Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unprecedented summer hypoxia in southern Cape Cod Bay: an ecological response to regional climate change?
Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
W. Rockwell Geyer
Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
David Borkman
Rhode Island Department of Environmental Management, Providence, RI, 02908, USA
Tracy L. Pugh
Massachusetts Division of Marine Fisheries, New Bedford, MA, 02744, USA
Amy Costa
Department of Ecology, Center for Coastal Studies, Provincetown, MA, 02657, USA
Owen C. Nichols
Department of Ecology, Center for Coastal Studies, Provincetown, MA, 02657, USA
Related authors
No articles found.
Hans Burchard, Knut Klingbeil, Xiangyu Li, Lloyd Reese, and W. Rockwell Geyer
EGUsphere, https://doi.org/10.5194/egusphere-2025-6062, https://doi.org/10.5194/egusphere-2025-6062, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This review presents major aspects of estuarine mixing. Due to the large amounts of brackish water in estuaries produced by mixing of fresh river discharge and salty ocean water, mixing is one major characteristic of what is an estuary. Mixing is quantified locally as well as on estuary-wide scales. Diagnostics of integrated mixing are given for estuarine volumes bounded by transects as well as surfaces of constant salinity moving with the flow. Examples for real-world estuaries are given.
Cited articles
Anderson, D. M., Cembella, A. D., and Hallegraeff, G. M.:
Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management, Annu. Rev. Mar. Sci., 4, 143–176, 2012.
Allen, J. S.:
Some aspects of the forced wave response of stratified coastal regions, J. Phys. Oceanogr., 6, 113–119, 1976.
Allen, J. S. and Newberger, P. A.:
Downwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing, J. Phys. Oceanogr., 26, 2011–2035, 1996.
Baohong, C., Kang, W., Huige, G., and Hui, L.:
Karenia mikimotoi blooms in coastal waters of China from 1998 to 2017, Estuar. Coast. Shelf S., 249, 107034, 2021.
Bjørnsen, P. K. and Nielsen, T. G.:
Decimeter scale heterogeneity in the plankton during a pycnocline bloom of Gyrodinium aureolum, Mar. Ecol.-Prog. Ser., 263–267, 1991.
Brand, L. E., Campbell, L., and Bresnan, E.:
Karenia: The biology and ecology of a toxic genus, Harmful Algae, 14, 156–178, 2012.
Borkman, D.:
Phytoplankton and Nutrients in Buzzards Bay, Massachusetts 1987–1988, MS Thesis, University of Massachusetts Dartmouth, Dartmouth, MA, 203 pp, 1994.
Borkman, D., Pierce, R. W., and Turner, J. T.:
Dinoflagellate blooms in Buzzards Bay, Massachusetts, in: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, edited by: Smayda, T. J. and Shimizu, Y., Elsevier, 211–216, 1993.
Costa, A., Larson, E., and Stamieszkin, K.:
Quality Assurance Project Plan (QAPP) for water quality monitoring in Cape Cod Bay, 2020–2022, Massachusetts Water Resources Authority, Boston, Report 2020-07, p 88, 2020.
Dahl, E. and Brockmann, U. H.:
Does Gyrodinium aureolum Hulbert perform diurnal vertical migrations?, in: Red Tides: Biology, Environmental Science, and Toxicology, edited by: Okaichi, T., Anderson, D. M., and Nemoto, T., Elsevier, New York, 225–22, 1989.
Diaz, R. J.:
Overview of hypoxia around the world, J. Environ. Qual., 30, 275–281, 2001.
Edwards, K. F., Thomas, M. K. Klausmeier, C. A., and Litchman, E.:
Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level, Limnol. Oceanogr., 61, 1232–1244, 2016.
Eppley, R. W.:
Temperature and phytoplankton growth in the sea, Fish. B.-NOAA, 70, 1063–1085, 1972.
Falkowski, P. G. and Oliver, M. J.:
Mix and match: how climate selects phytoplankton, Nat. Rev. Microbiol., 5, 813–819, 2007.
Fennel, K. and Testa, J. M.:
Biogeochemical controls on coastal hypoxia, Annu. Rev. Mar. Sci., 11, 105–130, 2019.
Fennel, K., Laurent, A., Hetland, R., Justić, D., Ko, D. S., Lehrter, J., Murrell, M., Wang, L., Yu, L., and Zhang, W.:
Effects of model physics on hypoxia simulations for the northern Gulf of Mexico: A model intercomparison, J. Geophys. Res.-Oceans, 121, 5731–5750, 2016.
Forrest, D. R., Hetland, R. D., and DiMarco, S. F.:
Multivariable statistical regression models of the areal extent of hypoxia over the Texas–Louisiana continental shelf, Environ. Res. Lett., 6, 045002, https://doi.org/10.1088/1748-9326/7/1/019501, 2011.
García-Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R., Black, B. A., Smit, A. J., and Bograd, S. J.:
Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems, Frontiers in Marine Science, 2, 109, https://doi.org/10.3389/fmars.2015.00109, 2015.
Geyer, W. R., Gardner, G. B., Brown, W. S., Irish, D., Butman, B., Loder, T. C., and Signell, R. P.:
Physical Oceanographic investigation of Massachusetts and Cape Cod Bays, The Massachusetts Environmental Trust, http://pubs.er.usgs.gov/publication/70196621 (last access: 15 July 2022), 1992.
Grantham, B. A., Chan, F., Nielsen, K. J., Fox, D. S., Barth, J. A., Huyer, A., Lubchenco, J., and Menge, B. A.:
Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific, Nature, 429, 749–754, 2004.
Griffith, A. W. and Gobler,C. J.:
Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems, Harmful Algae, 91, 101590, https://doi.org/10.1016/j.hal.2019.03.008, 2020.
Honjo, T., Yamaguchi, M., Nakamure, O., Yamamoto, S., Ouchi, A., and Ohwada, K.:
A Relationship between Winter Water Temperature and the Timing of Summer
Gymnodinium nagasakiense Red Tides in Gokasho Bay,
Nippon Suisan Gakkai Shi, 57, 679–1682, 1991.
Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M., and Sommeijer, B.: Changes in turbulent mixing shift competition for light between phytoplankton species, Ecology, 85, 2960–2970, 2004.
Hunt, C. D., Borkman, D. G., Libby, P. S., Lacouture, R., Turner, J. T., and Mickelson, M. J.:
Phytoplankton patterns in Massachusetts Bay – 1992–2007, Estuar. Coast., 33, 448–470, 2010.
Jiang, M., Zhou, M., Libby, S., and Hunt, C. D.:
Influences of the Gulf of Maine intrusion on the Massachusetts Bay spring bloom: A comparison between 1998 and 2000, Cont. Shelf Res., 27, 2465–2485, 2007.
Koizumi, Y., Uchida, T., and Honjo, T.:
Diurnal vertical migration of Gymnodinium mikimotoi during a red tide in Hoketsu Bay, Japan, J. Plankton Res., 18, 289–294, 1996.
Kudela, R. M., Seeyave, S., and Cochlan, W. P.:
The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems, Prog. Oceanogr., 85, 122–135, 2010.
Lentz, S. J. and Fewings, M. R.:
The wind-and wave-driven inner-shelf circulation, Annu. Rev. Mar. Sci., 4, 317–343, 2012.
Li, X., Yan, T., Yu, R., and Zhou, M.:
A review of Karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism, Harmful Algae, 90, 101702, https://doi.org/10.1016/j.hal.2019.101702, 2019.
Libby, P. S., Borkman, D. G., Geyer, W. R., Turner, J. T., Costa, A. S., Wang, J., and Codiga, D.:
2017 Water column monitoring results, Massachusetts Water Resources Authority, Boston, Report 2018-04, p. 59, https://www.mwra.com/harbor/enquad/pdf/2018-04.pdf (last access: 7 July 2022), 2018.
Libby, P. S., Borkman, D. G., Geyer, W. R., Turner, J. T., Costa, A. S., Taylor, D. I., Wang, J., and Codiga, D.:
2019 Water column monitoring results, Boston: Massachusetts Water Resources Authority, Report 2020-08, p. 60, https://www.mwra.com/harbor/enquad/pdf/2020-08.pdf (last access: 15 July 2022), 2020.
Matsuyama, Y.:
Red tide due to the dinoflagellate Karenia mikimotoi in Hiroshima Bay 2002: environmental features during the red tide and associated fisheries damages to finfish and shellfish aquaculture, in: Proceedings of the 12th International Conference on Harmful Algae, International Society for the Study of harmful Algae and International Oceanographic Commission of UNESCO Copenhagen, 209–211, 2008.
Norberg, J.:
Biodiversity and ecosystem functioning: a complex adaptive systems approach, Limnol. Oceanogr., 49, 1269–1277, 2004.
O'Boyle, S., McDermott, G., Silke, J., and Cusack, C.:
Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland, Harmful Algae, 53, 77–85, 2016.
Oviatt, C. A., Hyde, K. J., Keller, A. A., and Turner, J. T.:
Production patterns in Massachusetts Bay with outfall relocation, Estuar. Coast., 30, 35–46, 2007.
Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. E., Nye, J. A., Record, R., Scannell, H. A., Scott, J. D., and Sherwood, G. D.:
Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery, Science, 350, 809–812, 2015.
Riegman, R., Boer, M. D., and Domis, L. D. S: Growth of harmful marine algae in multispecies cultures, J. Plankton Res., 18, 1851–1866, 1996.
Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T., Bouman, H., Forget, M. H., Maass, H., and Platt, T.:
Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea, Mar. Ecol.-Prog. Ser., 383, 73–84, 2009.
Schultz, M. and Kiørboe, T.:
Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates, J. Plankton Res., 31, 553–561, 2009.
Scully, M. E.:
The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay, J. Phys. Oceanogr., 40, 1435–1440, 2010.
Scully, M. E.:
The contribution of physical processes to inter-annual variations of hypoxia in Chesapeake Bay: A 30-yr modeling study, Limnol. Oceanogr., 61, 2243–2260, 2016.
Scully, M. E., Pugh, T. L., Geyer, W. R., Costa, A., Nichols, O. C.:
Southern Cape Cod Bay hypoxia data, WHOAS [data set], https://doi.org/10.26025/1912/29009, 2022.
Signell, R. P., Jenter, H. L., and Blumberg, A. F.:
Predicting the physical effects of relocating Boston's sewage outfall, Estuar. Coast. Shelf S., 50, 59–71, 2000.
Smayda, T. J.:
Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates, J. Oceanogr., 58, 281–294, 2002.
Smayda, T. J. and Reynolds, C. S.:
Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms, J. Plankton Res., 23, 447–461, 2001.
Tangen, K.:
Blooms of Gyrodinium aureolum (Dinophyceae) in North European waters, accompanied by mortality in marine organisms, Sarsia, 63, 123–133, 1977.
Tilzer, M. M., Gieskes, W. W., and Beese, B.:
Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton, Polar Biol., 5, 105–111, 1986.
Turner, J. T., Borkman, D. G., and Pierce, R. W.:
Should Red Tide Dinoflagellates be Sampled Using Techniques for Microzooplankton Rather than Phytoplankton?, in: Harmful Marine Algal Blooms, edited by: Lassus, P., Lavoisier, Paris, France, 737–742, 1995.
Uchida, T., Toda, S., Matsuyama, Y., Yamaguchi, M., Kotani, Y., and Honjo, T.:
Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture, J. Exp. Mar. Biol. Ecol., 241, 285–299, 1999.
US DOC/NOAA/NWS/NDBC (National Data Buoy Center): Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys [Buoy 44103], NOAA National Centers for Environmental Information [data set], https://www.ndbc.noaa.gov/station_history.php?station=44013 (last access: 1 February 2022), 1971.
Wells, M. L., Karlson, B., Wulff, A., Kudela, R., Trick, C., Asnaghi, C., Berdalet, E., Cochlan, W.,Davidson, K., De Rijcke, M., and Dutkiewicz, S.:
Future HAB science: Directions and challenges in a changing climate, Harmful Algae, 91, 101632, https://doi.org/10.1016/j.hal.2019.101632, 2020.
Wilson, R. E., Swanson, R. L., and Crowley, H. A.:
Perspectives on long-term variations in hypoxic conditions in western Long Island Sound, J. Geophys. Res.-Oceans, 113, C12011, https://doi.org/10.1029/2007JC004693, 2008.
Winder, M. and Sommer, U.:
Phytoplankton response to a changing climate, Hydrobiologia, 698, 5–16, 2012.
Xue, P., Chen, C., and Beardsley, R. C.:. Observing system simulation experiments of dissolved oxygen monitoring in Massachusetts Bay, J. Geophys. Res.-Oceans, 117, C05014, https://doi.org/10.1029/2011JC007843, 2012.
Yu, L., Fennel, K., and Laurent, A.:
A modeling study of physical controls on hypoxia generation in the northern Gulf of Mexico, J. Geophys. Res.-Oceans, 120, 5019–5039, 2015.
Short summary
For two consecutive summers, the bottom waters in southern Cape Cod Bay became severely depleted of dissolved oxygen. Low oxygen levels in bottom waters have never been reported in this area before, and this unprecedented occurrence is likely the result of a new algae species that recently began blooming during the late-summer months. We present data suggesting that blooms of this new species are the result of regional climate change including warmer waters and changes in summer winds.
For two consecutive summers, the bottom waters in southern Cape Cod Bay became severely depleted...
Altmetrics
Final-revised paper
Preprint