Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5617-2022
https://doi.org/10.5194/bg-19-5617-2022
Research article
 | 
14 Dec 2022
Research article |  | 14 Dec 2022

Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean

Sarah A. Brown, John Paul Balmonte, Adrienne Hoarfrost, Sherif Ghobrial, and Carol Arnosti

Related authors

Correlations among carbohydrate inventories, enzyme activities, and microbial communities in the western North Atlantic Ocean
C. Chad Lloyd, Sarah Brown, Greta Giljan, Sherif Ghobrial, Silvia Vidal-Melgosa, Nicola Steinke, Jan-Hendrik Hehemann, Rudolf Amann, and Carol Arnosti
EGUsphere, https://doi.org/10.5194/egusphere-2024-615,https://doi.org/10.5194/egusphere-2024-615, 2024
Short summary

Related subject area

Biogeochemistry: Environmental Microbiology
Fractionation of stable carbon isotopes during formate consumption in anoxic rice paddy soils and lake sediments
Ralf Conrad and Peter Claus
Biogeosciences, 21, 1161–1172, https://doi.org/10.5194/bg-21-1161-2024,https://doi.org/10.5194/bg-21-1161-2024, 2024
Short summary
Technical note: A comparison of methods for estimating coccolith mass
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
EGUsphere, https://doi.org/10.5194/egusphere-2023-3085,https://doi.org/10.5194/egusphere-2023-3085, 2023
Short summary
Characteristics of bacterial and fungal communities and their associations with sugar compounds in atmospheric aerosols at a rural site in northern China
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023,https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
Biogeosciences, 20, 4669–4682, https://doi.org/10.5194/bg-20-4669-2023,https://doi.org/10.5194/bg-20-4669-2023, 2023
Short summary
Differentiation of cognate bacterial communities in thermokarst landscapes: implications for ecological consequences of permafrost degradation
Ze Ren, Shudan Ye, Hongxuan Li, Xilei Huang, and Luyao Chen
Biogeosciences, 20, 4241–4258, https://doi.org/10.5194/bg-20-4241-2023,https://doi.org/10.5194/bg-20-4241-2023, 2023
Short summary

Cited articles

Alderkamp, A. C., Van Rijssel, M., and Bolhuis, H.: Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin, FEMS Microbiol. Ecol., 59, 108–117, https://doi.org/10.1111/j.1574-6941.2006.00219.x, 2007. 
Alonso-Sáez, L., Sánchez, O., and Gasol, J. M.: Bacterial uptake of low molecular weight organics in the subtropical Atlantic: Are major phylogenetic groups functionally different?, Limnol. Oceanogr., 57, 798–808, https://doi.org/10.4319/lo.2012.57.3.0798, 2012. 
Amon, R. M., Fitznar, H. P., and Benner, R.: Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter, Limnol. Oceanogr., 46, 287–297, https://doi.org/10.4319/lo.2001.46.2.0287, 2001. 
Araki, T., Hashikawa, S., and Morishita, T.: Cloning, sequencing, and expression in Escherichia coli of the new gene encoding b-1,3-xylanase from a marine bacterium, Vibrio sp. Strain XY-214, Appl. Environ. Microb., 66, 1741–1743, 2000. 
Arnosti, C.: Fluorescent derivatization of polysaccharides and carbohydrate-containing biopolymers for measurement of enzyme activities in complex media, J. Chromatogr. B., 793, 181–191, https://doi.org/10.1016/S1570-0232(03)00375-1, 2003. 
Download
Short summary
Bacteria use extracellular enzymes to cut large organic matter to sizes small enough for uptake. We compared the enzymatic response of surface, mid-water, and deep-ocean bacteria to complex natural substrates. Bacteria in surface and mid-depth waters produced a much wider range of enzymes than those in the deep ocean and may therefore consume a broader range of organic matter. The extent to which organic matter is recycled by bacteria depends in part on its residence time at different depths.
Altmetrics
Final-revised paper
Preprint