Black, B. A., Neely, R. R., Lamarque, J.-F., Elkins-Tanton, L. T., Kiehl, J. T., Shields, C. A., Mills, M. J., and Bardeen, C.: Systemic swings in end-Permian climate from Siberian
Traps carbon and sulfur outgassing, Nat. Geosci., 11, 949–954, 2018.
Bond, D. P. G. and Grasby, S. E.: Late Ordovician mass extinction caused by
volcanism, warming, and anoxia, not cooling and glaciation, Geology, 48,
777–781, https://doi.org/10.1130/G47377.1, 2020.
Bond, D. P. G. and Wignall, P. B.: “Large igneous provinces and mass
extinctions: An update”, in: Volcanism, Impacts, and Mass Extinctions: Causes
and Effects, edited by: Keller, G. and Kerr, A. C., Geol. Soc. Am. Spec. Pap.
505, 29–55, https://doi.org/10.1130/2014.2505(02), 2014.
Burgess, S. D., Muirhead, J. D., and Bowring, S.: Initial pulse of Siberian
Traps sills as the trigger of the end-Permian mass extinction, Nat. Comm.,
8, 15596, https://doi.org/10.1038/s41467-017-00083-9, 2017.
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R.
M., and Palmer, T. M.: Accelerated modern human-induced species losses:
Entering the sixth mass extinction, Sci. Adv., 1, e1400253,
https://doi.org/10.1126/sciadv.1400253, 2015.
Chen, J. and Xu, Y.: Establishing the link between Permian volcanism and
biodiversity changes: Insights from geochemical proxies, Gondwana Res., 75,
68–96, https://doi.org/10.1016/j.gr.2019.04.008, 2019.
Chen, B., Joachimski, M. M., Sun, Y. D., Shem, S. Z., and Lai, X. L.: Carbon
and conodont apatite oxygen isotope records of Guadalupian-Lopingian
boundary sections: Climatic or sea-level signal?, Palaeogeogr.,
Palaeocl., 311, 145–153, https://doi.org/10.1016/j.palaeo.2011.08.016,
2011.
Chen, J., Shen, S., Li, X., Xu, Y., Joachimski, M. M., Bowring, S. A.,
Erwin, D. H., Yuan, D., Chen, B., Zhang, H., Wang, Y., Cao, C., Zheng, Q.,
and Mu, L.: High-resolution SIMS oxygen isotope analysis on conodont apatite
from South China and implications for the end-Permian mass extinction,
Palaeogeogr. Palaeocl., 448, 26–38, https://doi.org/10.1016/j.palaeo.2015.11.025, 2016.
Davies, J. H. F. L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., and
Schaltegger, U.: End-Triassic mass extinction started by intrusive CAMP
activity, Nat. Commun., 8, 15596, https://doi.org/10.1038/ncomms15596, 2017.
Fan, J., Shen, S., Erwin, D. H., Sadler, P. M., MacLeod, N., Cheng, Q., Hou,
X., Yang, J., Wang, X., Wang, Y., Zhang, H., Chen, X., Li, G., Zhang, Y.,
Shi, Y., Yuan, D., Chen, Q., Zhang, L., Li, C., and Zhao, Y.: A
high-resolution summary of Cambrian to Early Triassic marine invertebrate
biodiversity, Science, 367, 272–277, https://doi.org/10.1126/science.aax4953, 2020.
Feng, Y., Song, H., and Bond, D. P. G.: Size variations in foraminifers from the
early Permian to the Late Triassic: implications for the
Guadalupian–Lopingian and the Permian–Triassic mass extinctions,
Paleobiology, 46, 511–532, https://doi.org/10.1017/pab.2020.37, 2020.
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A.,
Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W.: The
magnitude and duration of Late Ordovician-Early Silurian Glaciation,
Science, 331, 903–906, 10.1126/science.1200803, 2011.
Grasby, S. E., Beauchamp, B., Bond, D. P. G., Wignall, P. B., and Sanei, H.:
Mercury anomalies associated with three extinction events (Capitanian
Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in
NW Pangea, Geol. Mag., 153, 285–297, https://doi.org/10.1017/S0016756815000436, 2016.
Grasby, S. E., Sanei, H., Beauchamp, B., and Chen, Z. H.: Mercury deposition
through the Permo-Triassic biotic crisis, Chem. Geol., 351, 209–216,
https://doi.org/10.1016/j.chemgeo.2013.05.022, 2013.
Huang, Y., Chen, Z.-Q., Wignall, P. B., Grasby, S. E., Zhao, L., Wang, X.,
and Kaiho, K.: Biotic responses to volatile volcanism and environmental
stresses over the Guadalupian-Lopingian (Permian) transition, Geology, 47,
175–178, https://doi.org/10.1130/G45283.1, 2019.
IPCC, 2013: Climate Change 2013, in: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K.,
Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
and Midgley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, USA, 1535 pp., 2013.
Jones, D. S., Martini, A. M., Fike, D. A., and Kaiho, K.: A volcanic trigger
for the Late Ordovician mass extinction? Mercury data from south China and
Laurentia, Geology, 45, 631–634, https://doi.org/10.1130/G38940.1, 2017.
Kaiho, K.: Planktonic and benthic foraminiferal extinction events during the
last 100 m.y., Palaeogeogr., Palaeocl., 111, 45–71,
https://doi.org/10.1016/0031-0182(94)90347-6, 1994.
Kaiho, K. and Oshima, N.: Site of asteroid impact changed the history of
life on Earth: the low probability of mass extinction, Sci. Rep., 7, 14855,
https://doi.org/10.1038/s41598-017-14199-x, 2017.
Kaiho, K., Oshima, N., Adachi, K., Adachi, Y., Mizukami, T., Fujibayashi,
M., and Saito, R.: Global climate change driven by soot at the K–Pg
boundary as the cause of the mass extinction, Sci. Rep., 6, 28427,
https://doi.org/10.1038/srep28427, 2016.
Kaiho, K., Aftabuzzaman, M., Jones, D. S., and Tian, L.: Pulsed volcanic
combustion events coincident with the end-Permian terrestrial disturbance
and the following global crisis, Geology, 49, 289–293,
https://doi.org/10.1130/G48022.1, 2021a.
Kaiho, K., Miura, M., Tezuka, M., Hayashi, N., Jones, D. S., Oikawa, K.,
Casier, J.-G., Fujibayashi, M., and Chen, Z.-Q.: Coronene, mercury, and
biomarker data support a link between extinction magnitude and volcanic
intensity in the Late Devonian, Global Planet. Change, 199, 103452,
https://doi.org/10.1016/j.gloplacha.2021.103452, 2021b.
Kaiho, K., Tanaka, D., Richoz, S., Jones, D. S., Saito, R., Kameyama, D.,
Ikeda, M., Takahashi, S., Aftabuzzaman, M., and Fujibayashi, M.:
Volcanic temperature changes modulated volatile release and climate
fluctuations at the end-Triassic mass extinction, Earth Planet. Sc. Lett.,
579, 117364, https://doi.org/10.1016/j.epsl.2021.117364, 2022.
Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rockaby, R. E., and Spoetl, C.:
Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy
of marine Triassic–Jurassic boundary sections in SW Britain, J. Geol. Soc.,
166, 431–445, https://doi.org/10.1144/0016-76492007-177, 2009.
McPherson, G. R., Sirmacek, B., and Vinuesa, R.: Environmental thresholds for
mass-extinction events, Results Eng., 13, 100342,
https://doi.org/10.1016/j.rineng.2022.100342, 2022.
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., and Sunday, J.
M.: Greater vulnerability to warming of marine versus terrestrial
ectotherms, Nature, 569, 108–111,
https://doi.org/10.1038/s41586-019-1132-4, 2019.
Racki, G.: A volcanic scenario for the Frasnian–Famennian major biotic
crisis and other Late Devonian global changes: More answers than questions?,
Global Planet. Change, 189, 103174,
https://doi.org/10.1016/j.gloplacha.2020.103174, 2020.
Rampino, M. R. and Shen, S.-Z.: The end-Guadalupian (259.8 Ma) biodiversity
crisis: the sixth major mass extinction?, Hist. Biol., 33, 1–7,
https://doi.org/10.1080/08912963.2019.1658096, 2019.
Rampino, M. R., Caldeira, K., and Zhu, Y.: A 27.5-My underlying periodicity
detected in extinction episodes of non-marine tetrapods, Hist. Biol., 33,
3084–3090, https://doi.org/10.1080/08912963.2020.1849178, 2020.
Raup, D. M.: Size of the Permo-Triassic bottleneck and its evolutionary
implications, Science, 206, 217–218, https://doi.org/10.1126/science.206.4415.217,
1979.
Sahney, S., Benton, M. J., and Ferry, P. A.: Links between global taxonomic
diversity, ecological diversity, and the expansion of vertebrates on land,
Biol. Lett., 6, 544–547, https://doi.org/10.1098/rsbl.2009.1024, 2010.
Sepkoski Jr., J. J.: Mass extinctions in the Phanerozoic oceans: A review,
Geological Implications of Impacts of Large Asteroids and Comets on the
Earth, in edited by: Silver, L. T. and Schultz, Geol. Soc. Am. Spec. Pap.,
190, 283–289, 1982.
Sepkoski Jr., J. J.: Phanerozoic overview of mass extinction. Patterns and
Processes in the History of Life, edited by: Raup, D. M. and Jablonski, D.,
Springer-Verlag, Heidelberg, Germany, 277–295, https://doi.org/10.1007/978-3-642-70831-2_15, 1986.
Sepkoski Jr., J. J.: Patterns of Phanerozoic extinctions: A perspective
from global data bases, in: Global Event Stratigraphy, edited by: Walliser,
O. H., Springer-Verlag, Berlin, Heidelberg, Germany, 35–52, 1996.
Song, H., Wignall, P. B., Tong, J., and Yin, H.: Two pulses of extinction
during the Permian-Triassic crisis., Nat. Geosci., 6, 52–56,
https://doi.org/10.1038/NGEO1649, 2013.
Song, H., Kemp, D. B., Tian, L., Chu, D., Song, H., and Dai, X.: Thresholds
of temperature change for mass extinctions, Nat. Comm., 12, 4694,
https://doi.org/10.1038/s41467-021-25019-2, 2021.
Stanley, S. M.: Relation of Phanerozoic stable isotope excursions to
climate, bacterial metabolism, and major extinctions, P. Natl. Acad. Sci.
USA, 107, 19185–19189, 2010.
Stanley, S. M.: Estimates of the magnitudes of major marine mass extinctions
in earth history, P. Natl. Acad. Sci. USA, 113, 6325–6334,
2016.
Stanley, S. M. and Yang, X.: A double mass extinction at the end of the
Paleozoic era, Science, 266, 1340–1344, https://doi.org/10.1126/science.266.5189.1340,
1994.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F.,
Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the
end-Permian environmental crisis, Earth Planet. Sc. Lett., 277, 490–500,
https://doi.org/10.1126/science.1224126, 2009.
Timmreck, C., Graf, H.-F., Zanchettin, D., Hagemann, S., Kleinen, T., and
Krüger, K.: Climate response to the Toba super-eruption:
Regional changes, Quat. Int., 258, 30–44,
https://doi.org/10.1016/j.quaint.2011.10.008, 2012.
Vellekoop, J., Sluijs, A., Smit, J., Schouten, S., J. Weijers, W. H.,
Sinninghe Damsté, J. S., and Brinkhuis H.: Rapid short-term cooling
following the Chicxulub impact at the Cretaceous–Paleogene boundary, P.
Natl. Acad. Sci. USA, 111, 7537–7541, 2014.
Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier,
C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M.,
Jeandel, C., Leinfelder, R., McNeill, J. R., deB. Richter, D., Steffen, W.,
Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A.,
Grinevald, J., Odada, E., Oreskes, N., and Wolfe, A. P.: The Anthropocene is
functionally and stratigraphically distinct from the Holocene, Science, 351,
aad2622, https://doi.org/10.1126/science.aad2622, 2016.