Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observed water and light limitation across global ecosystems
François Jonard
CORRESPONDING AUTHOR
Earth Observation and Ecosystem Modelling Laboratory, SPHERES
Research Unit, Université de Liège (ULiege), 4000 Liège, Belgium
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Jülich
Research Centre, Jülich, Germany
Andrew F. Feldman
NASA Postdoctoral Program, NASA Goddard Space Flight Center,
Greenbelt, MD, USA
Biospheric Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, MD, USA
Daniel J. Short Gianotti
Parsons Laboratory, Department of Civil and Environmental
Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Dara Entekhabi
Parsons Laboratory, Department of Civil and Environmental
Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Related authors
Jordan Bates, Carsten Montzka, Harry Vereecken, and François Jonard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3919, https://doi.org/10.5194/egusphere-2025-3919, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used unmanned aerial vehicles (UAVs) with advanced cameras and laser scanning to measure crop water use and detect early signs of plant stress. By combining 3D views of crop structure with surface temperature and reflectance data, we improved estimates of water loss, especially in dense crops like wheat. This approach can help farmers use water more efficiently, respond quickly to stress, and support sustainable agriculture in a changing climate.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Anke Fluhrer, Martin J. Baur, María Piles, Bagher Bayat, Mehdi Rahmati, David Chaparro, Clémence Dubois, Florian M. Hellwig, Carsten Montzka, Angelika Kübert, Marlin M. Mueller, Isabel Augscheller, Francois Jonard, Konstantin Schellenberg, and Thomas Jagdhuber
Biogeosciences, 22, 3721–3746, https://doi.org/10.5194/bg-22-3721-2025, https://doi.org/10.5194/bg-22-3721-2025, 2025
Short summary
Short summary
This study compares established evapotranspiration products in central Europe and evaluates their multi-seasonal performance during wet and drought phases in 2017–2020 together with important soil–plant–atmosphere drivers. Results show that SEVIRI, ERA5-land, and GLEAM perform best compared to ICOS (Integrated Carbon Observation System) measurements. During moisture-limited drought years, ET (evapotranspiration) decreases due to decreasing soil moisture and increasing vapor pressure deficit, while in other years ET is mainly controlled by VPD (vapor pressure deficit).
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Jordan Bates, Francois Jonard, Rajina Bajracharya, Harry Vereecken, and Carsten Montzka
AGILE GIScience Ser., 3, 23, https://doi.org/10.5194/agile-giss-3-23-2022, https://doi.org/10.5194/agile-giss-3-23-2022, 2022
Jordan Bates, Carsten Montzka, Harry Vereecken, and François Jonard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3919, https://doi.org/10.5194/egusphere-2025-3919, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used unmanned aerial vehicles (UAVs) with advanced cameras and laser scanning to measure crop water use and detect early signs of plant stress. By combining 3D views of crop structure with surface temperature and reflectance data, we improved estimates of water loss, especially in dense crops like wheat. This approach can help farmers use water more efficiently, respond quickly to stress, and support sustainable agriculture in a changing climate.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Anke Fluhrer, Martin J. Baur, María Piles, Bagher Bayat, Mehdi Rahmati, David Chaparro, Clémence Dubois, Florian M. Hellwig, Carsten Montzka, Angelika Kübert, Marlin M. Mueller, Isabel Augscheller, Francois Jonard, Konstantin Schellenberg, and Thomas Jagdhuber
Biogeosciences, 22, 3721–3746, https://doi.org/10.5194/bg-22-3721-2025, https://doi.org/10.5194/bg-22-3721-2025, 2025
Short summary
Short summary
This study compares established evapotranspiration products in central Europe and evaluates their multi-seasonal performance during wet and drought phases in 2017–2020 together with important soil–plant–atmosphere drivers. Results show that SEVIRI, ERA5-land, and GLEAM perform best compared to ICOS (Integrated Carbon Observation System) measurements. During moisture-limited drought years, ET (evapotranspiration) decreases due to decreasing soil moisture and increasing vapor pressure deficit, while in other years ET is mainly controlled by VPD (vapor pressure deficit).
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
Jordan Bates, Francois Jonard, Rajina Bajracharya, Harry Vereecken, and Carsten Montzka
AGILE GIScience Ser., 3, 23, https://doi.org/10.5194/agile-giss-3-23-2022, https://doi.org/10.5194/agile-giss-3-23-2022, 2022
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A.,
Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K.,
Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P.,
Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid
ecosystems in the trend and variability of the land CO2 sink, Science, 348,
895–899, 2015.
Akbar, R., Short Gianotti, D. J., McColl, K. A., Haghighi, E., Salvucci, G.
D., and Entekhabi, D.: Estimation of landscape soil water losses from
satellite observations of soil moisture, J. Hydrometeorol., 19,
871–889, 2018a.
Akbar, R., Short Gianotti, D. S., McColl, K. A., Haghighi, E., Salvucci, G.
D., and Entekhabi D.: Hydrological storage length scales represented by
remote sensing estimates of soil moisture and precipitation, Water Resour.
Res., 54, 1476–1492, 2018b.
Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017.
Bassiouni, M., Good, S. P., Still, C. J., and Higgins, C. W.: Plant Water
Uptake Thresholds Inferred from Satellite Soil Moisture, Geophys. Res.
Lett., 47, e2020GL087077, https://doi.org/10.1029/2020GL087077, 2020.
Beck, H., Zimmermann, N., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G. B., Bondeau,
A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
Margolis, H., Oleson K. W., Roupsard, O., Veenendaal, E., Viovy, N.,
Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon
dioxide uptake: Global distribution and covariation with climate, Science,
329, 834–838, 2010.
Buermann, W., Forkel, M., O'Sullivan, M., Sitch, S., Friedlingstein, P.,
Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D.,
Nabel, J. E. M. S., Tian, H., Wiltshire, A. J., Zhu, D., Smith, W. K., and
Richardson, A. D.: Widespread seasonal compensation effects of spring
warming on northern plant productivity, Nature, 562, 110–114, 2018.
Bush, E. R., Bunnefeld, N., Dimoto, E., Dikangadissi, J.-T., Jeffery, K.,
Tutin, C., White, L., and Abernethy, K. A.: Towards effective monitoring of
tropical phenology: maximizing returns and reducing uncertainty in long-term
studies, Biotropica, 50, 455–464, 2018.
De Cannière, S., Herbst, M., Vereecken, H, Defourny, P., and Jonard, F.:
Constraining water limitation in photosynthesis in a crop growth model with
sun-induced chlorophyll fluorescence, Remote Sens. Environ., 267,
112722, https://doi.org/10.1016/j.rse.2021.112722, 2021.
De Cannière, S., Vereecken, H., Defourny, P., and Jonard, F.: Remote
sensing of instantaneous drought stress at canopy level using sun-induced
chlorophyll fluorescence and canopy reflectance, Remote Sens., 14, 2642,
2022. blackboxPlease add DOI.
Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca,
M., Zhang, Y., Tagliabue, G., Guan, K., Rossini, M., Goulas, Y., Zeng, Y.,
Frankenberg, C., and Berry, J. A.: NIRVP: a robust structural proxy for
sun-induced chlorophyll fluorescence and photosynthesis across scales,
Remote Sens. Environ., 268, 112763, https://doi.org/10.1016/j.rse.2021.112763, 2022.
Denissen, J. M. C., Teuling, A. J., Reichstein, M., and Orth, R.: Critical
soil moisture derived from satellite observations over Europe, J.
Geophys. Res.-Atmos., 125, e2019JD031672, https://doi.org/10.1029/2019JD031672, 2020.
Didan, K.: MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05 Deg CMG V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD13C1.006, 2015.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) mission, in
Proceedings of the IEEE, May 2010, 98, 704–716, 2010.
Feldman, A. F., Short Gianotti, D. J., Konings, A. G., McColl, K. A., Akbar,
R., Salvucci, G. D., and Entekhabi, D.: Moisture pulse-reserve in the
soil-plant continuum observed across biomes, Nature Plants, 4,
1026–1033, 2018.
Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D., and
Entekhabi, D.: Satellite-Based Assessment of Land Surface Energy
Partitioning–Soil Moisture Relationships and Effects of Confounding
Variables, Water Resour. Research, 55, 10657–10677, 2019.
Feldman, A. F., Konings, A. G., Piles, M., and Entekhabi, D.: The
Multi-Temporal Dual Channel Algorithm (MT-DCA) (Version 4), Zenodo [data
set], https://doi.org/10.5281/zenodo.5579549, 2021.
Feldman, A. F., Short Gianotti, D. J., Dong, J., Akbar, R., Crow, W. T.,
McColl, K. A., Nippert, J. B., Tumber-Dávila, S. J., Holbrook, N. M.,
Rockwell, F. E., Scott, R. L., Reichle, R. H., Chatterjee, A., Joiner, J.,
Poulter, B., and Entekhabi, D.: Satellites capture soil moisture dynamics
deeper than a few centimeters and are relevant to plant water uptake, Earth
Sp. Sci. Open Arch., https://doi.org/10.1002/essoar.10511280.1, 2022.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O.,
Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G.,
Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K.,
Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu,
X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System
Models: A review of progress and priorities, Glob. Chang. Biol., 24, 35–54,
2018.
Flanagan, L. B., Ehleringer, J. R., and Marshall, J. D.: Differential uptake
of summer precipitation among co-occurring trees and shrubs in a
pinyon-juniper woodland, Plant Cell Environ., 15, 831–836, 1992.
Gentine, P., Green, J. K., Guérin, M., Humphrey, V., Seneviratne, S. I.,
Zhang, Y., and Zhou, S.: Coupling between the terrestrial carbon and water
cycles – a review, Environ. Res. Lett., 14, 083003, https://doi.org/10.1088/1748-9326/ab22d6, 2019.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_e2d_lfo_Nx: 2d, 1-Hourly,Time-Averaged,
Single-Level, Assimilation, Land Surface Forcings V5.12.4, Greenbelt, MD,
USA, Goddard Earth Sciences Data and Information Services Center (GES DISC)
[data set], https://doi.org/10.5067/L0T5GEG1NYFA, 2015.
Gonsamo, A., Chen, J. M., He, L., Sun, Y., Rogers, C., and Liu, J.:
Exploring SMAP and OCO-2 observations to monitor soil moisture control on
photosynthetic activity of global drylands and croplands, Remote Sens. Environ., 232, 111314, https://doi.org/10.1016/j.rse.2019.111314, 2019.
Green, J., Konings, A., Alemohammad, S., Berry, J., Entekhabi, D., Kolassa,
J., Lee, J.-E., and Gentine, P.: Regionally strong feedbacks between the
atmosphere and terrestrial biosphere, Nat. Geosci., 10, 410–414, 2017.
He, L., Magney, T., Dutta, D., Yin, Y., Köhler, P., Grossmann, K.,
Stutz, J., Dold, C., Hatfield, J., Guan, K., Peng, B., Frankenberg, C.: From
the ground to space: Using solar-induced chlorophyll fluorescence to
estimate crop productivity, Geophys. Res. Lett., 47, e2020GL087474, https://doi.org/10.1029/2020GL087474,
2020.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLoS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R. B., Cui,
E., Fang, Y., Fisher, J. B., Huntzinger, N. D., Li, Z., Michalak, A. N.,
Qiao, Y., Schaefer, K., Schwalm, C., Wang, J., Wei, Y., Xu, X., Yan, L.,
Bian, C., and Luo, Y.: Enhanced peak growth of global vegetation and its key
mechanisms, Nat. Ecol. Evol., 2, 1897–1905, 2018.
Huffman, G., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.: GPM
IMERG Final Precipitation L3 Half Hourly V06,
Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center
(GES DISC) [data set], https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary (last access: 20 November 2022), 2019.
Jarvis, P. G.: Interpretation of variations in leaf water potential and
stomatal conductance found in canopies in field, Philos. T. Roy. Soc. A,
273, 593–610, 1976.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and
Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature
496, 347–350, 2013.
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013.
Joiner, J., Yoshida, Y., Vasilkov, A., Schaefer, K., Jung, M., Guanter, L.,
Zhang, Y., Garrity, S., Middleton, E.M., Huemmrich, K. F., Gu, L., and
Marchesini, L. B. : The seasonal cycle of satellite chlorophyll fluorescence
observations and its relationship to vegetation phenology and ecosystem
atmosphere carbon exchange, Remote Sens. Environ., 152, 375–391,
2014.
Jonard, F., De Cannière, S., Brüggemann, N., Gentine, P., Short
Gianotti, D. J., Lobet, G., Miralles, D. J., Montzka, C., Pagán, B. R.,
Rascher, U., and Vereecken, H.: Value of chlorophyll fluorescence for
quantifying hydrological states and fluxes: Current status and challenges,
Agr. Forest Meteorol., 291, 108088, https://doi.org/10.1016/j.agrformet.2020.108088, 2020.
Jones, H. G.: Plants and Microclimate: A quantitative approach to
environmental plant physiology, 3rd ed., Cambridge University Press,
Cambridge, UK, ISBN 9780511845727, https://doi.org/10.1017/CBO9780511845727, 2014.
Kerr, Y., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M. J., Font, J., Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Achim Hreul, N., Boutin, J., Gruhier, C., Juglea, S. E., Hahne, A., Neira, M. M., and Mecklenburg, S.: The SMOS mission: New tool for monitoring key elements
of the global water cycle, in Proceedings of the IEEE, May 2010, 98,
666–687, 2010.
Köhler, P. and Frankenberg, K.: Ungridded TROPOMI SIF (at 740 nm) (1.0), CaltechDATA [data set], https://data.caltech.edu/records/8hm1f-w5492 (last access: 20 November 2022), 2020.
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and
Landgraf J.: Global retrievals of solar-induced chlorophyll fluorescence
with TROPOMI: first results and intersensor comparison to OCO-2, Geophys. Res. Lett., 45, 10456–10463, 2018.
Konings, A. G., Piles, M., Rötzer, K., McColl, K. A., Chan, S. K., and
Entekhabi, D.: Vegetation optical depth and scattering albedo retrieval
using time series of dual-polarized L-band radiometer observations, Remote Sens. Environ., 172, 178–189, 2016.
Li, W., Migliavacca, M., Forkel, M., Walther, S., Reichstein, M., and Orth
R.: Revisiting global vegetation controls using multi-layer soil moisture,
Geophys. Res. Lett., 48, e2021GL092856, https://doi.org/10.1029/2021GL092856, 2021.
Liang, X.-Z., Wu, Y., Chambers, R. G., Schmoldt, D. L., Gao, W., Liu, C.,
Liu, Y.-A., Sun, C., and Kennedy, J. A.: Determining climate effects on US
total agricultural productivity, P. Natl. Acad. Sci. USA, 114, 2285–2292,
2017.
Linscheid, N., Estupinan-Suarez, L. M., Brenning, A., Carvalhais, N., Cremer, F., Gans, F., Rammig, A., Reichstein, M., Sierra, C. A., and Mahecha, M. D.: Towards a global understanding of vegetation–climate dynamics at multiple timescales, Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, 2020.
Lu, X. L., Liu, Z. Q., An, S. Q., Miralles, D. G., Maes, W. H., Liu, Y. L.,
and Tang, J. W.: Potential of solar-induced chlorophyll fluorescence to
estimate transpiration in a temperate forest, Agr. Forest
Meteorol., 252, 75, https://doi.org/10.1016/j.agrformet.2018.01.017, 2018.
Madani, N., Kimball, J. S., Jones, L. A., Parazoo, N. C., and Guan, K.:
Global Analysis of Bioclimatic Controls on Ecosystem Productivity Using
Satellite Observations of Solar-Induced Chlorophyll Fluorescence, Remote
Sens., 9, 530, https://doi.org/10.3390/rs9060530, 2017.
Maes, W. H., Pagán, B. R., Martens, B., Gentine, P., Guanter, L.,
Steppe, K., Verhoest, N. E. C., Dorigo, W., Li, X., Xiao, J., and Miralles,
D. G.: Sun-induced fluorescence closely linked to ecosystem transpiration as
evidenced by satellite data and radiative transfer models, Remote Sens. Environ., 249, 112030, https://doi.org/10.1016/j.rse.2020.112030, 2020.
Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E., and Collins, S. L.:
Sensitivity of primary production to precipitation across the United States,
Ecol. Lett., 23, 527–536, 2020.
McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E. B.,
Sienkiewicz, M., and Wargan, K.: MERRA-2 input observations: Summary and
initial assessment. Technical Report Series on Global Modeling and Data
Assimilation, 46, NASA Tech. Rep., NASA/TM–2016–104606, 61 pp., 2016.
Meinzer, F. C., Luis, J., Goldstein, G., Holbrook, N. M., Cavelier, J., and
Wright, S. J.: Partitioning of soil water among canopy trees in a seasonally
dry tropical forest, Oecologia, 293–301, 1999.
Miguez-Macho, G. and Fan, Y.: Spatiotemporal origin of soil water taken up
by vegetation, Nature, 598, 624–628, 2021.
Monteith, J. L.: Solar Radiation and Productivity in Tropical Ecosystems,
J. Appl. Ecol., 9, 747–766, 1972.
Morellato, L. P. C., Abernethy, K., and Mendoza, I.: Rethinking tropical
phenology: insights from long-term monitoring and novel analytical methods,
Biotropica, 50, 371–373, 2018.
Moreno-de las Heras, M., Díaz-Sierra, R., Turnbull, L., and Wainwright, J.: Assessing vegetation structure and ANPP dynamics in a grassland–shrubland Chihuahuan ecotone using NDVI–rainfall relationships, Biogeosciences, 12, 2907–2925, https://doi.org/10.5194/bg-12-2907-2015, 2015.
Moulin, S., Kergoat, L., Viovy, N., and Dedieu, G.: Global-Scale Assessment
of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements, J.
Climate, 10, 1154–1170, 1997.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven increases
in global terrestrial net primary production from 1982 to 1999, Science,
300, 1560–1563, 2003.
Njoku, E. G. and Entekhabi, D.: Passive microwave remote sensing of soil
moisture, J. Hydrol., 184, 101–129, 1996.
O'Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., Bindlish, R., and Chaubell, J.: SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 4 [data set], https://nsidc.org/data/spl2smp_e/versions/4 (last access: 20 November 2022), 2020.
Pagan, B. R., Maes, W. H., Gentine, P., Martens, B., and Miralles D. G.:
Exploring the Potential of Satellite Solar-Induced Fluorescence to Constrain
Global Transpiration Estimates, Remote Sens., 11, 413, https://doi.org/10.3390/rs11040413, 2019.
Peano, D., Materia, S., Collalti, A., Alessandri, A., Anav, A., Bombelli,
A., and Gualdi, S.: Global variability of simulated and observed vegetation
growing season, J. Geophys. Res.-Biogeo., 124,
3569–3587, 2019.
Qiu, B., Ge, J., Guo, W., Pitman, A. J., and Mu, M.: Responses of Australian
dryland vegetation to the 2019 heatwave at a subdaily scale,
Geophys. Res. Lett., 47, e2019GL086569,
https://doi.org/10.1029/2019GL086569, 2020.
Schwingshackl, C., Hirschi, M., and Seneviratne, S. I.: Quantifying
spatiotemporal variations of soil moisture control on surface energy balance
and near-surface air temperature, J. Climate, 30, 7105–7124,
https://doi.org/10.1175/JCLI-D-16-0727.1, 2017
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture-climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161, 2010.
Shan, N., Ju, W. M., Migliavacca, M., Martini, D., Guanter, L., Chen, J. M.,
Goulas, Y., and Zhang, Y. G.: Modeling canopy conductance and transpiration
from solar-induced chlorophyll fluorescence, Agr. Forest
Meteorol., 268, 189–201, 2019.
Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D., and Entekhabi, D.:
Satellite and Station Observations Demonstrate Water Availability's Effect
on Continental-Scale Evaporative and Photosynthetic Land Surface Dynamics,
Water Resour. Res., 55, 540–554, 2019a.
Short Gianotti, D. J., Salvucci, G. D., Akbar, R., McColl, K. A., Cuenca,
R., and Entekhabi, D.: Landscape water storage and subsurface correlation
from satellite surface soil moisture and precipitation observations, Water Resour. Res., 55, 9111—9132, 2019b.
Teubner, I. E., Forkel, M., Jung, M., Liu, Y. Y., Miralles, D. G.,
Parinussa, R., van der Schalie, R., Vreugdenhil, M., Schwalm, C. R.,
Tramontana, G., Camps-Valls, G., and Dorigo, W. A.: Assessing the
relationship between microwave vegetation optical depth and gross primary
production, Int. J. Appl. Earth Obs. Geoinf., 65, 79–91, 2018.
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore, S. E., van Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.: Integrating the evidence for a terrestrial carbon sink
caused by increasing atmospheric CO2, New Phytol., 229, 2413–2445, 2020.
Wang, X., Dannenberg, M. P., Yan, D., Jones, M. O., Kimball, J. S., Moore,
D. J. P., van Leeuwen, W. J. D., Didan, K., and Smith, W. K.: Globally
consistent patterns of asynchrony in vegetation phenology derived from
optical, microwave, and fluorescence satellite data, J. Geophys. Res.-Biogeo., 125, e2020JG005732, https://doi.org/10.1029/2020JG005732, 2020.
Wang, Y., Zheng, W., Zheng, W., Zhu, J., Liu, Z., Qin, J., and Li, H.:
Physiological and transcriptomic analyses of a yellow-green mutant with high
photosynthetic efficiency in wheat (Triticum aestivum L.), Funct. Integr.
Genomics, 18, 175–194, 2018.
Xu, S., Atherton, J., Riikonen, A., Zhang, C., Oivukkamäki, J.,
MacArthur, A., Honkavaara, E., Hakala, T., Koivumäki, N., Liu, Z., and
Porcar-Castella, A.: Structural and photosynthetic dynamics mediate the
response of SIF to water stress in a potato crop, Remote Sens. Environ., 263, 112555, https://doi.org/10.1016/j.rse.2021.112555, 2021.
Zhang, X., Friedl, M. A., and Schaaf, C. B.: Global vegetation phenology from
Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global
patterns and comparison with in situ measurements, J. Geophys. Res., 111,
G04017, https://doi.org/10.1029/2006JG000217, 2006.
Zhang, Y., Guanter, L., Berry, J. A., van der Tol, C., Yang, X., Tang, J.,
and Zhang, F.: Model-based analysis of the relationship between sun-induced
chlorophyll fluorescence and gross primary production for remote sensing
applications, Remote Sens. Environ., 187, 145–155, 2016.
Zhang, Y., Commane, R., Zhou, S., Williams, A. P., and Gentine, P.: Light
limitation regulates the response of autumn terrestrial carbon uptake to
warming, Nat. Clim. Chang., 10, 739–743, 2020a.
Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S., and Gentine, P.: Large
and projected strengthening moisture limitation on end-of-season
photosynthesis, P. Natl. Acad. Sci. USA, 117,
9216–9222, 2020b.
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
We investigate the spatial and temporal patterns of light and water limitation in plant function...
Altmetrics
Final-revised paper
Preprint