Articles | Volume 19, issue 5
https://doi.org/10.5194/bg-19-1355-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1355-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrite regeneration in the oligotrophic Atlantic Ocean
Darren R. Clark
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Charissa M. Ferrera
The Marine Science Institute, Velasquez St., University of the
Philippines, Diliman, Quezon City 1101, Philippines
Lisa Al-Moosawi
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Paul J. Somerfield
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Carolyn Harris
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Graham D. Quartly
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Stephen Goult
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Glen Tarran
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Gennadi Lessin
Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, UK
Related authors
No articles found.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Cited articles
Al-Qutob, M., Hase, C., Tilzer, M. M., and Lazar, B.: Phytoplankton drives
nitrite dynamics in the Gulf of Aqaba, Red Sea, Mar.
Ecol. Prog. Ser., 239, 233–239, https://doi.org/10.3354/meps239233, 2002.
Azam, F., Fenchel, T., Field, G., Graf, J. S., Meyer-Reil, L. A., and
Thingstad, F.: The ecological role of water-column microbes in the sea, Mar.
Ecol. Prog. Ser., 10, 257–263, https://doi.org/10.3354/meps010257, 1983.
Baker, A. R. and Jickells, T. D.: Atmospheric deposition of soluble trace
elements along the Atlantic Meridional Transect (AMT), Prog. Oceanogr., 158,
41–51, https://doi.org/10.1016/j.pocean.2016.10.002, 2017.
Beman, J. M., Popp, B. N., and Francis, C. A.: Molecular and biogeochemical
evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of
California, ISME J., 2, 429–441, https://doi.org/10.1038/ismej.2007.118, 2008.
Beman, J. M., Chow, C.-E., King, A., Feng, Y., Fuhrman, J. A., Andersson, A., Bates, N. R., Popp, B. N., and Hutchins, D. A.: Global declines in oceanic
nitrification rates as a consequence of ocean acidification, P. Natl.
Acad. Sci. USA, 108, 208–213, https://doi.org/10.1073/pnas.1011053108 2011, 2011.
Beman, J. M., Popp, B. N., and Alford, S. E.: Quantification of ammonia
oxidation rates and ammonia-oxidizing archaea and bacteria at high
resolution in the Gulf of California and eastern tropical North Pacific
Ocean, Limnol. Oceanogr., 57, 711–726, https://doi.org/10.4319/lo.2012.57.3.0711, 2012.
Benner, R. and Amon, R. M. W.: The size-reactivity of major bio-elements in the
ocean, Ann. Rev. Sci. 7, 185–205,
doi.org/10.1146/annurev-marine-010213-135126, 2015.
Bernhard, A. E., Landry, Z. C., Blevins, A., de la Torre, J. R., Giblin, A.
E., and Stahl, D. A.: Abundance of ammonia-oxidizing Archaea and Bacteria
along an estuarine salinity gradient in relationship to potential
nitrification rates, Appl. Environ. Microbiol., 76, 1285–1289,
https://doi.org/10.1128/AEM.02018-09, 2010.
Blackburn, T. H.: Method for measuring rates of turnover in
anoxic marine sediments, using a 15N- dilution technique,
Appl. Environ. Microbiol., 37, 760–765, 1979.
Bouskill, N. J., Eveillard, D., Chien, D., Jayakumar, A., and Ward, B. B.:
Environmental factors determining ammonia-oxidizing organism distribution
and diversity in marine environments, Environ. Microbiol., 14, 714–729, https://doi.org/10.1111/j.1462-2920.2011.02623.x, 2012.
Buchwald, C. and Casciotti, K. L.: Isotopic ratios of nitrite as tracers of
the sources and age of oceanic nitrite, Nat. Geosci., 6, 308–313,
https://doi.org/10.1038/ngeo1745, 2013.
Caperon, J., Schell, D., Hirota, J., and Laws, E.: Ammonium excretion rates
in Kaneohe Bay, Hawaii, measured by a 15N isotope dilution technique,
Mar. Biol., 54, 33–40, 1979.
Chen, Y. J., Bardhan, P., Zhao, X. F., Zheng, M. F., Qiu, Y. S., and Chen, M.:
Nitrite Cycle Indicated by Dual Isotopes in the Northern South China Sea, J.
Geophys. Res.-Biogeo., 126, e2020JG006129, https://doi.org/10.1029/2020JG006129. 2021.
Christian, J. R., Verschell, M. A., Murtugudde, R., Busalacchi, A. J., and
McClain, C. R.: Biogeochemical modelling of the tropical Pacific Ocean. I:
Seasonal and interannual variability, Deep-Sea Res. Pt. II, 49, 509–543,
https://doi.org/10.1016/S0967-0645(01)00110-2, 2002.
Church, M. J., Karl, D. M., and DeLong, E. F.: Abundances of crenarchaeal
amoA genes and transcripts in the Pacific Ocean, Environ. Microbiol., 12,
679–688, https://doi.org/10.1111/j.1462-2920.2009.02108.x, 2010.
Clark, D. R., Flynn, K. J., and Owens, N. J. P.: The large capacity for dark
nitrate-assimilation in diatoms may overcome nitrate limitation of growth,
New Phytol., 155, 101–108, https://doi.org/10.1046/j.1469-8137.2002.00435.x, 2002.
Clark, D. R., Fileman, T. W., and Joint, I.: Determination of ammonium
regeneration rates in the oligotrophic ocean by gas chromatography/mass
spectrometry, Mar. Chem., 98, 21–130, https://doi.org/10.1016/j.marchem.2005.08.006,
2006.
Clark, D. R., Rees, A. P., and Joint, I.: A method for the determination of
nitrification rates in oligotrophic marine seawater by gas
chromatography/mass spectrometry, Mar. Chem., 103, 84–96, https://doi.org/10.1016/j.marchem.2006.06.005, 2007.
Clark, D. R., Rees, A. P., and Joint, I.: Ammonium regeneration and
nitrification rates in the oligotrophic Atlantic Ocean: Implications for new
production estimates, Limnol. Oceanogr., 53, 52–62, https://doi.org/10.2307/40006149,
2008.
Clark, D. R., Brown, I. J., Rees, A. P., Somerfield, P. J., and Miller, P. I.: The influence of ocean acidification on nitrogen regeneration and nitrous oxide production in the northwest European shelf sea, Biogeosciences, 11, 4985–5005, https://doi.org/10.5194/bg-11-4985-2014, 2014.
Clark, D., Rees, A., and Ferrera, C.: oxidation rates in the oligotrophic Atlantic Ocean using 15N isotope dilution methods during the AMT programme cruise AMT19 (JC039),British Oceanographic Data Centre – Natural Environment Research Council, UK, [data set] https://doi.org/10.5285/56df6379-5b2b-160b-e053-6c86abc01f07, 2017.
Clarke, K. R. and Warwick, R. M.: Quantifying structural redundancy in
ecological communities, Oecologia, 113, 278–289, https://doi.org/10.1007/s004420050379,
1998.
Clarke, K. R., Somerfield, P. J., and Gorley, R. N.: Testing of null
hypotheses in exploratory community analyses: similarity profiles and
biota-environment linkage, J. Exp. Mar. Biol. Ecol., 366, 56–69, https://doi.org/10.1016/j.jembe.2008.07.009, 2008.
Clarke, K. R., Gorley, R. N., Somerfield, P. J., and Warwick, R. M.: Change
in marine communities: an approach to statistical analysis and
interpretation, 3 Edn., PRIMER-E, Plymouth., 256 pp, 2014.
Dandonneau, Y., Vega, A., Loisel, H., du Penhoat, Y., and Menkes, C.:
Oceanic Rossby waves acting as a hay rake for ecosystem floating
by-products, Science, 302, 1548–1551, https://doi.org/10.1126/science.1090729, 2003.
de Vet, W. W. J. M., van Loosdrecht, M. C. M., and Rietveld, L. C.:
Phosphorus limitation in nitrifying groundwater filters, Water Res., 46,
1061–1069, https://doi.org/10.1016/j.watres.2011.11.075, 2012.
Dore, J. E. and Karl, D. M.: Nitrification in the euphotic zone as a source
for nitrite, nitrate and nitrous oxide at Station ALOHA, Limnol. Oceanogr.,
41, 1619–1628, https://doi.org/10.4319/lo.1996.41.8.1619, 1996.
Emerson, S., Mecking, S., and Abell, J.: The biological pump in the
subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent
changes, Global Biogeochem. Cy., 15, 535–554, https://doi.org/10.1029/2000GB001320, 2001.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.
Fawcett, S. E., Ward, B. B., Lomas, M. W., and Sigman, D. M.: Vertical
decoupling of nitrate assimilation and nitrification in the Sargasso Sea,
Deep-Sea Res. Pt. I, 103, 64–72, https://doi.org/10.1016/j.dsr.2015.05.004, 2015.
Francis, C., A., Beman, J. M., and Kuypers, M. M. M.: New processes and
players in the nitrogen cycle: The microbial ecology of anaerobic and
archaeal ammonia oxidation, ISME J., 1, 19–27, https://doi.org/10.1038/ismej.2007.8,
2007.
French, D., Furnas, M., and Smayda, T.: Diel changes in nitrite
concentration in the chlorophyll maximum in the Gulf of Mexico, Deep-Sea
Res., 30, 707–722, https://doi.org/10.1016/0198-0149(83)90018-3, 1983.
Giovanoni, S. J. and Vergin, K. L.: Seasonality in ocean microbial
communities, Science, 335, 671–676, https://doi.org/10.1126/science.1198078, 2012.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen
fixation and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077, 1997.
Horak, R. E. A., Qin, W., Schauer, A. J., Armbrust, E. V., Ingalls, A. E.,
Moffett, J. W., Stahl, D. A., and Devol, A. H.: Ammonia oxidation kinetics
and temperature sensitivity of a natural marine community dominated by
Archaea, ISME. 7, 2023–2033, https://doi.org/10.1038/ismej.2013.75, 2013.
Horak, R. E. A., Qin, W., Bertagnolli, A. D., et al.: Relative impacts of
light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation
in the North Pacific Ocean, Limnol. Oceanogr., 63, 741–757,
https://doi.org/10.1002/lno.10665, 2017.
IOC: Intergovernmental Oceanographic Commission, Paris, Protocols for the
Joint Global Flux Study (JGOFS) core measurements, Manuals Guides, 29 pp., 1994.
Jiang, M. S., Chai, F., Dugdale, R. C., Wilkerson, F. P., Peng, T. H., and
Barber, R. T.: A nitrate and silicate budget in the equatorial Pacific
Ocean: a coupled physical-biological model study, Deep-Sea Res. Pt. II, 50,
2971–2996, https://doi.org/10.1016/j.dsr2.2003.07.006, 2003.
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S.
W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.:
Microbial production of recalcitrant dissolved organic matter: long-term
carbon storage in the global ocean, Nat. Rev. Microbiol., 8, 593–599, https://doi.org/10.1038/nrmicro2386, 2010.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350,
https://doi.org/10.1016/j.pocean.2007.05.009, 2008.
Kieber, R. J., Li, A., and Seaton, P. J.: Production of nitrite from the
photodegradation of dissolved organic matter in natural waters, Environ. Sci.
Technol., 33, 993–998, https://doi.org/10.1021/es980188a, 1999.
Kiørboe, T.: Turbulence, phytoplankton cell size, and the structure of
pelagic food webs, Adv. Mar. Biol., 29, 2–72,
https://doi.org/10.1016/S0065-2881(08)60129-7, 1993.
Klass, C. and Archer, D.: Association of sinking organic matter with
various types of mineral ballast in the deep sea: Implications for the rain
ratio, Global Biogeochem. Cy., 16, 1116, https://doi.org/10.1029/2001GB001765, 2002.
Laws, E. A., Letelier, R. M., and Karl, D. M.: Estimating the compensation
irradiance in the ocean: The importance of accounting for non-photosynthetic
uptake of inorganic carbon, Deep-Sea Res. Pt. I, 93, 35–40, https://doi.org/10.1016/j.dsr.2014.07.011 2014.
Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A., Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M. J., Andersen, O. B., Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., and Benveniste, J.: An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative, Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, 2018.
Letelier, R. M., Karl, D. M., Abbott, M. R., and Bidigare, R. R.: Light
driven seasonal patterns of chlorophyll and nitrate in the lower euphotic
zone of the North Pacific Subtropical Gyre, Limnol. Oceanogr., 49, 508–519,
https://doi.org/10.4319/lo.2004.49.2.0508, 2004.
Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R., and Knapp, A.
N.: Dissolved organic nitrogen in the global surface ocean: Distribution and
fate, Global Biogeochem. Cy., 27, 141–153, https://doi.org/10.1029/2012GB004449,
2013.
Lomas, M. W. and Gilbert, P. M.: Temperature regulation of nitrate uptake:
A novel hypothesis about nitrate uptake and reduction in cool-water diatoms,
Limnol. Oceanogr., 44, 556–572, https://doi.org/10.4319/lo.1999.44.3.0556, 1999.
Lomas, M. W. and Gilbert, P. M.: Comparisons of nitrate uptake, storage and
reduction in marine diatoms and dinoflagellates, J. Phycol., 36, 903–913,
https://doi.org/10.1046/j.1529-8817.2000.99029.x, 2000.
Lomas, M. W. and Lipschultz, F.: Forming the primary nitrite maximum:
Nitrifiers or phytoplankton?, Limnol. Oceanogr., 51, 2453–2467, https://doi.org/10.4319/lo.2006.51.5.2453, 2006.
Lomas, M. W., Lipschultz, F., Nelson, D. M., Krause, J. W., and Bates, N.
R.: Biogeochemical responses to late-winter storms in the Sargasso Sea,
I – Pulses of primary and new production, Deep-Sea Res. Pt. I, 56,
843–860, https://doi.org/10.1016/j.dsr.2009.01.002, 2009.
Longhurst, A.: Ecological geography of the sea, Academic Press, ISBN: 9780124555587, 1998.
Mackey, K. R. M., Bristow, L., Parks, D. R., Altabet, M. A., Post, A. F.,
and Paytan, A.: The influence of light on nitrogen cycling and the primary
nitrite maximum in a seasonally stratified sea, Prog. Oceanogr., 91,
545–560, https://doi.org/10.1016/j.pocean.2011.09.001, 2011.
Mahaffey, C., Williams, R. G., Wolff, G. A., and Anderson, W. T.: Physical
supply of nitrogen to phytoplankton in the Atlantic Ocean, Global Biogeochem. Cy., 18, GB1034, https://doi.org/10.1029/2003GB002129, 2004.
Maranñón, E., Holligan, P. M., Varela, M., Mourinõ, B., and
Bale, A. J.: Basinscale variability of phytoplankton biomass, production and
growth in the Atlantic Ocean, Deep-Sea Res. Pt. I, 47, 825–857, https://doi.org/10.1016/S0967-0637(99)00087-4, 2000.
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., and
Stahl, D. A.: Ammonia oxidation kinetics determine niche separation of
nitrifying Archaea and Bacteria, Nature, 461, 976–979,
https://doi.org/10.1038/nature08465, 2009.
McClain, C. R., Signorini, S. R., and Christian, J. R.: Subtropical gyre
variability observed by ocean-color satellites, Deep-Sea Res. Pt. I, 51,
281–301, https://doi.org/10.1016/j.dsr2.2003.08.002, 2004.
McGillicuddy, D. J., Jr, Robinson, A. R., Siegel, D. A., Jannasch, H. W.,
Johnson, R., Dickey, T. D., McNeil, J., Michaels, A. F., and Knap, A. H.:
Influence of mesoscale eddies on new production in the Sargasso Sea, Nature,
394, 263–266, https://doi.org/10.1038/28367, 1998.
Meeder, E., Mackey, K. R. M., Paytan, A., Shaked, Y., Iluz, D., Stambler,
N., Rivlin, T., Post, A. F., and Lazar, B.: Nitrite dynamics in the open
ocean–clues from seasonal and diurnal variations, Mar. Ecol. Prog. Ser.,
453, 11–26, https://doi.org/10.3354/meps09525, 2012.
Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J.: Iron
and phosphorus co-limit nitrogen fixation in the eastern tropical North
Atlantic, Nature, 429, 292–294, https://doi.org/10.1038/nature03632, 2004.
Mitra, A., Flynn, K. J., Burkholder, J. M., Berge, T., Calbet, A., Raven, J. A., Granéli, E., Glibert, P. M., Hansen, P. J., Stoecker, D. K., Thingstad, F., Tillmann, U., Våge, S., Wilken, S., and Zubkov, M. V.: The role of mixotrophic protists in the biological carbon pump, Biogeosciences, 11, 995–1005, https://doi.org/10.5194/bg-11-995-2014, 2014.
Moore, C. M., Mills, M. M., Achterberg, E. P., Geider, R. J., LaRoche, J.,
Lucas, M. I., McDonagh, E. L., Pan, X., Poulton, A. J., Rijkenberg, M. J.
A., Suggett, D. J., Ussher, S. J., and Woodward, E. M. S.: Large-scale
distribution of Atlantic nitrogen fixation controlled by iron availability,
Nat. Geosci., 2, 867–871, https://doi.org/10.1038/NGEO667, 2009.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsudaand, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/NGEO1765,
2013.
Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M., and Fung I. Y.:
An intermediate complexity marine ecosystem model for the global domain,
Deep-Sea Res. Pt. II, 49, 403–462, https://doi.org/10.1016/S0967-0645(01)00108-4, 2002.
Mulholland, M. R.: The fate of nitrogen fixed by diazotrophs in the ocean, Biogeosciences, 4, 37–51, https://doi.org/10.5194/bg-4-37-2007, 2007.
Nencioli, F., Dall'Olmo, G., and Quartly, G. D.: Agulhas ring transport
efficiency from combined satellite altimetry and Argo profiles, J. Geophys.
Res.-Oceans, 123, 5874–5888, https://doi.org/10.1029/2018JC013909, 2018.
Newell, S. E., Babbin, A. R., Jayakumar, A., and Ward, B. B.: Ammonia
oxidation rates and nitrification in the Arabian Sea, Global Biogeochem. Cy., 25, GB4016, https://doi.org/10.1029/2010GB003940, 2011.
Newell, S. E., Fawcett, S. E., and Ward, B. B.: Depth distribution of
ammonia oxidation rates and ammonia-oxidizer community composition in the
Sargasso Sea, Limnol Oceanogr., 58, 491–1500, https://doi.org/10.4319/lo.2013.58.4.1491,
2013.
Olson, R. J.: Differential photoinhibition of marine nitrifying bacteria: A
possible mechanism for the formation of the primary nitrite maximum, J. Mar.
Res., 39, 227–238, https://doi.org/10.4319/lo.2006.51.5.2453, 1981.
Oschlies, A. and Garçon, V.: Eddy-induced enhancement of primary
production in a model of the North Atlantic Ocean, Nature, 394, 266–269,
https://doi.org/10.1038/28373, 1998.
Palinska, K. A., Laloui, W., Bédu, S., Goer, S. L., Castets, A. M.,
Rippka, R., and de Marsac, N. T.: The signal transducer P-II and bicarbonate
acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in
nitrate and nitrite assimilation, Microbiology, 148, 2405–2412,
https://doi.org/10.1099/00221287-148-8-2405, 2002.
Partensky, F., Hess, W. R., and Vaulot, D.: Prochlorococcus, a Marine Photosynthetic
Prokaryote of Global Significance, Microbiol. Mol. Biol., 63, 6–127,
https://doi.org/10.1016/j.procbio.2007.09.010, 1999.
Peng, X., Fawcett, S. E., van Oostende, N., Wolf, M. J., Marconi, D.,
Sigman, D. M., and Ward, B. B.: Nitrogen uptake and nitrification in the
subarctic North Atlantic Ocean, Limnol. Oceanogr., 63, 1462–1487,
https://doi.org/10.1002/lno.10784, 2018.
Planas. D., Agusti, S., Duarte, C. M., Granata, T. C., and Merino, M.:
Nitrate uptake and diffusive nitrate supply in the Central Atlantic, Limnol.
Oceanogr., 44, 116-126, https://doi.org/10.4319/lo.1999.44.1.011, 1999.
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive
waters are expanding, Geophys. Res. Lett., 35, L03618,
https://doi.org/10.1029/2007GL031745, 2008.
Poulton, A. J., Holligan, P. M., Hickman, A., Kim, Y-N., Adey, T. R.,
Stinchcombe, M. C., Holeton, C., Root, S., and Woodward, E. M. S.:
Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments
in the Atlantic Ocean, Deep-Sea Res. Pt. II, 53, 1593–1610,
https://doi.org/10.1016/j.dsr2.2006.05.007, 2006.
Poulton, A. J., Holligan, P. M., Charalampopoulou, A., and Adey, T. R.:
Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: new
perspectives from the Atlantic meridional transect (AMT) programme, Prog.
Oceanogr., 158, 150–170, https://doi.org/10.1016/j.pocean.2017.01.003, 2017.
Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J., Rudenko, S., Carrère, L., García, P. N., Cipollini, P., Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled sea level data, Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, 2017.
Rafter, P. A., DiFiore, P. J., and Sigman, D. M.: Coupled nitrate nitrogen
and oxygen isotopes and organic matter remineralization in the Southern and
Pacific Oceans, J. Geophys. Res., 118, 4781–4794, https://doi.org/10.1002/jgrc.20316,
2013.
Raes, E. J., van de Kamp, J., Bodrossy, L., Fong, A. A., Riekenberg, J.,
Holmes, B. H., Erler, D. V., Eyre, B. D., Weil, S.-S., and Waite, A. M.:
N2 Fixation and New Insights Into Nitrification From the Ice-Edge to
the Equator in the South Pacific Ocean, Front. Mar. Sci., 7, 389,
https://doi.org/10.3389/fmars.2020.00389, 2020.
Rees, A. P., Nightingale, P. D., Poulton, A. J., Smyth, T., Tarran, G. A.,
and Tilstone, G. H.: The Atlantic Meridional Transect programme (1995–2016),
Prog. Oceanogr., 158, 3–18, https://doi.org/10.1016/j.pocean.2017.05.004, 2017.
Santoro, A. E., Sakamoto, C. M., Smith, J. M., Plant, J. N., Gehman, A. L., Worden, A. Z., Johnson, K. S., Francis, C. A., and Casciotti, K. L.: Measurements of nitrite production in and around the primary nitrite maximum in the central California Current, Biogeosciences, 10, 7395–7410, https://doi.org/10.5194/bg-10-7395-2013, 2013.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 5660, https://doi.org/10.1038/nature10605, 2004.
Scharek, R., Tupas, L. M., and Karl, D. M.: Diatom fluxes to the deep sea in
the oligotrophic North Pacific gyre at Station ALOHA, Mar. Ecol. Prog. Ser.,
182, 55–67, https://doi.org/10.3354/meps182055, 1999.
Shiozaki, T., Ijichi, M., Isobe, K., Hashihama, F., Nakamura, K., Ehama, M.,
Hayashizaki, K., Takahashi, K., Hamasaki, K., and Furuya, K.: Nitrification
and its influence on biogeochemical cycles from the equatorial Pacific to
the Arctic Ocean, ISME J., 10, 2184–2197, https://doi.org/10.1038/ismej.2016.18, 2016.
Smith, J. M., Chavez, F. P., and Francis, C. A.: Ammonium Uptake by
Phytoplankton Regulates Nitrification in the Sunlit Ocean, PLoS ONE,
9, e108173, https://doi.org/10.1371/journal.pone.0108173, 2014.
Smith, J. M., Damashek, J., Chavez, F. P., and Francis, C. A.: Factors
influencing nitrification rates and the abundance and transcriptional
activity of ammonia-oxidizing microorganisms in the dark northeast Pacific
Ocean, Limnol. Oceanogr., 61, 596–609, https://doi.org/10.1002/lno.10235, 2016.
Somerfield, P. J. and Clarke, K. R.: Inverse analysis in non-parametric
multivariate analyses: distinguishing groups of associated species which
covary coherently across samples, J. Exp. Mar. Biol. Ecol., 449, 261–273,
https://doi.org/10.1016/j.jembe.2013.10.002, 2013.
Somerfield, P. J., Clarke, K. R., and Gorley, R. N.: Analysis of
Similarities (ANOSIM) for 2-way layouts using a generalised ANOSIM
statistic, with comparative notes on Permutational Multivariate Analysis of
Variance (PERMANOVA), Austr. Ecol., 46, 911–926, https://doi.org/10.1111/aec.13059,
2021.
Tarran, G. A. and Zubkov, M. V.: Abundance of microbial phytoplankton through the water column during the AMT19 (JC039) cruise in October-December 2009, British Oceanographic Data Centre, National Oceanography Centre, NERC, UK, [data set], https://doi.org/10.5285/a2104adc-e994-6789-e053-6c86abc0d557, 2020.
Taylor, A. H., Harris, J. R. W., and Aiken, J.: The interaction of physical
and biological processes in a model of the vertical distribution of
phytoplankton under stratification, in: Marine
Interfaces Echohydrodynamics, edited by: Nihoul, J. C. J., Elsevier Science, Amsterdam, The Netherlands,
313–330, https://doi.org/10.1016/S0422-9894(08)71052-3, 1986.
Treusch, A. H., Vergin, K. L. Finlay, L. A., Donatz, M. G., Burton, R. M.,
Carlson, C. A., and Giovannoni, S. J.: Seasonality and vertical structure of
microbial communities in an ocean gyre, ISME J., 3, 1148–1163,
https://doi.org/10.1038/ismej.2009.60, 2009.
Torres-Valdés, S., Roussenov, V. M., Sanders, R., Reynolds, S., Pan, X., Mather, R.,
Landolfi, A., Wolff, G. A., Achterberg, E. P., and Williams, R. G.:
Distribution of dissolved organic nutrients and their effect on export
production over the Atlantic Ocean, Global. Biogeochem. Cy., 23, GB4019,
https://doi.org/10.1029/2008GB003389, 2009.
Tuerena, R. E., Ganeshram, R .S., Geibert, W., Fallick, A. E., Dougans, J.,
Tait, A., Henley, S. F., and Woodward, E. M. S.: Nutrient cycling in the
Atlantic basin: The evolution of nitrate isotope signatures in water masses,
Global Biogeochem. Cy., 29, 1830–1844, https://doi.org/10.1002/2015GB005164, 2015.
Tuerena, R. E., Williams, R. G., Mahaffey, C., Vic, C., Green, J. A. M.,
Naveira-Garabato, A., Forryan, A., and Sharples, J.: Internal Tides Drive
Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid-ocean Ridges,
Global Biogeochem. Cy., 33, 995–1009, https://doi.org/10.1029/2019GB006214, 2019.
Wan, X. S., Sheng, H.-X., Dai, M., Church, M. J., Zou, W., Li, X., Hutchins,
D. A., Ward, B. B., and Kao, S.-J.: Phytoplankton-nitrifier interactions control
the geographic distribution of nitrite in the upper ocean, Global Biogeochem. Cy., 35, e2021GB007072, https://doi.org/10.1029/2021GB007072, 2021.
Wang, X. J., Christian, J. R., Murtugudde, R., and Busalacchi, A. J.:
Spatial and temporal variability in new production in the equatorial Pacific
during 1980-2003: Physical and biogeochemical controls, Deep-Sea Res. Pt. II, 53, 677–697, https://doi.org/10.1016/j.dsr2.2006.01.023, 2006.
Ward, B. B.: Light and substrate concentration relationships with marine
ammonium assimilation and oxidation rates, Mar. Chem., 16, 301–316,
https://doi.org/10.1016/0304-4203(85)90052-0, 1985.
Ward, B. B.: Temporal variability in nitrification rates and related
biogeochemical factors in Monterey Bay, California, USA, Mar. Ecol. Prog.
Ser., 292, 97–109, https://doi.org/10.3354/meps292097, 2005.
Ward, B. B.: Measurement and distribution of nitrification rates in the
oceans, Methods Enzym., 486, 307–323,
doi.org/10.1016/B978-0-12-381294-0.00013-4, 2007.
Ward, B. B.: Nitrification in marine systems, in: Nitrogen in the Marine
Environment, edited by: Capone, D., Bronk, D. A., Mulholland, M. R., and
Carpenter, E. J., Elsevier Press, 199–261, 2008.
Ward, B. B., Glover, H. E., and Lipshultz, F.: Chemoauto-trophic activity
and nitrification in the oxygen minimum zone off Peru, Deep-Sea Res.,
36, 1031–1051, https://doi.org/10.1016/0198-0149(89)90076-9, 1989.
Ward, B. B.: Nitrification in aquatic systems, in: Encyclopaedia of Environmental Microbiology, edited by: Capone, D. A.,
Wiley, New York, NY, USA,
2144–2167, https://doi.org/10.1002/0471263397.env287, 2002.
Zafiriou, O. C. and True, M. B.: Nitrate photolysis in seawater by
sunlight, Mar. Chem., 8, 33–42, https://doi.org/10.1016/0304-4203(79)90029-X,
1979.
Woodward, E. M. S. and Rees, A. P.: Nutrient distributions in an
anticyclonic eddy in the North East Atlantic Ocean, with reference to
nanomolar ammonium concentrations, Deep-Sea Res., 48, 775–794, https://doi.org/10.1016/S0967-0645(00)00097-7, 2001.
Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The
significance of nitrification for oceanic new production, Nature, 447,
999–1002, https://doi.org/10.1038/nature05885, 2007.
Short summary
Measurements of microbial processes were made in the sunlit open ocean during a research cruise (AMT19) between the UK and Chile. These help us to understand how microbial communities maintain the function of remote ecosystems. We find that the nitrogen cycling microbes which produce nitrite respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to ongoing climate change.
Measurements of microbial processes were made in the sunlit open ocean during a research cruise...
Altmetrics
Final-revised paper
Preprint