Articles | Volume 19, issue 2
https://doi.org/10.5194/bg-19-491-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-491-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems
Sami W. Rifai
CORRESPONDING AUTHOR
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Climate Change Research Centre, University of New South Wales,
Sydney, NSW 2052, Australia
Martin G. De Kauwe
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Climate Change Research Centre, University of New South Wales,
Sydney, NSW 2052, Australia
Evolution & Ecology Research Centre, University of New South
Wales, Sydney, NSW 2052, Australia
School of Biological Sciences, University of Bristol, Bristol,
BS8 1TQ, UK
Anna M. Ukkola
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Research School of Earth Sciences, Australian National
University, Canberra, ACT 0200, Australia
Lucas A. Cernusak
College of Science and Engineering, James Cook University,
Cairns, QLD 4188, Australia
Patrick Meir
Research School of Biology, The Australian National
University, Acton, ACT 2601, Australia
School of Geosciences, University of Edinburgh, Edinburgh
EH89XP, UK
Belinda E. Medlyn
Hawkesbury Institute for the Environment, Western Sydney
University, Penrith, NSW 2753, Australia
Andy J. Pitman
ARC Centre of Excellence for Climate Extremes, University of
New South Wales, Sydney, NSW 2052, Australia
Climate Change Research Centre, University of New South Wales,
Sydney, NSW 2052, Australia
Related authors
No articles found.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
EGUsphere, https://doi.org/10.5194/egusphere-2025-2545, https://doi.org/10.5194/egusphere-2025-2545, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Accurate estimates of global soil organic carbon (SOC) content and its spatial pattern are critical for future climate change mitigation. However, the most advanced mechanistic SOC models struggle to do this task. Here we apply multiple explainable machine learning methods to identify missing variables and misrepresented relationships between environmental factors and SOC in these models, offering new insights to guide model development for more reliable SOC predictions.
Matthew O. Grant, Anna M. Ukkola, Elisabeth Vogel, Sanaa Hobeichi, Andy J. Pitman, Alex Raymond Borowiak, and Keirnan Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2024-4024, https://doi.org/10.5194/egusphere-2024-4024, 2025
Short summary
Short summary
Australia is regularly subjected to severe and widespread drought. By using multiple drought indicators, we show that while there have been widespread decreases in droughts since the beginning of the 20th century. However, many regions have seen an increase in droughts in more recent decades. Despite these changes, our analysis shows that they remain within the range of observed variability and are not unprecedented in the context of past droughts.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Anjana Devanand, Jason Evans, Andy Pitman, Sujan Pal, David Gochis, and Kevin Sampson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3148, https://doi.org/10.5194/egusphere-2024-3148, 2024
Short summary
Short summary
Including lateral flow increases evapotranspiration near major river channels in high-resolution land surface simulations in southeast Australia, consistent with observations. The 1-km resolution model shows a widespread pattern of dry ridges that does not exist at coarser resolutions. Our results have implications for improved simulations of droughts and future water availability.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024, https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Short summary
Understanding the link between climate and carbon fluxes is crucial for predicting how climate change will impact carbon sinks. We estimated carbon dioxide (CO2) fluxes from deadwood in tropical Australia using wood moisture content and temperature. Our model predicted that the majority of deadwood carbon is released as CO2, except when termite activity is detected. Future models should also incorporate wood traits, like species and chemical composition, to better predict fluxes.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Sam P. Jones, Aurore Kaisermann, Jérôme Ogée, Steven Wohl, Alexander W. Cheesman, Lucas A. Cernusak, and Lisa Wingate
SOIL, 7, 145–159, https://doi.org/10.5194/soil-7-145-2021, https://doi.org/10.5194/soil-7-145-2021, 2021
Short summary
Short summary
Understanding how the rate of oxygen isotope exchange between water and CO2 varies in soils is key for using the oxygen isotope composition of atmospheric CO2 as a tracer of biosphere CO2 fluxes at large scales. Across 44 diverse soils the rate of this exchange responded to pH, nitrate and microbial biomass, which are hypothesised to alter activity of the enzyme carbonic anhydrase in soils. Using these three soil traits, it is now possible to predict how this isotopic exchange varies spatially.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences, 18, 2181–2203, https://doi.org/10.5194/bg-18-2181-2021, https://doi.org/10.5194/bg-18-2181-2021, 2021
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) describes changes in the sea surface temperature patterns of the Pacific Ocean. This influences the global weather, impacting vegetation on land. There are two types of El Niño: central Pacific (CP) and eastern Pacific (EP). In this study, we explored the long-term impacts on the carbon balance on land linked to the two El Niño types. Using a dynamic vegetation model, we simulated what would happen if only either CP or EP El Niño events had occurred.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Cited articles
Ackerman, D., Millet, D. B., and Chen, X.: Global Estimates of Inorganic
Nitrogen Deposition Across Four Decades, Global Biogeochem. Cy., 33, 100–107,
https://doi.org/10.1029/2018GB005990, 2019. a
Adzhar, R., Kelley, D. I., Dong, N., Torello Raventos, M., Veenendaal, E., Feldpausch, T. R., Philips, O. L., Lewis, S., Sonké, B., Taedoumg, H., Schwantes Marimon, B., Domingues, T., Arroyo, L., Djagbletey, G., Saiz, G., and Gerard, F.: Assessing MODIS Vegetation Continuous Fields tree cover product (collection 6): performance and applicability in tropical forests and savannas, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-460, in review, 2021. a
Ahlstrom, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M.,
Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E.,
Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire,
A., Zaehle, S., and Zeng, N.: The Dominant Role of Semi-Arid Ecosystems in
the Trend and Variability of the Land CO2 Sink, Science, 348, 895–899,
https://doi.org/10.1126/science.aaa1668, 2015. a
Ainsworth, E. A. and Rogers, A.: The Response of Photosynthesis and Stomatal
Conductance to Rising [CO2]: Mechanisms and
Environmental Interactions: Photosynthesis and Stomatal Conductance
Responses to Rising [CO2], Plant Cell. Environ., 30, 258–270,
https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007. a
Atlas of Living Australia: The Dead Tree Detective| Project|BioCollect, available at:
https://biocollect.ala.org.au/acsa/project/index/77285a13-e231-49e8-b212-660c66c74bac (last access: 28 November 2020),
2020. a
Australian Department of Agriculture, Water and the Environment: Australian
Department of Agriculture, Water and the Environment, available at:
http://www.environment.gov.au/ (last access: 31 March 2021), 2020. a
Bastos, A., Running, S. W., Gouveia, C., and Trigo, R. M.: The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011, J. Geophys. Res.-Biogeo., 118, 1247–1255,
https://doi.org/10.1002/jgrg.20100, 2013. a
Bronaugh, D. and Werner, A. (for the Pacific Climate Impacts Consortium): Zyp: Zhang + Yue-Pilon Trends Package, available at:
https://CRAN.R-project.org/package=zyp (last access: 24 January 2022), 2019. a
Bureau of Meteorology: Annual Australian Climate Statement 2019, available at:
http://www.bom.gov.au/climate/current/annual/aus/2019/ (last access: 24 October 2020),
2019. a
Carlson, T. N. and Ripley, D. A.: On the Relation between NDVI, Fractional
Vegetation Cover, and Leaf Area Index, Remote Sens. Environ., 62, 241–252,
https://doi.org/10.1016/S0034-4257(97)00104-1, 1997. a, b
Cortés, J., Mahecha, M. D., Reichstein, M., Myneni, R. B., Chen, C., and
Brenning, A.: Where Are Global Vegetation Greening and Browning Trends
Significant?, Geophys. Res. Lett., 48, e2020GL091496, https://doi.org/10.1029/2020GL091496, 2021. a
CSIRO and Bureau of Meteorology: State of the Climate 2020, available at:
https://www.csiro.au/-/media/OnA/Files/State-of-the-Climate-2020.pdf (last access: 12 November 2020), 2020. a
Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R. T., Whitley, R. J., Wang, H., Evans, B. J., Gallego-Sala, A. V., Sykes, M. T., and Cramer, W.: Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture, Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, 2017. a
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang,
Y.-P., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wå rlind, D., Weng,
E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C., Asao, S.,
Smith, B., McCarthy, H. R., Iversen, C. M., Hanson, P. J., Warren, J. M.,
Oren, R., and Norby, R. J.: Where Does the Carbon Go? A Model-Data
Intercomparison of Vegetation Carbon Allocation and Turnover Processes at Two
Temperate Forest Free-Air CO2 Enrichment Sites, New Phytol., 203,
883–899, https://doi.org/10.1111/nph.12847, 2014. a
De Kauwe, M. G., Medlyn, B. E., Ukkola, A. M., Mu, M., Sabot, M. E. B., Pitman,
A. J., Meir, P., Cernusak, L. A., Rifai, S. W., Choat, B., Tissue, D. T.,
Blackman, C. J., Li, X., Roderick, M., and Briggs, P. R.: Identifying Areas
at Risk of Drought-induced Tree Mortality across South-Eastern
Australia, Glob. Change Biol., 26, 5716–5733, https://doi.org/10.1111/gcb.15215, 2020. a
DiMiceli, C., Carroll, R., Sohlberg, D., Kim, M., and Townshend, J.: MOD44B
MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN
Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD44B.006, 2017. a, b
Donohue, R. J., McVICAR, T. R., and Roderick, M. L.: Climate-Related Trends in
Australian Vegetation Cover as Inferred from Satellite Observations,
1981–2006, Glob. Change Biol., 15, 1025–1039, https://doi.org/10.1111/j.1365-2486.2008.01746.x, 2009. a, b, c
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Farquhar, G. D.: Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments, Geophys. Res. Lett., 40, 3031–3035, https://doi.org/10.1002/grl.50563, 2013. a, b, c, d
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Yang, Y.: A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation, J. Geophys. Res.-Biogeo., 122, 168–184,
https://doi.org/10.1002/2016JG003505, 2017. a, b, c
Dowle, M. and Srinivasan, A.: Data.Table: Extension of “data.Frame”, R package version 1.14.0, available at: https://CRAN.R-project.org/package=data.table (last access: 24 January 2022), 2019. a
Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P.: MORE EFFICIENT
PLANTS: A Consequence of Rising Atmospheric CO2?, Annu. Rev. Plant Phys., 48, 609–639,
https://doi.org/10.1146/annurev.arplant.48.1.609, 1997. a
Drake, J. E., Macdonald, C. A., Tjoelker, M. G., Crous, K. Y., Gimeno, T. E.,
Singh, B. K., Reich, P. B., Anderson, I. C., and Ellsworth, D. S.: Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration, Glob. Change Biol., 22,
380–390, https://doi.org/10.1111/gcb.13109, 2016. a
Evans, M. C.: Deforestation in Australia: drivers, trends and policy responses, Pacific Conservation Biology, 22, 130–150, https://doi.org/10.1071/PC15052, 2016. a
Frankenberg, C., Yin, Y., Byrne, B., He, L., and Gentine, P.: Comment on
“Recent Global Decline of CO2 Fertilization Effects on Vegetation
Photosynthesis”, Science, 373, eabg2947, https://doi.org/10.1126/science.abg2947,
2021. a, b
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The
Collection 6 MODIS Burned Area Mapping Algorithm and Product, Remote Sens. Environ., 217,
72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018. a, b
Gill, T., Johansen, K., Phinn, S., Trevithick, R., Scarth, P., and Armston, J.:
A Method for Mapping Australian Woody Vegetation Cover by Linking
Continental-Scale Field Data and Long-Term Landsat Time Series, Int. J. Remote Sens., 38,
679–705, https://doi.org/10.1080/01431161.2016.1266112, 2017. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-Scale Geospatial Analysis for
Everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Greve, P., Roderick, M. L., Ukkola, A. M., and Wada, Y.: The Aridity Index
under Global Warming, Environ. Res. Lett., 14, 124006, https://doi.org/10.1088/1748-9326/ab5046, 2019. a
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J.
R. G.: High-Resolution Global Maps of 21st-Century Forest Cover
Change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013. a
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated High-Resolution
Grids of Monthly Climatic Observations – the CRU TS3.10 Dataset:
UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS, Int. J. Climatol., 34,
623–642, https://doi.org/10.1002/joc.3711, 2014. a
Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A.,
Perkins-Kirkpatrick, S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S.,
Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B.,
Chambers, L. E., Fletcher, M.-S., Keatley, M. R., Woodward, C. A.,
Williamson, G., Duke, N. C., and Bowman, D. M. J. S.: Biological Responses to
the Press and Pulse of Climate Trends and Extreme Events, Nat. Clim. Change, 8, 579–587,
https://doi.org/10.1038/s41558-018-0187-9, 2018. a
Hasegawa, S., Macdonald, C. A., and Power, S. A.: Elevated Carbon Dioxide
Increases Soil Nitrogen and Phosphorus Availability in a Phosphorus-Limited
Eucalyptus Woodland, Glob. Change Biol., 22, 1628–1643, https://doi.org/10.1111/gcb.13147,
2016. a
Hattersley, P. W.: The Distribution of C3 and C4 Grasses in
Australia in Relation to Climate, Oecologia, 57, 113–128, https://doi.org/10.1007/BF00379569,
1983. a
Ji, L. and Brown, J. F.: Effect of NOAA Satellite Orbital Drift on
AVHRR-Derived Phenological Metrics, Int. J. Appl. Earth Obs., 62, 215–223,
https://doi.org/10.1016/j.jag.2017.06.013, 2017. a, b
Jiang, M., Caldararu, S., Zhang, H., Fleischer, K., Crous, K. Y., Yang, J.,
De Kauwe, M. G., Ellsworth, D. S., Reich, P. B., Tissue, D. T., Zaehle, S.,
and Medlyn, B. E.: Low Phosphorus Supply Constrains Plant Responses to
Elevated CO2: A Meta-analysis, Glob. Change Biol., 26, 5856–5873,
https://doi.org/10.1111/gcb.15277, 2020a. a
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson,
K. M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson,
S. N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, U., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The Fate of Carbon in a Mature Forest under Carbon
Dioxide Enrichment, Nature, 580, 227–231, https://doi.org/10.1038/s41586-020-2128-9,
2020b. a, b, c, d
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M., and Brown, J. R.: The
Role of Climate Variability in Australian Drought, Nat. Clim. Change, 10, 177–179,
https://doi.org/10.1038/s41558-020-0718-z, 2020. a
Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E., Carroll, C. J.,
Gray, J. E., Hoffman, A. M., Li, X., Post, A. K., Slette, I. J., Collins,
S. L., Luo, Y., and Smith, M. D.: Resolving the Dust Bowl Paradox of
Grassland Responses to Extreme Drought, P. Natl. Acad. Sci. USA, 117, 22249–22255,
https://doi.org/10.1073/pnas.1922030117, 2020. a
Liao, Z., Van Dijk, A. I. J. M., He, B., Larraondo, P. R., and Scarth, P. F.:
Woody Vegetation Cover, Height and Biomass at 25-m Resolution across
Australia Derived from Multiple Site, Airborne and Satellite
Observations, Int. J. Appl. Earth Obs., 93, 102209, https://doi.org/10.1016/j.jag.2020.102209, 2020. a
McAlpine, C. A., Etter, A., Fearnside, P. M., Seabrook, L., and Laurance,
W. F.: Increasing World Consumption of Beef as a Driver of Regional and
Global Change: A Call for Policy Action Based on Evidence from
Queensland (Australia), Colombia and Brazil, Global Environ. Chang., 19, 21–33,
https://doi.org/10.1016/j.gloenvcha.2008.10.008, 2009. a
McMurtrie, R. E., Norby, R. J., Medlyn, B. E., Dewar, R. C., Pepper, D. A.,
Reich, P. B., Barton, C. V. M., McMurtrie, R. E., Norby, R. J., Medlyn,
B. E., Dewar, R. C., Pepper, D. A., Reich, P. B., and Barton, C. V. M.: Why
Is Plant-Growth Response to Elevated CO2 Amplified When Water Is
Limiting, but Reduced When Nitrogen Is Limiting? A Growth-Optimisation
Hypothesis, Funct. Plant Biol., 35, 521–534, https://doi.org/10.1071/FP08128, 2008. a
Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., Angelis,
P. D., Forstreuter, M., Freeman, M., Jackson, S. B., Kellomäki, S., Laitat,
E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J., Wang, K.,
Curtis, P. S., and Jarvis, P. G.: Stomatal Conductance of Forest Species
after Long-Term Exposure to Elevated CO2 Concentration: A Synthesis, New Phytol., 149,
247–264, https://doi.org/10.1046/j.1469-8137.2001.00028.x, 2001. a
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.:
Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17,
2134–2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011. a
Medlyn, B. E., Kauwe, M. G. D., Zaehle, S., Walker, A. P., Duursma, R. A.,
Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.-P., Yang, X., Crous,
K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power,
S. A., Tjoelker, M. G., and Ellsworth, D. S.: Using Models to Guide Field
Experiments: A Priori Predictions for the CO2 Response of a Nutrient- and
Water-Limited Native Eucalypt Woodland, Glob. Change Biol., 22, 2834–2851,
https://doi.org/10.1111/gcb.13268, 2016. a, b
Milly, P. C. D. and Dunne, K. A.: Potential Evapotranspiration and Continental
Drying, Nat. Clim. Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016. a
Moore, C. E., Brown, T., Keenan, T. F., Duursma, R. A., van Dijk, A. I. J. M., Beringer, J., Culvenor, D., Evans, B., Huete, A., Hutley, L. B., Maier, S., Restrepo-Coupe, N., Sonnentag, O., Specht, A., Taylor, J. R., van Gorsel, E., and Liddell, M. J.: Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography, Biogeosciences, 13, 5085–5102, https://doi.org/10.5194/bg-13-5085-2016, 2016. a
Morison, J. I. L.: Sensitivity of Stomata and Water Use Efficiency to High
CO2, Plant Cell Environ., 8, 467–474, https://doi.org/10.1111/j.1365-3040.1985.tb01682.x, 1985. a
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019. a
Murphy, B. P. and Bowman, D. M. J. S.: Seasonal Water Availability Predicts the
Relative Abundance of C3 and C4
Grasses in Australia, Global Ecol. Biogeogr., 16, 160–169,
https://doi.org/10.1111/j.1466-8238.2006.00285.x, 2007. a, b
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015. a
Nolan, R. H., Boer, M. M., Collins, L., de Dios, V. R., Clarke, H., Jenkins,
M., Kenny, B., and Bradstock, R. A.: Causes and Consequences of Eastern
Australia's 2019–20 Season of Mega-Fires, Glob. Change Biol., 26, 1039–1041,
https://doi.org/10.1111/gcb.14987, 2020. a
Padfield, D. and Matheson, G.: Nls.Multstart: Robust Non-Linear
Regression Using AIC Scores, R package version 1.2.0, available at:
https://CRAN.R-project.org/package=nls.multstart (last access: 24 January 2022),
2020. a
Pebesma, E.: Stars: Spatiotemporal Arrays, Raster and Vector Data
Cubes, GitHub [software], available at: https://r-spatial.github.io/stars/ https://github.com/r-spatial/stars/ (last access: 24 January 2022),
2020. a
Perkins, S. E., Alexander, L. V., and Nairn, J. R.: Increasing Frequency,
Intensity and Duration of Observed Global Heatwaves and Warm Spells, Geophys. Res. Lett., 39, L20714,
https://doi.org/10.1029/2012GL053361, 2012. a
Peters, J. M. R., López, R., Nolf, M., Hutley, L. B., Wardlaw, T., Cernusak,
L. A., and Choat, B.: Living on the Edge: A Continental-Scale Assessment
of Forest Vulnerability to Drought, Glob. Change Biol., 27, 3620–3641, https://doi.org/10.1111/gcb.15641,
2021. a
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet,
G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S.,
and van der Werf, G. R.: Contribution of Semi-Arid Ecosystems to Interannual
Variability of the Global Carbon Cycle, Nature, 509, 600–603,
https://doi.org/10.1038/nature13376, 2014. a
Raupach, M.: Equilibrium Evaporation and the Convective Boundary Layer, Bound.-Lay. Meteorol., 96,
107–142, 2000. a
Rifai, S. W.: sw-rifai/eastern-Australia-CO2-NDVI-change: revision_1 (revision_1), Zenodo [code, data set], https://doi.org/10.5281/zenodo.5711964, 2021a. a
Rifai, S. W.: Thirty-eight years of CO2 fertilization have
outpaced growing aridity to drive greening of
Australian woody ecosystems, version 0.1, Zenodo [data set], https://doi.org/10.5281/zenodo.4340064, 2021b. a
Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted RefDaily L3 Global – 500 m V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD43A4.006, 2015. a, b
Seabrook, L., McAlpine, C., and Fensham, R.: Cattle, Crops and Clearing:
Regional Drivers of Landscape Change in the Brigalow Belt,
Queensland, Australia, 1840–2004, Landscape Urban Plan., 78, 373–385,
https://doi.org/10.1016/j.landurbplan.2005.11.007, 2006. a
Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim,
D.-H., Collins, K. M., Channan, S., DiMiceli, C., and Townshend, J. R.:
Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based
Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based
Estimates of Error, Int. J. Digit. Earth, 6, 427–448, https://doi.org/10.1080/17538947.2013.786146, 2013. a
Smith, S. D., Charlet, T. N., Zitzer, S. F., Abella, S. R., Vanier, C. H., and
Huxman, T. E.: Long-Term Response of a Mojave Desert Winter Annual Plant
Community to a Whole-Ecosystem Atmospheric CO2
Manipulation (FACE), Glob. Change Biol., 20, 879–892, https://doi.org/10.1111/gcb.12411, 2014. a
Specht, R.: Water Use by Perennial Evergreen Plant Communities in
Australia and Papua New Guinea, Aust. J. Bot., 20, 273–299, https://doi.org/10.1071/BT9720273,
1972. a, b
Teckentrup, L., De Kauwe, M. G., Pitman, A. J., Goll, D. S., Haverd, V., Jain, A. K., Joetzjer, E., Kato, E., Lienert, S., Lombardozzi, D., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, J., Sitch, S., Walker, A. P., and Zaehle, S.: Assessing the representation of the Australian carbon cycle in global vegetation models, Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, 2021. a, b
Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R., and McAlpine, C. A.:
CO2-vegetation Feedbacks and Other Climate Changes
Implicated in Reducing Base Flow, Geophys. Res. Lett., 44, 2310–2318, https://doi.org/10.1002/2017GL072759,
2017. a
Ukkola, A. M., Roderick, M. L., Barker, A., and Pitman, A. J.: Exploring the
Stationarity of Australian Temperature, Precipitation and Pan Evaporation
Records over the Last Century, Environ. Res. Lett., 14, 124035, https://doi.org/10.1088/1748-9326/ab545c,
2019. a, b
van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. A. M., Liu,
Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res., 49,
1040–1057, https://doi.org/10.1002/wrcr.20123, 2013. a
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S,
Springer, 4th Edn., available at: http://www.stats.ox.ac.uk/pub/MASS4 (last access: 24 January 2022),
2002. a
Vermote, E. and NOAA CDR Program: NOAA Climate Data Record (CDR) of
AVHRR Surface Reflectance, Version 5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V53776Z4, 2018. a, b
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K.,
Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J.,
Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W.,
Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P.,
Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B.,
Frank, D. C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M.,
Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer,
J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi,
Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T.,
Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor,
B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore,
S. E., Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.:
Integrating the Evidence for a Terrestrial Carbon Sink Caused by Increasing
Atmospheric CO2, New Phytol., 229, 2413–2445,
https://doi.org/10.1111/nph.16866, 2020. a
Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans, J.,
Janssens, I. A., Wu, M., Berry, J. A., Campbell, E., Fernández-Martínez,
M., Alkama, R., Sitch, S., Friedlingstein, P., Smith, W. K., Yuan, W., He,
W., Lombardozzi, D., Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B.,
Sanders, T. G. M., Krüger, I., Wang, R., Zeng, N., Tian, H., Vuichard, N.,
Jain, A. K., Wiltshire, A., Haverd, V., Goll, D. S., and Peñuelas, J.:
Recent Global Decline of CO2 Fertilization Effects on Vegetation
Photosynthesis, Science, 370, 1295–1300, https://doi.org/10.1126/science.abb7772, 2020. a, b, c, d
Winkler, A. J., Myneni, R. B., Hannart, A., Sitch, S., Haverd, V., Lombardozzi, D., Arora, V. K., Pongratz, J., Nabel, J. E. M. S., Goll, D. S., Kato, E., Tian, H., Arneth, A., Friedlingstein, P., Jain, A. K., Zaehle, S., and Brovkin, V.: Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2, Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, 2021. a
Wong, S.-C., Cowan, I. R., and Farquhar, G. D.: Leaf Conductance in
Relation to Rate of CO2 Assimilation: I. Influence of
Nitrogen Nutrition, Phosphorus Nutrition, Photon Flux Density,
and Ambient Partial Pressure of CO2 during Ontogeny, Plant Physiol., 78,
821–825, https://doi.org/10.1104/pp.78.4.821, 1985. a
Wood, S. N.: Generalized Additive Models: An Introduction with R,
Chapman and Hall/CRC, 2nd Edn., ISBN 978-1-49872-834-8, 2017. a
World Meteorological Organization: WMO Guidelines on the Calculation of
Climate Normals, available at:
https://library.wmo.int/doc_num.php?explnum_id=4166 (last access: 31 March 2020), 2017. a
Yang, J., Medlyn, B. E., De Kauwe, M. G., and Duursma, R. A.: Applying the
Concept of Ecohydrological Equilibrium to Predict Steady State Leaf
Area Index, J. Adv. Model. Earth Sy., 10, 1740–1758, https://doi.org/10.1029/2017MS001169, 2018. a
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais,
P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E.,
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang,
X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the
Earth and Its Drivers, Nat. Clim. Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016. a, b, c, d
Zhu, Z., Zeng, H., Myneni, R. B., Chen, C., Zhao, Q., Zha, J., Zhan, S., and
MacLachlan, I.: Comment on “Recent Global Decline of CO2
Fertilization Effects on Vegetation Photosynthesis”, Science, 373, eabg5673,
https://doi.org/10.1126/science.abg5673, 2021. a
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Australia's woody ecosystems have experienced widespread greening despite a warming climate and...
Altmetrics
Final-revised paper
Preprint