Articles | Volume 19, issue 2
https://doi.org/10.5194/bg-19-491-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-491-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems
Sami W. Rifai
CORRESPONDING AUTHOR
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Climate Change Research Centre, University of New South Wales,
Sydney, NSW 2052, Australia
Martin G. De Kauwe
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Climate Change Research Centre, University of New South Wales,
Sydney, NSW 2052, Australia
Evolution & Ecology Research Centre, University of New South
Wales, Sydney, NSW 2052, Australia
School of Biological Sciences, University of Bristol, Bristol,
BS8 1TQ, UK
Anna M. Ukkola
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Research School of Earth Sciences, Australian National
University, Canberra, ACT 0200, Australia
Lucas A. Cernusak
College of Science and Engineering, James Cook University,
Cairns, QLD 4188, Australia
Patrick Meir
Research School of Biology, The Australian National
University, Acton, ACT 2601, Australia
School of Geosciences, University of Edinburgh, Edinburgh
EH89XP, UK
Belinda E. Medlyn
Hawkesbury Institute for the Environment, Western Sydney
University, Penrith, NSW 2753, Australia
Andy J. Pitman
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Climate Change Research Centre, University of New South Wales,
Sydney, NSW 2052, Australia
Related authors
No articles found.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024, https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Short summary
Understanding the link between climate and carbon fluxes is crucial for predicting how climate change will impact carbon sinks. We estimated carbon dioxide (CO2) fluxes from deadwood in tropical Australia using wood moisture content and temperature. Our model predicted that the majority of deadwood carbon is released as CO2, except when termite activity is detected. Future models should also incorporate wood traits, like species and chemical composition, to better predict fluxes.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Sam P. Jones, Aurore Kaisermann, Jérôme Ogée, Steven Wohl, Alexander W. Cheesman, Lucas A. Cernusak, and Lisa Wingate
SOIL, 7, 145–159, https://doi.org/10.5194/soil-7-145-2021, https://doi.org/10.5194/soil-7-145-2021, 2021
Short summary
Short summary
Understanding how the rate of oxygen isotope exchange between water and CO2 varies in soils is key for using the oxygen isotope composition of atmospheric CO2 as a tracer of biosphere CO2 fluxes at large scales. Across 44 diverse soils the rate of this exchange responded to pH, nitrate and microbial biomass, which are hypothesised to alter activity of the enzyme carbonic anhydrase in soils. Using these three soil traits, it is now possible to predict how this isotopic exchange varies spatially.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences, 18, 2181–2203, https://doi.org/10.5194/bg-18-2181-2021, https://doi.org/10.5194/bg-18-2181-2021, 2021
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) describes changes in the sea surface temperature patterns of the Pacific Ocean. This influences the global weather, impacting vegetation on land. There are two types of El Niño: central Pacific (CP) and eastern Pacific (EP). In this study, we explored the long-term impacts on the carbon balance on land linked to the two El Niño types. Using a dynamic vegetation model, we simulated what would happen if only either CP or EP El Niño events had occurred.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Jun Ge, Andrew J. Pitman, Weidong Guo, Beilei Zan, and Congbin Fu
Hydrol. Earth Syst. Sci., 24, 515–533, https://doi.org/10.5194/hess-24-515-2020, https://doi.org/10.5194/hess-24-515-2020, 2020
Short summary
Short summary
We investigate the impact of revegetation on the hydrology of the Loess Plateau based on high-resolution simulations using the Weather Research and Forecasting (WRF) model. We find that past revegetation has caused decreased runoff and soil moisture with increased evapotranspiration as well as little response from rainfall. WRF suggests that further revegetation could aggravate this water imbalance. We caution that further revegetation might be unsustainable in this region.
Jinyan Yang, Belinda E. Medlyn, Martin G. De Kauwe, Remko A. Duursma, Mingkai Jiang, Dushan Kumarathunge, Kristine Y. Crous, Teresa E. Gimeno, Agnieszka Wujeska-Klause, and David S. Ellsworth
Biogeosciences, 17, 265–279, https://doi.org/10.5194/bg-17-265-2020, https://doi.org/10.5194/bg-17-265-2020, 2020
Short summary
Short summary
This study addressed a major knowledge gap in the response of forest productivity to elevated CO2. We first quantified forest productivity of an evergreen forest under both ambient and elevated CO2, using a model constrained by in situ measurements. The simulation showed the canopy productivity response to elevated CO2 to be smaller than that at the leaf scale due to different limiting processes. This finding provides a key reference for the understanding of CO2 impacts on forest ecosystems.
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, https://doi.org/10.5194/bg-16-4463-2019, 2019
Short summary
Short summary
Across the Amazon rainforest, trees take in carbon through photosynthesis. However, photosynthesis across the basin is threatened by predicted shifts in rainfall patterns. To unpick how changes in rainfall affect photosynthesis, we use a model which combines climate data with our knowledge of photosynthesis and other plant processes. We find that stomatal constraints are less important, and instead shifts in leaf surface area and leaf properties drive changes in photosynthesis with rainfall.
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069–2089, https://doi.org/10.5194/gmd-12-2069-2019, https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Short summary
Here we used a simple analytical framework developed by Comins and McMurtrie (1993) to investigate how different model assumptions affected plant responses to elevated CO2. This framework is useful in revealing both the consequences and the mechanisms through which different assumptions affect predictions. We therefore recommend the use of this framework to analyze the likely outcomes of new assumptions before introducing them to complex model structures.
Sophie V. J. van der Horst, Andrew J. Pitman, Martin G. De Kauwe, Anna Ukkola, Gab Abramowitz, and Peter Isaac
Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019, https://doi.org/10.5194/bg-16-1829-2019, 2019
Short summary
Short summary
Measurements of surface fluxes are taken around the world and are extremely valuable for understanding how the land and atmopshere interact, and how the land can amplify temerature extremes. However, do these measurements sample extreme temperatures, or are they biased to the average? We examine this question and highlight data that do measure surface fluxes under extreme conditions. This provides a way forward to help model developers improve their models.
Martin G. De Kauwe, Belinda E. Medlyn, Andrew J. Pitman, John E. Drake, Anna Ukkola, Anne Griebel, Elise Pendall, Suzanne Prober, and Michael Roderick
Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, https://doi.org/10.5194/bg-16-903-2019, 2019
Short summary
Short summary
Recent experimental evidence suggests that during heat extremes, trees may reduce photosynthesis to near zero but increase transpiration. Using eddy covariance data and examining the 3 days leading up to a temperature extreme, we found evidence of reduced photosynthesis and sustained or increased latent heat fluxes at Australian wooded flux sites. However, when focusing on heatwaves, we were unable to disentangle photosynthetic decoupling from the effect of increasing vapour pressure deficit.
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159–3185, https://doi.org/10.5194/gmd-11-3159-2018, https://doi.org/10.5194/gmd-11-3159-2018, 2018
Short summary
Short summary
Large uncertainty is inherent in model predictions due to imperfect knowledge of how to describe the processes that a model is intended to represent. Yet methods to quantify and evaluate this model hypothesis uncertainty are limited. To address this, the multi-assumption architecture and testbed (MAAT) automates the generation of all possible models by combining multiple representations of multiple processes. MAAT provides a formal framework for quantification of model hypothesis uncertainty.
Ned Haughton, Gab Abramowitz, Martin G. De Kauwe, and Andy J. Pitman
Biogeosciences, 15, 4495–4513, https://doi.org/10.5194/bg-15-4495-2018, https://doi.org/10.5194/bg-15-4495-2018, 2018
Short summary
Short summary
This project explores predictability in energy, water, and carbon fluxes in the free-use Tier 1 of the FLUXNET 2015 dataset using a uniqueness metric based on comparison of locally and globally trained models. While there is broad spread in predictability between sites, we found strikingly few strong patterns. Nevertheless, these results can contribute to the standardisation of site selection for land surface model evaluation and help pinpoint regions that are ripe for further FLUXNET research.
Rebecca J. Oliver, Lina M. Mercado, Stephen Sitch, David Simpson, Belinda E. Medlyn, Yan-Shih Lin, and Gerd A. Folberth
Biogeosciences, 15, 4245–4269, https://doi.org/10.5194/bg-15-4245-2018, https://doi.org/10.5194/bg-15-4245-2018, 2018
Short summary
Short summary
Potential gains in terrestrial carbon sequestration over Europe from elevated CO2 can be partially offset by concurrent rises in tropospheric O3. The land surface model JULES was run in a factorial suite of experiments showing that by 2050 simulated GPP was reduced by 4 to 9 % due to plant O3 damage. Large regional variations exist with larger impacts identified for temperate compared to boreal regions. Plant O3 damage was greatest over the twentieth century and declined into the future.
Kashif Mahmud, Belinda E. Medlyn, Remko A. Duursma, Courtney Campany, and Martin G. De Kauwe
Biogeosciences, 15, 4003–4018, https://doi.org/10.5194/bg-15-4003-2018, https://doi.org/10.5194/bg-15-4003-2018, 2018
Short summary
Short summary
A major limitation of current terrestrial vegetation models is that we do not know how to model C balance processes under sink-limited conditions. To address this limitation, we applied data assimilation of a simple C balance model to a manipulative experiment in which sink limitation was induced with low rooting volume. Our analysis framework allowed us to infer that, in addition to a feedback on photosynthetic rates, the reduction in growth was effected by other C balance processes.
Alexandre A. Renchon, Anne Griebel, Daniel Metzen, Christopher A. Williams, Belinda Medlyn, Remko A. Duursma, Craig V. M. Barton, Chelsea Maier, Matthias M. Boer, Peter Isaac, David Tissue, Victor Resco de Dios, and Elise Pendall
Biogeosciences, 15, 3703–3716, https://doi.org/10.5194/bg-15-3703-2018, https://doi.org/10.5194/bg-15-3703-2018, 2018
Short summary
Short summary
We report the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) in a temperate evergreen broadleaved forest in Sydney, Australia. We investigated how carbon exchange varied with climatic drivers and canopy dynamics (leaf area index, litter fall). We found that our site acted as a net source of carbon in summer and a net sink in winter. Ecosystem respiration (ER) drove NEE seasonality, as the seasonal amplitude of ER was greater than gross primary productivity.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Anna Ukkola
Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, https://doi.org/10.5194/hess-22-1317-2018, 2018
Short summary
Short summary
We present a new global ET dataset and associated uncertainty with monthly temporal resolution for 2000–2009 and 0.5 grid cell size. Six existing gridded ET products are combined using a weighting approach trained by observational datasets from 159 FLUXNET sites. We confirm that point-based estimates of flux towers provide information at the grid scale of these products. We also show that the weighted product performs better than 10 different existing global ET datasets in a range of metrics.
Ned Haughton, Gab Abramowitz, and Andy J. Pitman
Geosci. Model Dev., 11, 195–212, https://doi.org/10.5194/gmd-11-195-2018, https://doi.org/10.5194/gmd-11-195-2018, 2018
Short summary
Short summary
Previous studies indicate that fluxes of heat, water, and carbon between the land surface and atmosphere are substantially more predictable than the performance of the current crop of land surface models would indicate. This study uses simple empirical models to estimate the amount of useful information in meteorological forcings that is available for predicting land surface fluxes. These models can be used as benchmarks for land surface models and may help identify areas ripe for improvement.
Martin G. De Kauwe, Belinda E. Medlyn, Jürgen Knauer, and Christopher A. Williams
Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, https://doi.org/10.5194/bg-14-4435-2017, 2017
Short summary
Short summary
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere. We combined an extensive literature summary with estimates of coupling derived from FLUXNET data. We found notable departures from the values previously reported. These data form a model benchmarking metric to test existing coupling assumptions.
Richard Wartenburger, Martin Hirschi, Markus G. Donat, Peter Greve, Andy J. Pitman, and Sonia I. Seneviratne
Geosci. Model Dev., 10, 3609–3634, https://doi.org/10.5194/gmd-10-3609-2017, https://doi.org/10.5194/gmd-10-3609-2017, 2017
Short summary
Short summary
This article analyses regional changes in climate extremes as a function of projected changes in global mean temperature. We introduce the DROUGHT-HEAT Regional Climate Atlas, an interactive tool to analyse and display a range of well-established climate extremes and water-cycle indices and their changes as a function of global warming. Readers are encouraged to use the online tool for visualization of specific indices of interest, e.g. to assess their response to 1.5 or 2 °C global warming.
Anna M. Ukkola, Ned Haughton, Martin G. De Kauwe, Gab Abramowitz, and Andy J. Pitman
Geosci. Model Dev., 10, 3379–3390, https://doi.org/10.5194/gmd-10-3379-2017, https://doi.org/10.5194/gmd-10-3379-2017, 2017
Short summary
Short summary
Flux towers measure energy, carbon dioxide and water vapour fluxes. These data have become essential for evaluating land surface models (LSMs) – key tools for projecting future climate change. However, these data as released are not immediately usable with LSMs and must be post-processed to change units, screened for missing data and gap-filling. We present an open-source R package that transforms flux tower measurements into a format directly usable by LSMs.
Yiqi Luo, Zheng Shi, Xingjie Lu, Jianyang Xia, Junyi Liang, Jiang Jiang, Ying Wang, Matthew J. Smith, Lifen Jiang, Anders Ahlström, Benito Chen, Oleksandra Hararuk, Alan Hastings, Forrest Hoffman, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Katherine Todd-Brown, and Ying-Ping Wang
Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, https://doi.org/10.5194/bg-14-145-2017, 2017
Short summary
Short summary
Climate change is strongly regulated by land carbon cycle. However, we lack the ability to predict future land carbon sequestration. Here, we develop a novel framework for understanding what determines the direction and rate of future change in land carbon storage. The framework offers a suite of new approaches to revolutionize land carbon model evaluation and improvement.
Sam P. Jones, Torsten Diem, Lidia P. Huaraca Quispe, Adan J. Cahuana, Dave S. Reay, Patrick Meir, and Yit Arn Teh
Biogeosciences, 13, 4151–4165, https://doi.org/10.5194/bg-13-4151-2016, https://doi.org/10.5194/bg-13-4151-2016, 2016
Short summary
Short summary
Tropical montane forests represent a significant portion of Andean land cover, however, soil-atmosphere methane exchange in these ecosystems is under studied. Here we report on soil methane cycling in montane forests of the southern Peruvian Andes. These soils acted as a net sink for atmospheric methane and variation in uptake across the studied forests was best explained by nitrate inhibition of oxidation and/or limitations on the inward diffusion of methane from the atmosphere into the soil.
Anna M. Ukkola, Andy J. Pitman, Mark Decker, Martin G. De Kauwe, Gab Abramowitz, Jatin Kala, and Ying-Ping Wang
Hydrol. Earth Syst. Sci., 20, 2403–2419, https://doi.org/10.5194/hess-20-2403-2016, https://doi.org/10.5194/hess-20-2403-2016, 2016
M. G. De Kauwe, S.-X. Zhou, B. E. Medlyn, A. J. Pitman, Y.-P. Wang, R. A. Duursma, and I. C. Prentice
Biogeosciences, 12, 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, https://doi.org/10.5194/bg-12-7503-2015, 2015
Short summary
Short summary
Future climate change has the potential to increase drought in many regions of the globe. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art models currently assume the same drought sensitivity for all vegetation. Our results indicate that models will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.
J. Kala, M. G. De Kauwe, A. J. Pitman, R. Lorenz, B. E. Medlyn, Y.-P Wang, Y.-S Lin, and G. Abramowitz
Geosci. Model Dev., 8, 3877–3889, https://doi.org/10.5194/gmd-8-3877-2015, https://doi.org/10.5194/gmd-8-3877-2015, 2015
Short summary
Short summary
We implement a new stomatal conductance scheme within a land surface model coupled to a global climate model. The new model differs from the default in that it allows model parameters to vary by the different plant functional types, derived from global synthesis of observations. We show that the new scheme results in improvements in the model climatology and improves existing biases in warm temperature extremes by up to 10-20% over the boreal forests during summer.
M. Decker, A. Pitman, and J. Evans
Hydrol. Earth Syst. Sci., 19, 3433–3447, https://doi.org/10.5194/hess-19-3433-2015, https://doi.org/10.5194/hess-19-3433-2015, 2015
M. G. De Kauwe, J. Kala, Y.-S. Lin, A. J. Pitman, B. E. Medlyn, R. A. Duursma, G. Abramowitz, Y.-P. Wang, and D. G. Miralles
Geosci. Model Dev., 8, 431–452, https://doi.org/10.5194/gmd-8-431-2015, https://doi.org/10.5194/gmd-8-431-2015, 2015
Short summary
Short summary
Stomatal conductance affects the fluxes of carbon, energy and water between the vegetated land surface and the atmosphere. We test an implementation of an optimal stomatal conductance model within the CABLE land surface model (LSM). The new implementation resulted in a large reduction in the annual fluxes of transpiration across evergreen needleleaf, tundra and C4 grass regions. We conclude that optimisation theory can yield a tractable approach to predicting stomatal conductance in LSMs.
J.-F. Exbrayat, A. J. Pitman, and G. Abramowitz
Biogeosciences, 11, 6999–7008, https://doi.org/10.5194/bg-11-6999-2014, https://doi.org/10.5194/bg-11-6999-2014, 2014
Short summary
Short summary
We use a reduced complexity soil organic carbon (SOC) model to address the influence of two parameters on the response of SOC stocks to climate change: baseline turnover time (k) and temperature sensitivity of decomposition (Q10). In our model, k determines SOC stocks and the magnitude of the response to climate change (from 1850 to 2100 under RCP 8.5) while Q10 drives its sign. We dismiss unlikely simulations using global SOC data to reduce the uncertainty in projections and parameter values.
J.-F. Exbrayat, A. J. Pitman, and G. Abramowitz
Geosci. Model Dev., 7, 2683–2692, https://doi.org/10.5194/gmd-7-2683-2014, https://doi.org/10.5194/gmd-7-2683-2014, 2014
Short summary
Short summary
Pre-industrial soil organic carbon (SOC) stocks vary 6-fold in models used in the 5th IPCC Assessment Report. This paper shows that this range is largely determined by model-specific responses of microbal decomposition during the equilibration procedure. As SOC stocks are maintained through the present and to 2100 almost unchanged, we propose that current SOC observations could be used to constrain this equilibration procedure and thereby reduce the uncertainty in climate change projections.
J. Kala, J. P. Evans, A. J. Pitman, C. B. Schaaf, M. Decker, C. Carouge, D. Mocko, and Q. Sun
Geosci. Model Dev., 7, 2121–2140, https://doi.org/10.5194/gmd-7-2121-2014, https://doi.org/10.5194/gmd-7-2121-2014, 2014
R. Lorenz, A. J. Pitman, M. G. Donat, A. L. Hirsch, J. Kala, E. A. Kowalczyk, R. M. Law, and J. Srbinovsky
Geosci. Model Dev., 7, 545–567, https://doi.org/10.5194/gmd-7-545-2014, https://doi.org/10.5194/gmd-7-545-2014, 2014
J.-F. Exbrayat, A. J. Pitman, Q. Zhang, G. Abramowitz, and Y.-P. Wang
Biogeosciences, 10, 7095–7108, https://doi.org/10.5194/bg-10-7095-2013, https://doi.org/10.5194/bg-10-7095-2013, 2013
A. M. Ukkola and I. C. Prentice
Hydrol. Earth Syst. Sci., 17, 4177–4187, https://doi.org/10.5194/hess-17-4177-2013, https://doi.org/10.5194/hess-17-4177-2013, 2013
Q. Zhang, A. J. Pitman, Y. P. Wang, Y. J. Dai, and P. J. Lawrence
Earth Syst. Dynam., 4, 333–345, https://doi.org/10.5194/esd-4-333-2013, https://doi.org/10.5194/esd-4-333-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Biomass Yield Potential, Feedstock Quality, and Nutrient Removal of Perennial Buffer Strips under Continuous Zero Fertilizer Application
Crowd-sourced trait data can be used to delimit global biomes
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Water uptake patterns of pea and barley responded to drought but not to cropping systems
Geodiversity and biodiversity on a volcanic island: the role of scattered phonolites for plant diversity and performance
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc)
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and Do Kyoung Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-203, https://doi.org/10.5194/egusphere-2024-203, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass, as potential income for farmers. In this study, the forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type showed better sustainability than the forage buffer and a continuous yield supply potential.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
EGUsphere, https://doi.org/10.5194/egusphere-2024-276, https://doi.org/10.5194/egusphere-2024-276, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scale and to assess impacts of climate change. Yet, there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess if trait information is suitable to delimit biomes. Although the trait data was heterogeneous and showed large gaps with respect to the spatial distribution, we found that a trait-based biome classification is possible.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
David Kienle, Anna Walentowitz, Leyla Sungur, Alessandro Chiarucci, Severin D. H. Irl, Anke Jentsch, Ole R. Vetaas, Richard Field, and Carl Beierkuhnlein
Biogeosciences, 19, 1691–1703, https://doi.org/10.5194/bg-19-1691-2022, https://doi.org/10.5194/bg-19-1691-2022, 2022
Short summary
Short summary
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of small phonolite rocks differing in color and surface. On La Palma (Canary Islands), phonolites appear to be more suitable for plants than the omnipresent basalts. Therefore, we expected phonolites to be species-rich with larger plant individuals compared to the surrounding basaltic areas. Indeed, as expected, we found more species on phonolites and larger plant individuals in general.
Vera Porwollik, Susanne Rolinski, Jens Heinke, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Biogeosciences, 19, 957–977, https://doi.org/10.5194/bg-19-957-2022, https://doi.org/10.5194/bg-19-957-2022, 2022
Short summary
Short summary
The study assesses impacts of grass cover crop cultivation on cropland during main-crop off-season periods applying the global vegetation model LPJmL (V.5.0-tillage-cc). Compared to simulated bare-soil fallowing practices, cover crops led to increased soil carbon content and reduced nitrogen leaching rates on the majority of global cropland. Yield responses of main crops following cover crops vary with location, duration of altered management, crop type, water regime, and tillage practice.
Cited articles
Ackerman, D., Millet, D. B., and Chen, X.: Global Estimates of Inorganic
Nitrogen Deposition Across Four Decades, Global Biogeochem. Cy., 33, 100–107,
https://doi.org/10.1029/2018GB005990, 2019. a
Adzhar, R., Kelley, D. I., Dong, N., Torello Raventos, M., Veenendaal, E., Feldpausch, T. R., Philips, O. L., Lewis, S., Sonké, B., Taedoumg, H., Schwantes Marimon, B., Domingues, T., Arroyo, L., Djagbletey, G., Saiz, G., and Gerard, F.: Assessing MODIS Vegetation Continuous Fields tree cover product (collection 6): performance and applicability in tropical forests and savannas, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-460, in review, 2021. a
Ahlstrom, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M.,
Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E.,
Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire,
A., Zaehle, S., and Zeng, N.: The Dominant Role of Semi-Arid Ecosystems in
the Trend and Variability of the Land CO2 Sink, Science, 348, 895–899,
https://doi.org/10.1126/science.aaa1668, 2015. a
Ainsworth, E. A. and Rogers, A.: The Response of Photosynthesis and Stomatal
Conductance to Rising [CO2]: Mechanisms and
Environmental Interactions: Photosynthesis and Stomatal Conductance
Responses to Rising [CO2], Plant Cell. Environ., 30, 258–270,
https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007. a
Atlas of Living Australia: The Dead Tree Detective| Project|BioCollect, available at:
https://biocollect.ala.org.au/acsa/project/index/77285a13-e231-49e8-b212-660c66c74bac (last access: 28 November 2020),
2020. a
Australian Department of Agriculture, Water and the Environment: Australian
Department of Agriculture, Water and the Environment, available at:
http://www.environment.gov.au/ (last access: 31 March 2021), 2020. a
Bastos, A., Running, S. W., Gouveia, C., and Trigo, R. M.: The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011, J. Geophys. Res.-Biogeo., 118, 1247–1255,
https://doi.org/10.1002/jgrg.20100, 2013. a
Bronaugh, D. and Werner, A. (for the Pacific Climate Impacts Consortium): Zyp: Zhang + Yue-Pilon Trends Package, available at:
https://CRAN.R-project.org/package=zyp (last access: 24 January 2022), 2019. a
Bureau of Meteorology: Annual Australian Climate Statement 2019, available at:
http://www.bom.gov.au/climate/current/annual/aus/2019/ (last access: 24 October 2020),
2019. a
Carlson, T. N. and Ripley, D. A.: On the Relation between NDVI, Fractional
Vegetation Cover, and Leaf Area Index, Remote Sens. Environ., 62, 241–252,
https://doi.org/10.1016/S0034-4257(97)00104-1, 1997. a, b
Cortés, J., Mahecha, M. D., Reichstein, M., Myneni, R. B., Chen, C., and
Brenning, A.: Where Are Global Vegetation Greening and Browning Trends
Significant?, Geophys. Res. Lett., 48, e2020GL091496, https://doi.org/10.1029/2020GL091496, 2021. a
CSIRO and Bureau of Meteorology: State of the Climate 2020, available at:
https://www.csiro.au/-/media/OnA/Files/State-of-the-Climate-2020.pdf (last access: 12 November 2020), 2020. a
Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R. T., Whitley, R. J., Wang, H., Evans, B. J., Gallego-Sala, A. V., Sykes, M. T., and Cramer, W.: Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture, Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, 2017. a
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang,
Y.-P., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wå rlind, D., Weng,
E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C., Asao, S.,
Smith, B., McCarthy, H. R., Iversen, C. M., Hanson, P. J., Warren, J. M.,
Oren, R., and Norby, R. J.: Where Does the Carbon Go? A Model-Data
Intercomparison of Vegetation Carbon Allocation and Turnover Processes at Two
Temperate Forest Free-Air CO2 Enrichment Sites, New Phytol., 203,
883–899, https://doi.org/10.1111/nph.12847, 2014. a
De Kauwe, M. G., Medlyn, B. E., Ukkola, A. M., Mu, M., Sabot, M. E. B., Pitman,
A. J., Meir, P., Cernusak, L. A., Rifai, S. W., Choat, B., Tissue, D. T.,
Blackman, C. J., Li, X., Roderick, M., and Briggs, P. R.: Identifying Areas
at Risk of Drought-induced Tree Mortality across South-Eastern
Australia, Glob. Change Biol., 26, 5716–5733, https://doi.org/10.1111/gcb.15215, 2020. a
DiMiceli, C., Carroll, R., Sohlberg, D., Kim, M., and Townshend, J.: MOD44B
MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN
Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD44B.006, 2017. a, b
Donohue, R. J., McVICAR, T. R., and Roderick, M. L.: Climate-Related Trends in
Australian Vegetation Cover as Inferred from Satellite Observations,
1981–2006, Glob. Change Biol., 15, 1025–1039, https://doi.org/10.1111/j.1365-2486.2008.01746.x, 2009. a, b, c
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Farquhar, G. D.: Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments, Geophys. Res. Lett., 40, 3031–3035, https://doi.org/10.1002/grl.50563, 2013. a, b, c, d
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Yang, Y.: A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation, J. Geophys. Res.-Biogeo., 122, 168–184,
https://doi.org/10.1002/2016JG003505, 2017. a, b, c
Dowle, M. and Srinivasan, A.: Data.Table: Extension of “data.Frame”, R package version 1.14.0, available at: https://CRAN.R-project.org/package=data.table (last access: 24 January 2022), 2019. a
Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P.: MORE EFFICIENT
PLANTS: A Consequence of Rising Atmospheric CO2?, Annu. Rev. Plant Phys., 48, 609–639,
https://doi.org/10.1146/annurev.arplant.48.1.609, 1997. a
Drake, J. E., Macdonald, C. A., Tjoelker, M. G., Crous, K. Y., Gimeno, T. E.,
Singh, B. K., Reich, P. B., Anderson, I. C., and Ellsworth, D. S.: Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration, Glob. Change Biol., 22,
380–390, https://doi.org/10.1111/gcb.13109, 2016. a
Evans, M. C.: Deforestation in Australia: drivers, trends and policy responses, Pacific Conservation Biology, 22, 130–150, https://doi.org/10.1071/PC15052, 2016. a
Frankenberg, C., Yin, Y., Byrne, B., He, L., and Gentine, P.: Comment on
“Recent Global Decline of CO2 Fertilization Effects on Vegetation
Photosynthesis”, Science, 373, eabg2947, https://doi.org/10.1126/science.abg2947,
2021. a, b
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The
Collection 6 MODIS Burned Area Mapping Algorithm and Product, Remote Sens. Environ., 217,
72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018. a, b
Gill, T., Johansen, K., Phinn, S., Trevithick, R., Scarth, P., and Armston, J.:
A Method for Mapping Australian Woody Vegetation Cover by Linking
Continental-Scale Field Data and Long-Term Landsat Time Series, Int. J. Remote Sens., 38,
679–705, https://doi.org/10.1080/01431161.2016.1266112, 2017. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-Scale Geospatial Analysis for
Everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Greve, P., Roderick, M. L., Ukkola, A. M., and Wada, Y.: The Aridity Index
under Global Warming, Environ. Res. Lett., 14, 124006, https://doi.org/10.1088/1748-9326/ab5046, 2019. a
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J.
R. G.: High-Resolution Global Maps of 21st-Century Forest Cover
Change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013. a
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated High-Resolution
Grids of Monthly Climatic Observations – the CRU TS3.10 Dataset:
UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS, Int. J. Climatol., 34,
623–642, https://doi.org/10.1002/joc.3711, 2014. a
Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A.,
Perkins-Kirkpatrick, S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S.,
Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B.,
Chambers, L. E., Fletcher, M.-S., Keatley, M. R., Woodward, C. A.,
Williamson, G., Duke, N. C., and Bowman, D. M. J. S.: Biological Responses to
the Press and Pulse of Climate Trends and Extreme Events, Nat. Clim. Change, 8, 579–587,
https://doi.org/10.1038/s41558-018-0187-9, 2018. a
Hasegawa, S., Macdonald, C. A., and Power, S. A.: Elevated Carbon Dioxide
Increases Soil Nitrogen and Phosphorus Availability in a Phosphorus-Limited
Eucalyptus Woodland, Glob. Change Biol., 22, 1628–1643, https://doi.org/10.1111/gcb.13147,
2016. a
Hattersley, P. W.: The Distribution of C3 and C4 Grasses in
Australia in Relation to Climate, Oecologia, 57, 113–128, https://doi.org/10.1007/BF00379569,
1983. a
Ji, L. and Brown, J. F.: Effect of NOAA Satellite Orbital Drift on
AVHRR-Derived Phenological Metrics, Int. J. Appl. Earth Obs., 62, 215–223,
https://doi.org/10.1016/j.jag.2017.06.013, 2017. a, b
Jiang, M., Caldararu, S., Zhang, H., Fleischer, K., Crous, K. Y., Yang, J.,
De Kauwe, M. G., Ellsworth, D. S., Reich, P. B., Tissue, D. T., Zaehle, S.,
and Medlyn, B. E.: Low Phosphorus Supply Constrains Plant Responses to
Elevated CO2: A Meta-analysis, Glob. Change Biol., 26, 5856–5873,
https://doi.org/10.1111/gcb.15277, 2020a. a
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson,
K. M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson,
S. N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, U., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The Fate of Carbon in a Mature Forest under Carbon
Dioxide Enrichment, Nature, 580, 227–231, https://doi.org/10.1038/s41586-020-2128-9,
2020b. a, b, c, d
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M., and Brown, J. R.: The
Role of Climate Variability in Australian Drought, Nat. Clim. Change, 10, 177–179,
https://doi.org/10.1038/s41558-020-0718-z, 2020. a
Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E., Carroll, C. J.,
Gray, J. E., Hoffman, A. M., Li, X., Post, A. K., Slette, I. J., Collins,
S. L., Luo, Y., and Smith, M. D.: Resolving the Dust Bowl Paradox of
Grassland Responses to Extreme Drought, P. Natl. Acad. Sci. USA, 117, 22249–22255,
https://doi.org/10.1073/pnas.1922030117, 2020. a
Liao, Z., Van Dijk, A. I. J. M., He, B., Larraondo, P. R., and Scarth, P. F.:
Woody Vegetation Cover, Height and Biomass at 25-m Resolution across
Australia Derived from Multiple Site, Airborne and Satellite
Observations, Int. J. Appl. Earth Obs., 93, 102209, https://doi.org/10.1016/j.jag.2020.102209, 2020. a
McAlpine, C. A., Etter, A., Fearnside, P. M., Seabrook, L., and Laurance,
W. F.: Increasing World Consumption of Beef as a Driver of Regional and
Global Change: A Call for Policy Action Based on Evidence from
Queensland (Australia), Colombia and Brazil, Global Environ. Chang., 19, 21–33,
https://doi.org/10.1016/j.gloenvcha.2008.10.008, 2009. a
McMurtrie, R. E., Norby, R. J., Medlyn, B. E., Dewar, R. C., Pepper, D. A.,
Reich, P. B., Barton, C. V. M., McMurtrie, R. E., Norby, R. J., Medlyn,
B. E., Dewar, R. C., Pepper, D. A., Reich, P. B., and Barton, C. V. M.: Why
Is Plant-Growth Response to Elevated CO2 Amplified When Water Is
Limiting, but Reduced When Nitrogen Is Limiting? A Growth-Optimisation
Hypothesis, Funct. Plant Biol., 35, 521–534, https://doi.org/10.1071/FP08128, 2008. a
Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., Angelis,
P. D., Forstreuter, M., Freeman, M., Jackson, S. B., Kellomäki, S., Laitat,
E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J., Wang, K.,
Curtis, P. S., and Jarvis, P. G.: Stomatal Conductance of Forest Species
after Long-Term Exposure to Elevated CO2 Concentration: A Synthesis, New Phytol., 149,
247–264, https://doi.org/10.1046/j.1469-8137.2001.00028.x, 2001. a
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.:
Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17,
2134–2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011. a
Medlyn, B. E., Kauwe, M. G. D., Zaehle, S., Walker, A. P., Duursma, R. A.,
Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.-P., Yang, X., Crous,
K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power,
S. A., Tjoelker, M. G., and Ellsworth, D. S.: Using Models to Guide Field
Experiments: A Priori Predictions for the CO2 Response of a Nutrient- and
Water-Limited Native Eucalypt Woodland, Glob. Change Biol., 22, 2834–2851,
https://doi.org/10.1111/gcb.13268, 2016. a, b
Milly, P. C. D. and Dunne, K. A.: Potential Evapotranspiration and Continental
Drying, Nat. Clim. Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016. a
Moore, C. E., Brown, T., Keenan, T. F., Duursma, R. A., van Dijk, A. I. J. M., Beringer, J., Culvenor, D., Evans, B., Huete, A., Hutley, L. B., Maier, S., Restrepo-Coupe, N., Sonnentag, O., Specht, A., Taylor, J. R., van Gorsel, E., and Liddell, M. J.: Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography, Biogeosciences, 13, 5085–5102, https://doi.org/10.5194/bg-13-5085-2016, 2016. a
Morison, J. I. L.: Sensitivity of Stomata and Water Use Efficiency to High
CO2, Plant Cell Environ., 8, 467–474, https://doi.org/10.1111/j.1365-3040.1985.tb01682.x, 1985. a
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019. a
Murphy, B. P. and Bowman, D. M. J. S.: Seasonal Water Availability Predicts the
Relative Abundance of C3 and C4
Grasses in Australia, Global Ecol. Biogeogr., 16, 160–169,
https://doi.org/10.1111/j.1466-8238.2006.00285.x, 2007. a, b
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015. a
Nolan, R. H., Boer, M. M., Collins, L., de Dios, V. R., Clarke, H., Jenkins,
M., Kenny, B., and Bradstock, R. A.: Causes and Consequences of Eastern
Australia's 2019–20 Season of Mega-Fires, Glob. Change Biol., 26, 1039–1041,
https://doi.org/10.1111/gcb.14987, 2020. a
Padfield, D. and Matheson, G.: Nls.Multstart: Robust Non-Linear
Regression Using AIC Scores, R package version 1.2.0, available at:
https://CRAN.R-project.org/package=nls.multstart (last access: 24 January 2022),
2020. a
Pebesma, E.: Stars: Spatiotemporal Arrays, Raster and Vector Data
Cubes, GitHub [software], available at: https://r-spatial.github.io/stars/ https://github.com/r-spatial/stars/ (last access: 24 January 2022),
2020. a
Perkins, S. E., Alexander, L. V., and Nairn, J. R.: Increasing Frequency,
Intensity and Duration of Observed Global Heatwaves and Warm Spells, Geophys. Res. Lett., 39, L20714,
https://doi.org/10.1029/2012GL053361, 2012. a
Peters, J. M. R., López, R., Nolf, M., Hutley, L. B., Wardlaw, T., Cernusak,
L. A., and Choat, B.: Living on the Edge: A Continental-Scale Assessment
of Forest Vulnerability to Drought, Glob. Change Biol., 27, 3620–3641, https://doi.org/10.1111/gcb.15641,
2021. a
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet,
G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S.,
and van der Werf, G. R.: Contribution of Semi-Arid Ecosystems to Interannual
Variability of the Global Carbon Cycle, Nature, 509, 600–603,
https://doi.org/10.1038/nature13376, 2014. a
Raupach, M.: Equilibrium Evaporation and the Convective Boundary Layer, Bound.-Lay. Meteorol., 96,
107–142, 2000. a
Rifai, S. W.: sw-rifai/eastern-Australia-CO2-NDVI-change: revision_1 (revision_1), Zenodo [code, data set], https://doi.org/10.5281/zenodo.5711964, 2021a. a
Rifai, S. W.: Thirty-eight years of CO2 fertilization have
outpaced growing aridity to drive greening of
Australian woody ecosystems, version 0.1, Zenodo [data set], https://doi.org/10.5281/zenodo.4340064, 2021b. a
Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted RefDaily L3 Global – 500 m V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD43A4.006, 2015. a, b
Seabrook, L., McAlpine, C., and Fensham, R.: Cattle, Crops and Clearing:
Regional Drivers of Landscape Change in the Brigalow Belt,
Queensland, Australia, 1840–2004, Landscape Urban Plan., 78, 373–385,
https://doi.org/10.1016/j.landurbplan.2005.11.007, 2006. a
Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim,
D.-H., Collins, K. M., Channan, S., DiMiceli, C., and Townshend, J. R.:
Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based
Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based
Estimates of Error, Int. J. Digit. Earth, 6, 427–448, https://doi.org/10.1080/17538947.2013.786146, 2013. a
Smith, S. D., Charlet, T. N., Zitzer, S. F., Abella, S. R., Vanier, C. H., and
Huxman, T. E.: Long-Term Response of a Mojave Desert Winter Annual Plant
Community to a Whole-Ecosystem Atmospheric CO2
Manipulation (FACE), Glob. Change Biol., 20, 879–892, https://doi.org/10.1111/gcb.12411, 2014. a
Specht, R.: Water Use by Perennial Evergreen Plant Communities in
Australia and Papua New Guinea, Aust. J. Bot., 20, 273–299, https://doi.org/10.1071/BT9720273,
1972. a, b
Teckentrup, L., De Kauwe, M. G., Pitman, A. J., Goll, D. S., Haverd, V., Jain, A. K., Joetzjer, E., Kato, E., Lienert, S., Lombardozzi, D., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, J., Sitch, S., Walker, A. P., and Zaehle, S.: Assessing the representation of the Australian carbon cycle in global vegetation models, Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, 2021. a, b
Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R., and McAlpine, C. A.:
CO2-vegetation Feedbacks and Other Climate Changes
Implicated in Reducing Base Flow, Geophys. Res. Lett., 44, 2310–2318, https://doi.org/10.1002/2017GL072759,
2017. a
Ukkola, A. M., Roderick, M. L., Barker, A., and Pitman, A. J.: Exploring the
Stationarity of Australian Temperature, Precipitation and Pan Evaporation
Records over the Last Century, Environ. Res. Lett., 14, 124035, https://doi.org/10.1088/1748-9326/ab545c,
2019. a, b
van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. A. M., Liu,
Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res., 49,
1040–1057, https://doi.org/10.1002/wrcr.20123, 2013. a
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S,
Springer, 4th Edn., available at: http://www.stats.ox.ac.uk/pub/MASS4 (last access: 24 January 2022),
2002. a
Vermote, E. and NOAA CDR Program: NOAA Climate Data Record (CDR) of
AVHRR Surface Reflectance, Version 5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V53776Z4, 2018. a, b
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K.,
Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J.,
Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W.,
Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P.,
Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B.,
Frank, D. C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M.,
Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer,
J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi,
Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T.,
Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor,
B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore,
S. E., Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.:
Integrating the Evidence for a Terrestrial Carbon Sink Caused by Increasing
Atmospheric CO2, New Phytol., 229, 2413–2445,
https://doi.org/10.1111/nph.16866, 2020. a
Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans, J.,
Janssens, I. A., Wu, M., Berry, J. A., Campbell, E., Fernández-Martínez,
M., Alkama, R., Sitch, S., Friedlingstein, P., Smith, W. K., Yuan, W., He,
W., Lombardozzi, D., Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B.,
Sanders, T. G. M., Krüger, I., Wang, R., Zeng, N., Tian, H., Vuichard, N.,
Jain, A. K., Wiltshire, A., Haverd, V., Goll, D. S., and Peñuelas, J.:
Recent Global Decline of CO2 Fertilization Effects on Vegetation
Photosynthesis, Science, 370, 1295–1300, https://doi.org/10.1126/science.abb7772, 2020. a, b, c, d
Winkler, A. J., Myneni, R. B., Hannart, A., Sitch, S., Haverd, V., Lombardozzi, D., Arora, V. K., Pongratz, J., Nabel, J. E. M. S., Goll, D. S., Kato, E., Tian, H., Arneth, A., Friedlingstein, P., Jain, A. K., Zaehle, S., and Brovkin, V.: Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2, Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, 2021. a
Wong, S.-C., Cowan, I. R., and Farquhar, G. D.: Leaf Conductance in
Relation to Rate of CO2 Assimilation: I. Influence of
Nitrogen Nutrition, Phosphorus Nutrition, Photon Flux Density,
and Ambient Partial Pressure of CO2 during Ontogeny, Plant Physiol., 78,
821–825, https://doi.org/10.1104/pp.78.4.821, 1985. a
Wood, S. N.: Generalized Additive Models: An Introduction with R,
Chapman and Hall/CRC, 2nd Edn., ISBN 978-1-49872-834-8, 2017. a
World Meteorological Organization: WMO Guidelines on the Calculation of
Climate Normals, available at:
https://library.wmo.int/doc_num.php?explnum_id=4166 (last access: 31 March 2020), 2017. a
Yang, J., Medlyn, B. E., De Kauwe, M. G., and Duursma, R. A.: Applying the
Concept of Ecohydrological Equilibrium to Predict Steady State Leaf
Area Index, J. Adv. Model. Earth Sy., 10, 1740–1758, https://doi.org/10.1029/2017MS001169, 2018. a
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais,
P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E.,
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang,
X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the
Earth and Its Drivers, Nat. Clim. Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016. a, b, c, d
Zhu, Z., Zeng, H., Myneni, R. B., Chen, C., Zhao, Q., Zha, J., Zhan, S., and
MacLachlan, I.: Comment on “Recent Global Decline of CO2
Fertilization Effects on Vegetation Photosynthesis”, Science, 373, eabg5673,
https://doi.org/10.1126/science.abg5673, 2021. a
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Australia's woody ecosystems have experienced widespread greening despite a warming climate and...
Altmetrics
Final-revised paper
Preprint