacity conditions and variable Cl content in order to investigate their influence on the amphibole–liquid partition coefficients. Our results point to the capability of amphibole to act as filter for trace elements at upper-mantle conditions, oxidized conditions, and Cl-rich environments.
Valentina Alice Bracchi, Giulia Piazza, and Daniela Basso
Biogeosciences, 18, 6061–6076, https://doi.org/10.5194/bg-18-6061-2021, https://doi.org/10.5194/bg-18-6061-2021, 2021
Short summary
Short summary
Ultrastructures of Lithothamnion corallioides, a crustose coralline alga collected from the Atlantic and Mediterranean Sea at different depths, show high-Mg-calcite cell walls formed by crystals with a specific shape and orientation that are unaffected by different environmental conditions of the living sites. This suggests that the biomineralization process is biologically controlled in coralline algae and can have interesting applications in paleontology.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
M. E. Molinari, M. Manzoni, N. Petrushevsky, A. M. Guarnieri, G. Venuti, A. N. Meroni, A. Mascitelli, and A. Parodi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 405–410, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-405-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-405-2021, 2021
Cited articles
Adey, W. H.: The genus Clathromorphum (Corallinaceae) in the Gulf of Maine, Hydrobiologia,
26, 539–573, https://doi.org/10.1007/BF00045545, 1965.
Adey, W. H. and McKibbin, D.: Studies on the maerl species Phymatolithon calcareum (Pallas) nov.
comb. and Lithothamnion coralloides Crouan in the Ria de Vigo, Bot. Mar., 13, 100–106,
https://doi.org/10.1515/botm.1970.13.2.100, 1970.
Allen, K. A., Hönisch, B., Eggins, S. M., and Rosenthal, Y.:
Environmental controls on in calcite tests of the tropical planktic
foraminifer species Globigerinoides ruber and Globigerinoides sacculifer, Earth Planet. Sc. Lett., 351, 270–280,
https://doi.org/10.1016/j.epsl.2012.07.004, 2012.
Anagnostou, E., Williams, B., Westfield, I., Foster, G. L., and Ries, J. B.:
Calibration of the pH-δ11B and temperature- proxies in the
long-lived high-latitude crustose coralline red alga Clathromorphum compactum via controlled
laboratory experiments, Geochim. Cosmochim. Ac., 254, 142–155,
https://doi.org/10.1016/j.gca.2019.03.015, 2019.
Andersson, A. J. and Mackenzie, F. T.: Technical comment on Kroeker et al. (2010) Meta-analysis reveals negative yet variable effects of ocean
acidification on marine organisms, Ecol. Lett., 13, 1419–1434,
https://doi.org/10.1111/j.1461-0248.2011.01646.x, 2011.
Andersson, A. J., Mackenzie, F. T., and Bates, N. R.: Life on the margin:
implications on Mgcalcite, high latitude and cool-water marine calcifiers,
Mar. Ecol. Prog. Ser., 373, 265–273, https://doi.org/10.3354/meps07639, 2008.
Barker, S., Cacho, I., Benway, H., and Tachikawa, K.: Planktonic
foraminiferal as a proxy for past oceanic temperatures: a
methodological overview and data compilation for the Last Glacial Maximum,
Quat. Sci. Rev., 24, 821–834, https://doi.org/10.1016/j.quascirev.2004.07.016, 2005.
Basso, D.: Study of living calcareous algae by a paleontological approach:
the non-geniculate Corallinaceae (Rhodophyta) of the soft bottoms of the
Tyrrhenian Sea (western Mediterranean). The genera Phymatolithon Foslie and Mesophyllum Lemoine,
Riv. Ital. Paleontol. S., 100, 575–596, https://doi.org/10.13130/2039-4942/8602, 1995a.
Basso, D.: Living calcareous algae by a paleontological approach: the genus
Lithothamnion Heydrich nom. cons. from the soft bottoms of the Tyrrhenian Sea
(Mediterranean), Riv. Ital. Paleontol. S., 101, 349–366,
https://doi.org/10.13130/2039-4942/8592, 1995b.
Basso, D.: Carbonate production by calcareous red algae and global change,
Geodiversitas, 34, 13–33, https://doi.org/10.5252/g2012n1a2, 2012.
Basso, D. and Brusoni, F.: The molluscan assemblage of a transitional
environment: the Mediterranean maerl from off the Elba Island (Tuscan
Archipelago, Tyrrhenian Sea), Boll. Malacol., 40, 37–45, 2004.
Basso, D., Babbini, L., Kaleb, S., Bracchi, V. A., and Falace, A.: Monitoring
deep Mediterranean rhodolith beds, Aquat. Conserv., 26, 549–561,
https://doi.org/10.1002/aqc.2586, 2016.
Basso, D., Babbini, L., Ramos-Esplá, A. A., and Salomidi, M.:
Mediterranean rhodolith beds, in: Rhodolith/maërl beds: A global
perspective, edited by: Riosmena-Rodrìguez, R., Wendy Nelson, W., and
Aguirre, J., Springer, Cambridge, 281–298,
https://doi.org/10.1007/978-3-319-29315-8_ 11, 2017.
Berner, R. A.: The role of magnesium in the crystal growth of calcite and
aragonite from sea water, Geochim. Cosmochim. Ac., 39, 489–504,
https://doi.org/10.1016/0016-7037(75)90102-7, 1975.
Bracchi, V. A., Piazza, G., and Basso, D.: A stable ultrastructural pattern despite variable cell size in Lithothamnion corallioides, Biogeosciences, 18, 6061–6076, https://doi.org/10.5194/bg-18-6061-2021, 2021.
Brewer, P. G.: Ocean chemistry of the fossil fuel signal: The haline
signature of “Business as Usual”, Geophys. Res. Lett., 24, 1367–1369,
1997.
Cabioch, J.: Contribution à I'étude morphologique, anatomique et
systématique de deux Mélobésiées: Lithothamnium calcareum (Pallas) Areschoug et
Lithothamnium corallioides Crouan, Bot. Mar., 9, 33–53, 1966.
Caldeira, K., Akai, M., Brewer, P., Chen, B., Haugan, P., Iwama, T.,
Johnston, P., Kheshgi, H., Li, Q., Ohsumi, T., Poertner, H., Sabine, C.,
Shirayama, Y., and Thomson, J.: Ocean Storage, in: Carbon Dioxide Capture
and Storage: A Special Report of IPCC Working Group III, Cambridge
University Press, Cambridge UK, ISBN 10-0-521-68551-6, 2005.
Callendar, G. S.: The artificial production of carbon dioxide and its
influence on temperature, Q. J. Roy. Meteor. Soc., 64, 223–240,
1938.
Caragnano, A., Basso, D., Jacob, D. E., Storz, D., Rodondi, G., Benzoni, F.,
and Dutrieux, E.: Coralline red alga Lithophyllum kotschyanum f. affine as proxy of climate
variability in the Yemen coast, Gulf of Aden (NW Indian Ocean), Geochim. Cosmochim. Ac., 124, 1–17, https://doi.org/10.1016/j.gca.2013.09.021, 2014.
Caragnano, A., Basso, D., Storz, D., Jacob, D. E., Ragazzola, F., Benzoni,
F., and Dutrieux, E.: Elemental variability in the coralline alga
Lithophyllum yemenense as an archive of past climate in the Gulf of Aden (NW Indian Ocean), J.
Phycol., 53, 381–395, https://doi.org/10.1111/jpy.12509, 2017.
Carro, B., Lopez, L., Peña, V., Bárbara, I., and Barreiro, R.: DNA
barcoding allows the accurate assessment of European maerl diversity: a
proof-of-concept study, Phytotaxa, 190, 176–189,
https://doi.org/10.11646/phytotaxa.190.1.12, 2014.
Chan, P., Halfar, J., Adey, W., Hetzinger, S., Zack, T., Moore, G. W. K.,
Wortmann, U. G., Williams, B., and Hou, A.: Multicentennial record of
Labrador Sea primary productivity and sea-ice variability archived in
coralline algal barium, Nat. Commun., 8, 15543, https://doi.org/10.1038/ncomms15543,
2017.
Chave, K. E.: Aspects of the biogeochemistry of magnesium 1. Calcareous
marine organisms, J. Geol., 62, 266–283, 1954.
Copernicus Marine Environmental Monitoring Service: Atlantic-Iberian Biscay Irish-Ocean BioGeoChemistry NON ASSIMILATIVE Hindcast, CMEMS [data set], https://doi.org/10.48670/moi-00028, 2020.
Cornwall, C. E., Hepburn, C. D., McGraw, C. M., Currie, K. I., Pilditch, C. A.,
Hunter, K. A., Boyd, P. W., and Hurd, C. L.: Diurnal fluctuations in seawater pH
influence the response of a calcifying macroalga to ocean acidification,
P. Roy. Soc. B-Bio., 280, 20132201, https://doi.org/10.1098/rspb.2013.2201, 2013.
Cornwall, C. E., Comeau, S., and Mcculloch, M. T.: Coralline algae elevate pH
at the site of calcification under ocean acidification, Glob. Change Biol.,
23, 1–12, https://doi.org/10.1111/gcb.13673, 2017.
Cornwall, C. E., Comeau, S., DeCarlo, T. M., Moore, B., D'Alexis, Q., and
McCulloch, M. T.: Resistance of corals and coralline algae to ocean
acidification: physiological control of calcification under natural pH
variability, P. Roy. Soc. B-Bio., 286, 20181168, https://doi.org/10.1098/rspb.2018.1168,
2018.
Corrège, T.: Sea surface temperature and salinity reconstruction from
coral geochemical tracers, Palaeogeogr. Palaeocl., 232,
408–428, https://doi.org/10.1016/j.palaeo.2005.10.014, 2006.
Comeau, S., Cornwall, C. E., and McCulloch, M. T.: Decoupling between the
response of coral calcifying fluid pH and calcification under ocean
acidification, Sci. Rep., 7, 7573, https://doi.org/10.1038/s41598-017-08003-z, 2017.
Cuny-Guirriec, K., Douville, E., Reynaud, S., Allemand, D., Bordier, L.,
Canesi, M., Mazzoli, C., Taviani, M., Canese, S., McCulloch, M., Trotter,
J., Rico-Esenaro, S. D., Sanchez-Cabeza, J.-A., Ruiz-Fernàndez, A. C.,
Carricart-Ganivet, J. P., Scott, P. M., Sadekov, A., and Montagna, P.: Coral
Li/Mg thermometry: Caveats and constraints, Chem. Geol., 523, 162–178,
https://doi.org/10.1016/j.chemgeo.2019.03.038, 2019.
Darrenougue, N., De Deckker, P, Eggins, S., and Payri, C.: Sea-surface
temperature reconstruction from trace elements variations of tropical
coralline red algae, Quat. Sci. Rev., 93, 34–46,
https://doi.org/10.1016/j.quascirev.2014.03.005, 2014.
DeCarlo, T. M., Holcomb, M., and McCulloch, M. T.: Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification, Biogeosciences, 15, 2819–2834, https://doi.org/10.5194/bg-15-2819-2018, 2018.
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic
seawater from 273.15 to 318.15 K, Deep-Sea Res., 37, 755–766,
https://doi.org/10.1016/0198-0149(90)90004-F, 1990.
D'Olivo, J. P., Sinclair, D. J., Rankenburg, K., and McCulloch, M. T.: A
universal multi-trace element calibration for reconstructing sea surface
temperatures from long-lived Porites corals: removing “vital-effects”, Geochim.
Cosmochim. Ac., 239, 109–135, https://doi.org/10.1016/j.gca.2018.07.035, 2018.
Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E., and Foster, G. L.:
Boron isotope sensitivity to seawater pH change in a species of
Neogoniolithon coralline red alga, Geochim. Cosmochim. Ac., 217, 240–253,
https://doi.org/10.1016/j.gca.2017.08.021, 2017.
Douville, E., Paterne, M., Cabioch, G., Louvat, P., Gaillardet, J., Juillet-Leclerc, A., and Ayliffe, L.: Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites), Biogeosciences, 7, 2445–2459, https://doi.org/10.5194/bg-7-2445-2010, 2010.
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A.,
Ramajo, L., Jacob Carstensen, J., Trotter, J. A., and McCulloch, M.: Is ocean
acidification an open-ocean syndrome?, Understanding anthropogenic impacts on
seawater pH, Estuar. Coast., 36, 221–236, 2013.
Dueñas-Bohórquez, A., Raitzsch, M., Nooijer, L. J., and Reichart,
G.-J.: Independent impacts of calcium and carbonate ion concentration on Mg
and Sr incorporation in cultured benthic foraminifera, Mar. Micropaleontol.,
81, 122–130, https://doi.org/10.1016/j.marmicro.2011.08.002, 2011.
Fairhall, A. W.: Accumulation of fossil CO2 in the atmosphere and the sea,
Nature, 245, 20–23, 1973.
Fietzke, J., Heinemann, A., Taubner, I., Böhm, F., Erez, J., and Eisenhauer,
A.: Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using
soda-lime glass standards as reference material, J. Anal. At. Spectrom., 25,
1953–1957, https://doi.org/10.1039/C0JA00036A, 2010.
Fietzke, J., Ragazzola, F., Halfar, J., Dietze, H., Foster, L. C., Hansteen,
T. H., Eisenhauer, A., and Steneck, R. S.: Century-scale trends and
seasonality in pH and temperature for shallow zones of the Bering Sea, P. Natl. Acad. Sci. USA, 112, 2960–2965, https://doi.org/10.1073/pnas.1419216112, 2015.
Foster, G. L.: Seawater pH, pCO2 and [CO ] variations in
the Caribbean Sea over the last 130 kyr: a boron isotope and study of
planktic foraminifera, Earth Planet. Sc. Lett., 271, 254–266,
https://doi.org/10.1016/j.epsl.2008.04.015, 2008.
Foster, M. S.: Rhodoliths: between rocks and soft places, J. Phycol., 37,
659–667, https://doi.org/10.1046/j.1529-8817.2001.00195.x, 2001.
Fowell, S. E., Sandford, K., Stewart, J. A., Castillo, K. D., Ries, J. B., and
Foster, G. L.: Intrareef variations in Li/Mg and sea surface
temperature proxies in the Caribbean reef-building coral Siderastrea sidereal, Paleoceanography,
31, 1315–1329, https://doi.org/10.1002/2016PA002968, 2016.
Frantz, B. R., Foster, M. S., and Riosmena-Rodríguez, R.: Clathromorphum nereostratum (Corallinales,
Rhodophyta): The oldest alga?, J. Phycology, 41, 770–773,
https://doi.org/10.1111/j.1529-8817.2005.00107.x, 2005.
Freiwald, A. and Henrich, R.: Reefal coralline algal build-ups within the
Arctic Circle: morphology and sedimentary dynamics under extreme
environmental seasonality, Sedimentology, 41, 963–984,
https://doi.org/10.1111/j.1365-3091.1994.tb01435.x, 1994.
Gabitov, R. I., Rollion-Bard, C., Tripati, A., and Sadekov, A.: In situ study
of boron partitioning between calcite and fluid at different crystal growth
rates, Geochim. Cosmochim. Ac., 137, 81–92, https://doi.org/10.1016/j.gca.2014.04.014,
2014.
Gagnon, A. C., Gothmann, A. M., Branson, O., Rae, J. W. B., and Stewart, J.
A.: Controls on boron isotopes in a cold-water coral and the cost of
resilience to ocean acidification, Earth Planet. Sc. Lett., 554, 116662,
https://doi.org/10.1016/j.epsl.2020.116662, 2021.
Gattuso, J.-P., Frankignoulle, M., and Smith, S. V.: Measurement of
community metabolism and significance in the coral reef CO2 source-sink
debate, P. Natl. Acad. Sci. USA, 96, 13017–13022, 1999.
Gussone, N., Böhm, F., Eisenhauer, A., Dietzel, M., Heuser, A.,
Teichert, B. M. A., Reitner, J., Wörheide, G., and Dullo, W.-C.: Calcium
isotope fractionation in calcite and aragonite, Geochim. Cosmochim. Ac.,
69, 4485–4494, https://doi.org/10.1016/j.gca.2005.06.003, 2005.
Halfar, J., Zack, T., Kronz, A., and Zachos, J. C.: Growth and
high-resolution paleoenvironmental signals of rhodoliths (coralline red
algae): A new biogenic archive, J. Phys. Res., 105, 22107–22116, https://doi.org/10.1029/1999JC000128, 2000.
Halfar, J., Steneck, R. S., Joachimski, M., Kronz, A., and Wanamaker, A. D.
Jr.: Coralline red algae as high-resolution climate recorders, Geology, 36,
463–466, https://doi.org/10.1130/G24635A.1, 2008.
Halfar, J., Williams, B., Hetzinger, S., Steneck, R. S., Lebednik, P.,
Winsborough, C., Omar, A., Chan, P., and Wanamaker, A. D.: 225 years of Bering
Sea climate and ecosystem dynamics revealed by coralline algal
growth-increment widths, Geology, 39, 579–582, https://doi.org/10.1130/g31996.1,
2011.
Hall-Spencer, J. M., Kelly, J., and Maggs, C. A.: Background document for
maërl beds, in: OSPAR Commission Biodiversity Series, OSPAR Commission,
London, ISBN 978-1-907390-32-6, 2010.
Hemming, N. G. and Hanson, G. N.: Boron isotopic composition and
concentration in modern marine carbonates, Geochim. Cosmochim. Ac., 56,
537–543, https://doi.org/10.1016/0016-7037(92)90151-8, 1992.
Hemming, N. G. and Hönisch, B.: Boron isotopes in marine carbonate
sediments and the pH of the ocean, in: Proxies in Late Cenozoic
Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A.,
Elsevier, 717–734, 2007.
Henehan, M. J., Rae, J. W. B., Foster, G. L., Erez, J., Prentice, K. C.,
Kucera, M., Bostock, H. C., Martınez-Boti, M. A., Milton, J. A., Wilson,
P. A., Marshall, B. J., and Elliott, T.: Calibration of the boron isotope
proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2
reconstruction, Earth Planet. Sc. Lett., 364, 111–122,
https://doi.org/10.1016/j.epsl.2012.12.029, 2013.
Henehan, M. J., Foster, G. L., Rae, J. W. B., Prentice, K. C., Erez, J., Bostock,
H. C., Marshall, B. J., and Wilson, P. A.: Evaluating the utility of
ratios in planktic foraminifera as a proxy for the carbonate system: a case
study of Globigerinoides ruber: investigating controls on G. ruber , Geochem. Geophys., 16,
1052–1069, https://doi.org/10.1002/2014GC005514, 2015.
Hetzinger, S., Halfar, J., Kronz, A., Steneck, R., Adey, W. H., Philipp, A.
L., and Schöne, B.: High-resolution ratios in a coralline red alga
as a proxy for Bering Sea temperature variations from 1902–1967, Palaois,
24, 406–412, https://doi.org/10.2110/palo.2008.p08-116r, 2009.
Hetzinger, S., Halfar, J., Zack, T., Gamboa, G., Jacob, D. E., Kunz, B. E.,
Kronz, A., Adey, W., Lebednik, P. A., and Steneck, R. S.: High-resolution
analysis of trace elements in crustose coralline algae from the North
Atlantic and North Pacific by laser ablation ICP-MS, Palaeogeogr.
Palaeocl., 302 , 81–94,
https://doi.org/10.1016/j.palaeo.2010.06.004, 2011.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield,
P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K.,
Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.
H., Dubi, A., and Hatziolos, M. E.: Coral reefs under rapid climate change
and ocean acidification, Science, 318, 1737–1742,
https://doi.org/10.1126/science.1152509, 2007.
Holcomb, M., DeCarlo, T. M., Gaetani, G. A., and McCulloch, M.: Factors
affecting ratios in synthetic aragonite, Chem. Geol., 437, 67–76,
https://doi.org/10.1016/j.chemgeo.2016.05.007, 2016.
Hönisch, B. and Hemming, N. G.: Surface ocean pH response to variations
in pCO2 through two full glacial cycles, Earth Planet. Sc. Lett., 236,
305–314, https://doi.org/10.1016/j.epsl.2005.04.027, 2005.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto Jr., T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B.:
The geological record of ocean acidification, Science, 335,
1058–1063, https://doi.org/10.1126/science.1208277, 2012.
Irvine, L. M. and Chamberlain,
Y. M. (Eds.): Volume 1 Rhodophyta Part 2B. Corallinales, Hildenbrandiales,
Natural History Museum, London, ISBN 0-11-310016-7, 1994.
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, G. P., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., A. Frieder, C. A., Yu, P. C., and Martz T. R.: High-frequency dynamics of ocean pH: a multi-ecosystem comparison, PLoS ONE, 6, e28983, https://doi.org/10.1371/journal.pone.0028983, 2011.
Hou, A., Halfar, J., Adey, W., Wortmann, U. G., Zajacz, Z., Tsay, A.,
Williams, B., and Chan, P.: Long-lived coralline alga records multidecadal
variability in Labrador Sea carbon isotopes, Chem. Geol., 526, 93–100,
https://doi.org/10.1016/j.chemgeo.2018.02.026, 2018.
Jochum, K. P., Scholz, D., Stoll, B., Weis, U., Wilson, S. A., Yang, Q.,
Schwalb, A., Börner, N., Jacob, D. E., and Andreae, M. O.: Accurate trace
element analysis of speleothems and biogenic calcium carbonates by
LA-ICP-MS, Chem. Geol., 318, 31–44, https://doi.org/10.1016/j.chemgeo.2012.05.009,
2012.
Kaczmarek, K., Nehrke, G., Misra, S., Bijma, J., and Elderfield, H.:
Investigating the effects of growth rate and temperature on the ratio
and δ11B during inorganic calcite formation, Chem. Geol., 421,
81–92, https://doi.org/10.1016/j.chemgeo.2015.12.002, 2016.
Kamenos, N. A., Cusack, M., and Moore, P. G.: Coralline algae are global
paleothermometers with bi-weekly resolution, Geochim. Cosmochim. Ac., 72,
771–779, https://doi.org/10.1016/j.gca.2007.11.019, 2008.
Kamenos, N. A., Cusack, M., Huthwelker, T., Lagarde, P., and Scheibling, R.
E.: Mg-lattice associations in red coralline algae, Geochim. Cosmochim. Ac., 73, 1901–1907, https://doi.org/10.1016/j.gca.2009.01.010, 2009.
Kamenos, N. A., Hoey, T., Nienow, P., Fallick, A. E., and Claverie, T.:
Reconstructing Greenland Ice sheet runoff using
coralline algae, Geology, 40, 1095–1098, https://doi.org/10.1130/G33405.1, 2012.
Keul, N., Langer, G., Thoms, S., de Nooijer, L. J., Reichart, G. J., and
Bijma, J.: Exploring foraminiferal as a new carbonate system proxy,
Geochim. Cosmochim. Ac., 202, 374–386, https://doi.org/10.1016/j.gca.2016.11.022,
2017.
Klochko, K., Cody, G. D., Tossell, J. A., Dera, P., and Kaufman, A. J.:
Re-evaluating boron speciation in biogenic calcite and aragonite using
11B MAS NMR, Geochim. Cosmochim. Ac., 73, 1890–1900,
https://doi.org/10.1016/j.gca.2009.01.002, 2009.
Lorens, R. B.: Sr, Cd, Mn and Co distribution coefficients in calcite as a
function of calcite precipitation rate, Geochim. Cosmochim. Ac., 45,
553–561, https://doi.org/10.1016/0016-7037(81)90188-5, 1981.
Martin, S., Castets, M.-D., and Clavier, J.: Primary production, respiration
and calcification of the temperate free-living coralline alga Lithothamnion corallioides, Aquat. Bot.,
85, 121–128, https://doi.org/10.1016/j.aquabot.2006.02.005, 2006.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E, Matthews, J. B. R., Maycock, T. K., Waterfield, T., Telekçi, O., Yu, R., and Zhou, B.: IPCC: Climate Change 2021: The Physical Science Basis, in:
Contribution ofWorking Group I to the Sixth Assessment Report
50 of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge UK, ISBN 978-92-9169-158-6, 2021.
Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J., and Schott,
J.: Characterization of boron incorporation and speciation in calcite and
aragonite from co-precipitation experiments under controlled pH, temperature
and precipitation rate, Geochim. Cosmochim. Ac., 150, 299–313,
https://doi.org/10.1016/j.gca.2014.10.024, 2015.
McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald,
A., Försterra, G., Correa, M. L., Maier, C., Rüggeberg, A., and Taviani,
M.: Resilience of cold-water scleractinian corals to ocean acidification:
boron isotopic systematics of pH and saturation state up-regulation,
Geochim. Cosmochim. Ac., 87, 21–34, https://doi.org/10.1016/j.gca.2012.03.027,
2012.
Melbourne, L. A., Hernández-Kantún, J., Russell, S., and Brodie,
J.: There is more to maerl than meets the eye: DNA barcoding reveals a new
species in Britain, Lithothamnion erinaceum sp. nov. (Hapalidiales, Rhodophyta), Eur. J. Phycol.,
52, 166–178, https://doi.org/10.1080/09670262.2016.1269953, 2017.
Moberly, R.: Composition of magnesian calcites of algae and pelecypods by
electron microprobe analysis, Sedimentology, 11, 61–82,
https://doi.org/10.1111/j.1365-3091.1968.tb00841.x, 1968.
Moberly, R: Microprobe study of diagenesis in calcareous algae,
Sedimentology, 14, 113–123, https://doi.org/10.1111/j.1365-3091.1970.tb00185.x, 1970.
Montagna, P. and Douville, E.: Geochemical proxies in marine biogenic
carbonates: New developments and applications to global change, Chem. Geol.,
533, 119411, https://doi.org/10.1016/j.chemgeo.2019.119411, 2020.
Morse, J. W., Andersson, A. J., and Mackenzie, F. T.: Initial responses of
carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean
acidification”: role of high Mg-calcites, Geochim. Cosmochim. Ac., 70,
5814–5830, https://doi.org/10.1016/j.gca.2006.08.017, 2006.
Nash, M. C., Martin, S., and Gattuso, J.-P.: Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming, Biogeosciences, 13, 5937–5945, https://doi.org/10.5194/bg-13-5937-2016, 2016.
Noireaux, J., Mavromatis, V., Gaillardet, J., Schott, J., Montouillout, V.,
Louvat, P., Rollion-Bard, C., and Neuville, D. R.: Crystallographic control
on the boron isotope paleo-pH proxy, Earth Planet. Sc. Lett., 430,
398–407, https://doi.org/10.1016/j.epsl.2015.07.063, 2015.
Paris, G., Bartolini, A., Donnadieu, Y., Beaumont, V., and Gaillardet, J.:
Investigating boron isotopes in a middle Jurassic micritic sequence: primary
vs. diagenetic signal, Chem. Geol., 275, 117–126,
https://doi.org/10.1016/j.chemgeo.2010.03.013, 2010.
Payri, C. E.: Production primaire et calcification des algues benthiques en
milieu corallien, Oceanis, 26, 427–463, 2000.
Perruche, C.: Product user manual for the Global Ocean Biogeochemistry Hindcast GLOBAL_REANALYSIS_BIO_001_029, Version 1, Copernicus Marine Environmental Monitoring Service, [data set], 17 pp., https://doi.org/10.25607/OBP-490, 2018.
Piazza, G., Bracchi, V. A., Basso, D.: Mg, Li, Sr and in the calcareous red alga Lithothamnion corallioides, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.932201, 2021.
Potin, P., Floc'h, J.-Y., Augris, C., and Cabioch, J.: Annual growth rate of
the calcareous red algae Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest,
France, Hydrobiologia, 204–205, 263–267, 1990.
Rae, J. B. R., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes
and in benthic foraminifera: proxies for the deep ocean carbonate
system, Earth Planet. Sc. Lett., 302, 403–413,
https://doi.org/10.1016/j.epsl.2010.12.034, 2011.
Ragazzola, F., Foster, L. C., Form, A., Anderson, P. S. L., Hansteen, T. H.,
and Fietzke, J.: Ocean acidification weakens the structural integrity of
coralline algae, Glob. Change Biol., 18, 2804–2812,
https://doi.org/10.1111/j.1365-2486.2012.02756.x, 2012.
Ragazzola, F., Foster, L. C., Jones, C. J., Scott, T. B., Fietzke, J.,
Kilburn, M. R., and Schmidt, D. N.: Impact of high CO2 on the
geochemistry of the coralline algae Lithothamnion glaciale, Sci. Rep., 6, 20572,
https://doi.org/10.1038/srep20572, 2016.
Ragazzola, F., Caragnano, A., Basso, D., Schmidt, D. N., and Fietzke, J.:
Establishing temperate crustose Early Holocene coralline algae as archived
for paleoenvironmental reconstructions of the shallow water habitats of the
Mediterranean Sea, Paleontology, 63, 155–170, https://doi.org/10.1111/pala.12447, 2020.
Ries, J. B.: Mg fractionation in crustose coralline algae: geochemical,
biological and sedimentological implications of secular variation in
ratio of seawater, Geochim, Cosmochim. Ac., 70, 891–900,
https://doi.org/10.1016/j.gca.2005.10.025, 2006.
Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I., and Castillo, K.
D.: Impacts of seawater saturation state (ΩA = 0.4–4.6) and
temperature (10, 25 ∘C) on the dissolution kinetics of
whole-shell biogenic carbonates, Geochim. Cosmochim. Ac., 192, 318–337,
https://doi.org/10.1016/j.gca.2016.07.001, 2016.
Rimstidt, J. D., Balog, A., and Webb, J.: Distribution of trace elements
between carbonate minerals and aqueous solutions, Geochim. Cosmochim. Ac.,
62, 1851–1863, https://doi.org/10.1016/S0016-7037(98)00125-2, 1998.
Roberts, R. D., Kühl, M., Glud, R. N., and Rysgaard, S.: Primary
production of crustose coralline algae in a high Artic Fjord, J. Phycol., 38, 273–283, https://doi.org/10.1046/j.1529-8817.2002.01104.x, 2002.
Rosenthal, Y., Lear, C. H., Oppo, D. W., and Braddock, K. L.: Temperature and
carbonate ion effects on and ratios in benthic foraminifera:
Aragonitic species Hoegludina elegans, Paleoceanography, 21, PA1007,
https://doi.org/10.1029/2005PA001158, 2006.
Savini, A., Basso, D., Bracchi, V. A., Corselli, C., and Pennetta, M.:
Maerl-bed mapping and carbonate quantification on submerged terraces
offshore the Cilento peninsula (Tyrrhenian Sea, Italy), Geodiversitas, 34, 77–98, https://doi.org/10.5252/g2012n1a5, 2012.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleb, R., Hickson, J., Johnson, L.
A., Dreyer, A. W., and Oschmann, W.: Climate records from a bivalved
Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr., Palaeocl., 228, 130–148, https://doi.org/10.1016/j.palaeo.2005.03.049, 2005.
Teruzzi, A., Di Biagio, V., Feudale, L., Bolzon, G., Lazzari, P., Salon, S.,
Di Biagio, V., Coidessa, G., and Cossarini, G.: Mediterranean Sea
Biogeochemical Reanalysis (CMEMS MED-Biogeochemistry, MedBFM3 system)
(Version 1) [data set], Copernicus Monitoring Environment Marine Service
(CMEMS), https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_BGC_006_008_MEDBFM3 (last access: 28 January 2022), 2021.
Uchikawa, J., Penman, D. E., Zachos, J. C., and Zeebe, R. E.: Experimental
evidence for kinetic effects on in synthetic calcite: Implications for
potential B(OH) and B(OH)3 incorporation, Geochim. Cosmochim. Ac., 150, 171–191, https://doi.org/10.1016/j.gca.2014.11.022, 2015.
Vengosh, A., Kolodny, Y., Starinsky, A., Chivas, A. R., and McCulloch, M. T.:
Coprecipitation and isotopic fractionation of boron in modern biogenic
carbonates, Geochim. Cosmochim. Ac., 55, 2901–2910,
https://doi.org/10.1016/0016-7037(91)90455-E, 1991.
Wara, M. W., Delaney, M. L., Bullen, T. D., and Ravelo, A. C.: Possible roles
of pH, temperature, and partial dissolution in determining boron
concentration and isotopic composition in planktonic foraminifera,
Paleoceanography, 18, 1100, https://doi.org/10.1029/2002PA000797, 2003.
Williams, B., Halfar, J., Delong, K. L., Hetzinger, S., Steneck, R. S., and
Jacob, D. E.: Multi-specimen and multi-site calibration of Aleutian
coralline algal to sea surface temperature, Geochim. Cosmochim. Ac.,
139, 190–204, https://doi.org/10.1016/j.gca.2014.04.006, 2014.
Wilson, S., Blake, C., Berges, J. A., and Maggs, C. A.: Environmental
tolerances of free-living coralline algae (maerl): implications for European
marine conservation, Biol. Conserv., 120, 279–289,
https://doi.org/10.1016/j.biocon.2004.03.001, 2004.
Yu, J. M. and Elderfield, H.: Benthic foraminiferal ratios reflect deep
water carbonate saturation state, Earth Planet. Sc. Lett., 258, 73–86,
https://doi.org/10.1016/j.epsl.2007.03.025, 2007.
Yu, J. M., Elderfield, H., and Hönisch, B.: in planktonic
foraminifera as a proxy for surface water pH, Paleoceanography, 22, 2202,
https://doi.org/10.1029/2006PA001347, 2007.
Yu, J., Day, J., Greaves, M., and Elderfield, H.: Determination of multiple
element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS,
Geochem. Geophys., 6, Q08P01, https://doi.org/10.1029/2005GC000964, 2015.
Zeebe, R. E. and Wolf-Gladrow, D. (Eds.): CO2 in seawater: equilibrium,
kinetics, isotopes, Elsevier Oceanography Book Series, Amsterdam, 65 pp., 2001.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
The coralline alga Lithothamnion corallioides is widely distributed in the Mediterranean Sea and NE Atlantic Ocean, where it constitutes rhodolith beds, which are diversity-rich ecosystems on the seabed. The boron incorporated in the calcified thallus of coralline algae (B/Ca) can be used to trace past changes in seawater carbonate and pH. This paper suggests a non-negligible effect of algal growth rate on B/Ca, recommending caution in adopting this proxy for paleoenvironmental reconstructions.
The coralline alga Lithothamnion corallioides is widely distributed in the Mediterranean Sea and...
Altmetrics
Final-revised paper
Preprint