Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4267-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4267-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
LMD-IPSL, Ecole Normale Supérieure – Université PSL, CNRS,
École Polytechnique, Sorbonne Université, Paris, France
Olivier Aumont
LOCEAN-IPSL, Sorbonne Université, CNRS, IRD, MNHN, Paris,
France
Lester Kwiatkowski
LOCEAN-IPSL, Sorbonne Université, CNRS, IRD, MNHN, Paris,
France
Corentin Clerc
LMD-IPSL, Ecole Normale Supérieure – Université PSL, CNRS,
École Polytechnique, Sorbonne Université, Paris, France
Léonard Dupont
LMD-IPSL, Ecole Normale Supérieure – Université PSL, CNRS,
École Polytechnique, Sorbonne Université, Paris, France
Christian Ethé
IPSL, Sorbonne Université, CNRS, Paris, France
Thomas Gorgues
LOPS, IUEM, Université de Bretagne Occidentale, CNRS, IRD,
Ifremer, Brest, France
Roland Séférian
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Alessandro Tagliabue
School of Environmental Sciences, University of Liverpool, Liverpool, UK
Viewed
Total article views: 3,769 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Dec 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,703 | 986 | 80 | 3,769 | 66 | 75 |
- HTML: 2,703
- PDF: 986
- XML: 80
- Total: 3,769
- BibTeX: 66
- EndNote: 75
Total article views: 2,558 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Sep 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,926 | 573 | 59 | 2,558 | 51 | 58 |
- HTML: 1,926
- PDF: 573
- XML: 59
- Total: 2,558
- BibTeX: 51
- EndNote: 58
Total article views: 1,211 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Dec 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
777 | 413 | 21 | 1,211 | 15 | 17 |
- HTML: 777
- PDF: 413
- XML: 21
- Total: 1,211
- BibTeX: 15
- EndNote: 17
Viewed (geographical distribution)
Total article views: 3,769 (including HTML, PDF, and XML)
Thereof 3,639 with geography defined
and 130 with unknown origin.
Total article views: 2,558 (including HTML, PDF, and XML)
Thereof 2,491 with geography defined
and 67 with unknown origin.
Total article views: 1,211 (including HTML, PDF, and XML)
Thereof 1,148 with geography defined
and 63 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
21 citations as recorded by crossref.
- Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean S. Bonnet et al. 10.1126/science.abq4654
- Priorities, opportunities, and challenges for integrating microorganisms into Earth system models for climate change prediction J. Lennon et al. 10.1128/mbio.00455-24
- Nitrogen fixation in the widely distributed marine γ-proteobacterial diazotroph Candidatus Thalassolituus haligoni S. Rose et al. 10.1126/sciadv.adn1476
- A global biogeography analysis reveals vulnerability of surface marine zooplankton to anthropogenic stressors C. Richon et al. 10.1016/j.oneear.2023.12.002
- Hotspots and drivers of compound marine heatwaves and low net primary production extremes N. Le Grix et al. 10.5194/bg-19-5807-2022
- Feedbacks between phytoplankton and nutrient cycles in a warming ocean D. Hutchins & A. Tagliabue 10.1038/s41561-024-01454-w
- Anthropogenic climate change drives non-stationary phytoplankton internal variability G. Elsworth et al. 10.5194/bg-20-4477-2023
- The carbonate pump feedback on alkalinity and the carbon cycle in the 21st century and beyond A. Planchat et al. 10.5194/esd-15-565-2024
- When to add a new process to a model – and when not: A marine biogeochemical perspective A. Martin et al. 10.1016/j.ecolmodel.2024.110870
- Advances in understanding of air–sea exchange and cycling of greenhouse gases in the upper ocean H. Bange et al. 10.1525/elementa.2023.00044
- Low-latitude mesopelagic nutrient recycling controls productivity and export K. Rodgers et al. 10.1038/s41586-024-07779-1
- ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model R. Ying et al. 10.5194/gmd-16-813-2023
- Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model N. Li et al. 10.5194/bg-21-4361-2024
- Mechanistic understanding of diazotroph aggregation and sinking: “A rolling tank approach” F. Ababou et al. 10.1002/lno.12301
- Filter‐feeding gelatinous macrozooplankton response to climate change and implications for benthic food supply and global carbon cycle C. Clerc et al. 10.1111/gcb.16942
- Unsolved mysteries in marine nitrogen fixation J. Zehr & D. Capone 10.1016/j.tim.2023.08.004
- Fronts divide diazotroph communities in the Southern Indian Ocean S. Chowdhury et al. 10.1093/femsec/fiae095
- Applying ensemble ecosystem model projections to future-proof marine conservation planning in the Northwest Atlantic Ocean A. Bryndum-Buchholz et al. 10.1139/facets-2023-0024
- Lateral Advection of Particulate Organic Matter in the Eastern Indian Ocean O. Kehinde et al. 10.1029/2023JC019723
- Nutrient uptake plasticity in phytoplankton sustains future ocean net primary production E. Kwon et al. 10.1126/sciadv.add2475
- Diazotrophs are overlooked contributors to carbon and nitrogen export to the deep ocean S. Bonnet et al. 10.1038/s41396-022-01319-3
20 citations as recorded by crossref.
- Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean S. Bonnet et al. 10.1126/science.abq4654
- Priorities, opportunities, and challenges for integrating microorganisms into Earth system models for climate change prediction J. Lennon et al. 10.1128/mbio.00455-24
- Nitrogen fixation in the widely distributed marine γ-proteobacterial diazotroph Candidatus Thalassolituus haligoni S. Rose et al. 10.1126/sciadv.adn1476
- A global biogeography analysis reveals vulnerability of surface marine zooplankton to anthropogenic stressors C. Richon et al. 10.1016/j.oneear.2023.12.002
- Hotspots and drivers of compound marine heatwaves and low net primary production extremes N. Le Grix et al. 10.5194/bg-19-5807-2022
- Feedbacks between phytoplankton and nutrient cycles in a warming ocean D. Hutchins & A. Tagliabue 10.1038/s41561-024-01454-w
- Anthropogenic climate change drives non-stationary phytoplankton internal variability G. Elsworth et al. 10.5194/bg-20-4477-2023
- The carbonate pump feedback on alkalinity and the carbon cycle in the 21st century and beyond A. Planchat et al. 10.5194/esd-15-565-2024
- When to add a new process to a model – and when not: A marine biogeochemical perspective A. Martin et al. 10.1016/j.ecolmodel.2024.110870
- Advances in understanding of air–sea exchange and cycling of greenhouse gases in the upper ocean H. Bange et al. 10.1525/elementa.2023.00044
- Low-latitude mesopelagic nutrient recycling controls productivity and export K. Rodgers et al. 10.1038/s41586-024-07779-1
- ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model R. Ying et al. 10.5194/gmd-16-813-2023
- Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model N. Li et al. 10.5194/bg-21-4361-2024
- Mechanistic understanding of diazotroph aggregation and sinking: “A rolling tank approach” F. Ababou et al. 10.1002/lno.12301
- Filter‐feeding gelatinous macrozooplankton response to climate change and implications for benthic food supply and global carbon cycle C. Clerc et al. 10.1111/gcb.16942
- Unsolved mysteries in marine nitrogen fixation J. Zehr & D. Capone 10.1016/j.tim.2023.08.004
- Fronts divide diazotroph communities in the Southern Indian Ocean S. Chowdhury et al. 10.1093/femsec/fiae095
- Applying ensemble ecosystem model projections to future-proof marine conservation planning in the Northwest Atlantic Ocean A. Bryndum-Buchholz et al. 10.1139/facets-2023-0024
- Lateral Advection of Particulate Organic Matter in the Eastern Indian Ocean O. Kehinde et al. 10.1029/2023JC019723
- Nutrient uptake plasticity in phytoplankton sustains future ocean net primary production E. Kwon et al. 10.1126/sciadv.add2475
1 citations as recorded by crossref.
Latest update: 20 Nov 2024
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
The impact of anthropogenic climate change on the biological production of phytoplankton in the...
Altmetrics
Final-revised paper
Preprint