Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5751-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5751-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Stephen G. Chastain
School of Resource & Environmental Management, Simon Fraser
University, Burnaby,
Coast Salish Territories of the Musqueam, Skwxwú7mesh (Squamish), and
Tsleil-Waututh, V5A 1S6, Canada
School of Resource & Environmental Management, Simon Fraser
University, Burnaby,
Coast Salish Territories of the Musqueam, Skwxwú7mesh (Squamish), and
Tsleil-Waututh, V5A 1S6, Canada
School of Environmental Science, Simon Fraser University, Burnaby,
V5A 1S6, Canada
Marlow G. Pellatt
School of Resource & Environmental Management, Simon Fraser
University, Burnaby,
Coast Salish Territories of the Musqueam, Skwxwú7mesh (Squamish), and
Tsleil-Waututh, V5A 1S6, Canada
Parks Canada, Protected Areas Establishment and Conservation
Directorate, Vancouver, British Columbia, V6B 6B4, Canada
Carolina Olid
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå, Sweden
Departament de Dinàmica de la
Terra i l'Oceà, UB-Geomodels Research Institute, Facultat de Ciències de la Terra, Universitat de
Barcelona, 08028 Barcelona, Spain
Maija Gailis
Environment and Climate Change Canada, Climate Change Branch, Ottawa,
Ontario, K1A 0H3, Canada
Related authors
No articles found.
Zanna Chase, Karen E. Kohfeld, Amy Leventer, David Lund, Xavier Crosta, Laurie Menviel, Helen C. Bostock, Matthew Chadwick, Samuel L. Jaccard, Jacob Jones, Alice Marzocchi, Katrin J. Meissner, Elisabeth Sikes, Louise C. Sime, and Luke Skinner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3504, https://doi.org/10.5194/egusphere-2025-3504, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The impact of recent dramatic declines in Antarctic sea ice on the Earth system are uncertain. We reviewed how sea ice affects ocean circulation, ice sheets, winds, and the carbon cycle by considering theory and modern observations alongside paleo-proxy reconstructions. We found evidence for connections between sea ice and these systems but also conflicting results, which point to missing knowledge. Our work highlights the complex role of sea ice in the Earth system.
Eleanor Simpson, Debby Ianson, Karen E. Kohfeld, Ana C. Franco, Paul A. Covert, Marty Davelaar, and Yves Perreault
Biogeosciences, 21, 1323–1353, https://doi.org/10.5194/bg-21-1323-2024, https://doi.org/10.5194/bg-21-1323-2024, 2024
Short summary
Short summary
Shellfish aquaculture operates in nearshore areas where data on ocean acidification parameters are limited. We show daily and seasonal variability in pH and saturation states of calcium carbonate at nearshore aquaculture sites in British Columbia, Canada, and determine the contributing drivers of this variability. We find that nearshore locations have greater variability than open waters and that the uptake of carbon by phytoplankton is the major driver of pH and saturation state variability.
Matthew Chadwick, Xavier Crosta, Oliver Esper, Lena Thöle, and Karen E. Kohfeld
Clim. Past, 18, 1815–1829, https://doi.org/10.5194/cp-18-1815-2022, https://doi.org/10.5194/cp-18-1815-2022, 2022
Short summary
Short summary
Algae preserved in seafloor sediments have allowed us to reconstruct how Antarctic sea ice has varied between cold and warm time periods in the last 130 000 years. The patterns and timings of sea-ice increase and decrease vary between different parts of the Southern Ocean. Sea ice is most sensitive to changing climate at the external edges of Southern Ocean gyres (large areas of rotating ocean currents).
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Cited articles
Abbott, K. M., Elsey-Quirk, T., and DeLaune, R. D.: Factors influencing blue
carbon accumulation across a 32-year chronosequence of created coastal
marshes, Ecosphere, 10, e02828, https://doi.org/10.1002/ecs2.2828, 2019.
Abdul-Aziz, O. I., Ishtiaq, K. S., Tang, J., Moseman-Valtierra, S., Kroeger,
K. D., Gonneea, M. E., Mora, J., and Morkeski, K.: Environmental controls, emergent
scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt
marshes, J. Geophys. Res.-Biogeo., 123, 2234–2256, https://doi-org.proxy.lib.sfu.ca/10.1029/2018JG004556
Adams, C. A., Andrews, J. E., and Jickells, T.: Nitrous oxide and methane
fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and
saltmarsh sediments, Sci. Total Environ., 434, 240–251,
https://doi.org/10.1016/j.scitotenv.2011.11.058, 2012.
Arias-Ortiz, A., Masqué, P., Garcia-Orellana, J., Serrano, O., Mazarrasa, I., Marbà, N., Lovelock, C. E., Lavery, P. S., and Duarte, C. M.: Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight, Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, 2018.
Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., and Trettin,
C.: The carbon balance of North American wetlands, Wetlands, 26, 889–916,
https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2, 2006.
Canadian Climate Normals 1981–2010 Station Data: Tofino
A, https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=277&autofwd=1,
last access: 13 November 2016.
Callaway, J. C., Borgnis, E. L., Turner, R. E., and Milan, C. S.: Carbon
sequestration and sediment accretion in San Francisco Bay tidal wetlands,
Estuarine, Coast. Shelf Sci., 35, 1163–1181, 2012.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global
carbon sequestration in tidal, saline wetland soils, Global Biogeochem. Cy., 17, 1111, https://doi.org/10.1029/2002GB001917, 2003.
Chmura, G. L., Kellman, L., and Guntenspergen, G. R.: The greenhouse gas
flux and potential global warming feedbacks of a northern macrotidal and
microtidal salt marsh, Environ. Res. Lett., 6, 044016,
https://doi.org/10.1088/1748-9326/6/4/044016, 2011.
Connor, R. F., Chmura, G. L., and Beecher, C. B.: Carbon accumulation in bay
of fundy salt marshes: Implications for restoration of reclaimed marshes,
Global Biogeochem. Cy., 15, 943–954,
https://doi.org/10.1029/2000GB001346, 2001.
Corbett, D. R. and Walsh, J. P.: 210Lead and 137Cesium:
establishing a chronology for the last century, in: Handbook of Sea-Level
Research, edited by: Shennan, I., Long, A. J., and Horton, B. P., John Wiley
& Sons, Ltd., Chichester, UK, ISBN 978-1-118-45258-5, 361–372, 2015.
Craft, C., Seneca, E., and Broome, S.: Loss on Ignition and
Kjeldahl Digestion for Estimating Organic Carbon and Total Nitrogen in
Estuarine Marsh Soils: Calibration with Dry Combustion, Estuaries, 14,
175–179, https://doi.org/10.2307/1351691, 1991.
Craft, C., Megonigal, P., Broome, S., Stevenson, J., Freese, R., Cornell,
J., Zheng, L., and Sacco, J.: The pace of ecosystem development of
constructed Spartina alterniflora marshes, Ecol. Appl., 13, 1417–1432,
https://doi.org/10.1890/02-5086, 2003.
Crooks, S., Rybczyk, J., O'Connell, K., Devier, D. L., Poppe, K., and
Emmett-Mattox, S.: Coastal Blue Carbon Opportunity Assessment for the
Snohomish Estuary: The Climate Benefits of Estuary Restoration, Report by
Environmental Science Associates, Bellingham, WA, USA, 19–43, 2014.
Davis, R. B., Hess, C. T., Norton, S. A., Hanson, D. W., Hoagland, K. D.,
and Anderson, D. S.: 137Cs and 210Pb dating of sediments from
soft-water lakes in New England (U.S.A.) and Scandinavia, a failure of 137Cs
dating, Chem. Geol., 44, 151–185,
https://doi.org/10.1016/0009-2541(84)90071-8, 1984.
Deur, D.: A Domesticated Landscape: Native American plant cultivation on the
Northwest coast of North America, PhD dissertation, Louisiana State
University, Baton Rouge, LA, USA, 69–251, 2000.
DFO: Marine Environmental Data Section Archive, Ecosystem and Oceans Science, Department of
Fisheries and Oceans Canada, https://meds-sdmm.dfo-mpo.gc.ca, last access: 2 June 2022.
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M.,
and Kanninen, M.: Mangroves among the most carbon-rich forests in the
tropics, Nat. Geosci., 4, 293–297, https://doi.org/10.1038/ngeo1123, 2011.
Drexler, J. Z., Woo, I., Fuller, C. C., and Nakai, G.: Carbon accumulation
and vertical accretion in a restored versus historic salt marsh in southern
Puget Sound, Washington, United States, Restor. Ecol., 27, 1117–1127,
https://doi.org/10.1111/rec.12941, 2019.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà,
N.: The role of coastal plant communities for climate change mitigation and
adaptation, Nat. Clim. Change, 3, 961–968, https://doi.org/10.1038/nclimate1970, 2013.
Froelich, P. N.: Analysis of organic carbon in marine sediments, Limnol. Oceanogr., 25, 564–572, https://doi.org/10.4319/lo.1980.25.3.0564,
1980.
Gailis, M., Kohfeld, K. E., Pellatt, M. G., and Carlson, D.: Quantifying
blue carbon for the largest salt marsh in southern British Columbia:
implications for regional coastal management, Coast. Eng. J., 63, 275–309,
https://doi.org/10.1080/21664250.2021.1894815, 2021.
Gifford, R. M. and Roderick, M. L.: Soil carbon stocks and bulk
density: Spatial or cumulative mass coordinates as a basis of expression?,
Glob. Change Biol., 9, 1507–1514,
https://doi.org/10.1046/j.1365-2486.2003.00677.x, 2003.
Giles-Hansen, K. and Wei, X.: Cumulative disturbance converts regional
forests into a substantial carbon source, Environ. Res. Lett.,
17, 044049, https://doi.org/10.1088/1748-9326/ac5e69, 2022.
Havens, K., Varnell, L., and Watts, B.: Maturation of a constructed tidal
marsh relative to two natural reference tidal marshes over 12 years,
Ecol. Eng., 18, 305–315, 2002.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for
estimating organic and carbonate content in sediments: reproducibility and
comparability of results, J. Paleolim., 25, 101–110,
https://doi.org/10.1023/A:1008119611481, 2001.
Hedges, J. I. and Stern, J. H.: Carbon and nitrogen determinations of
carbonate-containing solids, Limnol. Oceanogr., 29, 657–663,
1984.
Hill, M. O. and Gauch, H. G.: Detrended correspondence analysis: An improved
ordination technique, Vegetatio, 42, 47–58, https://doi.org/10.1007/BF00048870, 1980.
Hodgson, C. and Spooner, A.: The K'omoks and Squamish Estuaries: A Blue
Carbon Pilot Project, Final Report to the North American Partnership for
Environmental Community Action (NAPECA), (Grant 2014-1362), Comox Valley
Watershed Society, Comox, BC, Canada, 2016.
Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., and Telszewski, M.:
Coastal Blue Carbon: Methods for assessing carbon stocks and emissions
factors in mangroves, tidal salt marshes, and seagrass meadows, Conservation
International, Intergovernmental Oceanographic Commission of UNESCO,
International Union for Conservation of Nature, Arlington, Virginia, USA,
149–150, 2014.
Howard, J., Sutton-Grier, A., Herr, D., Kleypas, J., Landis, E., McLeod, E.,
Pidgeon, E., and Simpson, S.: Clarifying the role of coastal and marine
systems in climate mitigation, Front. Ecol. Environ.,
15, 42–50, https://doi.org/10.1002/fee.1451, 2017.
Howe, A. J., Rodríguez, J. F., and Saco, P. M.: Surface evolution and
carbon sequestration in disturbed and undisturbed wetland soils of the
Hunter estuary, southeast Australia, Estuar. Coast. Shelf S.,
84, 75–83, https://doi.org/10.1016/j.ecss.2009.06.006, 2009.
Huang, J., Luo, M., Liu, Y., Zhang, Y., and Tan, J.: Effects of tidal scenarios on the
methane emission dynamics in the Subtropical tidal marshes of the Min River
Estuary in Southeast China, Int. J. Environ. Res. Public Health, 16, 2790,
https://doi.org/10.3390/ijerph16152790, 2009.
Huertas, I. E., de la Paz, M., Perez, F. F., Navarro, G., and Flecha, S.:
Methane emissions from the salt marshes of Doñana wetlands:
spatio-temporal variability and controlling factors, Front. Ecol. Evol., 7, https://doi.org/10.3389/fevo.2019.00032, 2019.
James, T. S., Henton, J. A., Leonard, L. J., Darlington, A., Forbes, D. L., and Craymer, M.:
Relative sea-level projections in Canada and the adjacent mainland United
States, Geological Survey of Canada Open File, 7737, p. 72, https://doi.org/10.4095/295574, 2014.
Jefferson, C. A.: Plant communities and succession in Oregon coastal salt marshes, Ph.D. dissertation, Oregon State University, Corvallis, OR, USA, https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/2v23vx42t (last access: 14 November 2022), 1974.
Johannessen, S. C. and Macdonald, R. W.: Geoengineering with seagrasses: is
credit due where credit is given?, Environ. Res. Lett., 11,
113001, https://doi.org/10.1088/1748-9326/11/11/113001, 2016.
Kauffman, J. B., Giovanonni, L., Kelly, J., Dunstan, N., Borde, A.,
Diefenderfer, H., Cornu, C., Janousek, C., Apple, J., and Brophy, L.: Total
ecosystem carbon stocks at the marine-terrestrial interface: Blue carbon of
the Pacific Northwest Coast, United States, Glob. Change Biol., 26,
5679–5692, https://doi.org/10.1111/gcb.15248, 2020.
Kelleway, J. J., Saintilan, N., Macreadie, P. I., Baldock, J. A., and Ralph, P. J.: Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh, Biogeosciences, 14, 3763–3779, https://doi.org/10.5194/bg-14-3763-2017, 2017.
Kennedy, H. A., Alongi, D. M., Karim, A., Chen, G., Chmura, G. L., Crooks, S., Kairo, J. G., Liao, B., and Lin, G.: Chapter 4 Coastal Wetlands, in: Supplement to the 2006 IPCC Guidelines on National Greenhouse Gas Inventories: Wetlands, ISBN 978-92-9169-139-5, 2013.
Kirwan, M. L., Walters, D. C., Reay, W. G., and Carr, J. A.: Sea level
driven marsh expansion in a coupled model of marsh erosion and migration,
Geophys. Res. Lett., 43, 4366–4373,
https://doi.org/10.1002/2016GL068507, 2016.
Kohfeld, K. E., Chastain, S., Pellatt, M. G., and Olid, C.: Salt marsh soil carbon content, loss on ignition, dry bulk density, carbon stocks, lead-210 and carbon accumulation rates, for Clayoquot Sound, British Columbia, Canada, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.947825, 2022.
Krishnaswamy, S., Lal, D., Martin, J. M., and Meybeck, M.: Geochronology of
lake sediments, Earth Planet. Sc. Lett., 11, 407–414,
https://doi.org/10.1016/0012-821X(71)90202-0, 1971.
Kurz, W. A., Shaw, C. H., Boisvenue, C., Stinson, G., Metsaranta, J., Leckie,
D., Dyk, A., Smyth, C., and Neilson, E. T: Carbon in Canada's boreal
forest – a synthesis, Environ. Rev., 21, 260–292,
https://doi.org/10.1139/er-2013-0041, 2013.
Li, Y., Wang, D., Chen, Z., Chen, J., Hu, H., and Wang, R.: Methane emissions during the
tide cycle of a Yangtze Estuary salt marsh, Atmosphere, 12, 245,
https://doi.org/10.3390/atmos12020245, 2021.
Mack, M. C., Walker, X. J., Johnstone, J. F., Alexander, H. D., Melvin, A.
M., Jean, M., and Miller, S. N.: Carbon loss from boreal forest wildfires
offset by increased dominance of deciduous trees, Science, 372, 280–283,
https://doi.org/10.1126/science.abf3903, 2021.
MacKenzie, W. H. and Moran, J. R.: Wetlands of British Columbia: a guide to
identification. Res. Br., B.C. Minisitry of Forests, Victoria, B.C. Land
Management Handbook No. 52, 2004.
Mathieu, G. G., Biscaye, P. E., Lupton, R. A., and Hammond, D. E.: System
for measurement of 222Rn at low levels in natural waters, Health Phys., 55,
989–992, 1988.
Mazzotti, S., Jones, C., and Thomson, R. E.: Relative and absolute sea level
rise in western Canada and northwestern United States from a combined tide
gauge-GPS analysis, J. Geophys. Res., 113, 1–19,
https://doi.org/10.1029/2008JC004835, 2008.
Mazzotti, S, Lambert, A., Courtier, N., Nykolaishen, L., and Dragert, H.:
Crustal uplift and sea level rise in northern Cascadia from GPS, absolute
gravity, and tide gauge data, Geophys. Res. Lett., 34, L15306, https://doi.org/10.1029/2007GL030283, 2007.
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte,
C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for
blue carbon: toward an improved understanding of the role of vegetated
coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, 2011.
Mcowen, C. J., Weatherdon L., Van Bochove, J. W., Sullivan, E., Blyth, S.,
Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C. S., Spalding, M., and
Fletcher, S.: A global map of saltmarshes, Biodiv. Data J., 5,
e11764, https://doi.org/10.3897/BDJ.5.e11764, 2017.
Montillet, J.-P., Melbourne, T. I., and Szeliga, W. M.: GPS Vertical Land
Motion Corrections to Sea-Level Rise Estimates in the Pacific Northwest,
J. Geophys. Res.-Oceans, 123, 1196–1212,
https://doi.org/10.1002/2017JC013257, 2018.
Nuwer, J. M. and Keil, R. G.: Sedimentary organic matter geochemistry of
Clayoquot Sound, Vancouver Island, British Columbia, Limnol. Oceanogr., 50, 1119–1128, https://doi.org/10.4319/lo.2005.50.4.1119,
2005.
Olid, C., Garcia-Orellana, J., Martínez-Cortizas, A., Masqué, P.,
Peiteado-Varela, E., and Sanchez-Cabeza, J.-A.: Multiple site study of
recent atmospheric metal (Pb, Zn and Cu) deposition in the NW Iberian
Peninsula using peat cores, Sci. Total Environ, 408, 5540–5549,
https://doi.org/10.1016/j.scitotenv.2010.07.058, 2010.
Ouyang, X. and Lee, S. Y.: Updated estimates of carbon accumulation rates in coastal marsh sediments, Biogeosciences, 11, 5057–5071, https://doi.org/10.5194/bg-11-5057-2014, 2014.
Pendleton, L., Donato, D., Murray, B., Crooks, S., Jenkins, W., Sifleet, S.,
Craft, C., Fourqurean, J. W., Kauffman, J. B., Marba, N. R., Megonigal, P.,
Pidgeon, E., Herr, D., Gordon, D., and Baldera, A.: Estimating global blue
carbon emissions from conversion and degradation of vegetated coastal
ecosystems, PLoS One, 7, e43542, https://doi.org/10.1371/journal.pone.0043542, 2012.
Poffenbarger, H. J., Needelman, B. A., and Megonigal, J. P.: Salinity
Influence on Methane Emissions from Tidal Marshes, Wetlands, 31, 831–842,
https://doi.org/10.1007/s13157-011-0197-0, 2011.
Poppe, K. L. and Rybczyk, J. M.: Tidal marsh restoration enhances sediment accretion and carbon accumulation in the Stillaguamish River estuary, Washington, PLOS ONE, 16, e0257244, https://doi.org/10.1371/journal.pone.0257244, 2021.
Porter, G. L.: Vegetation-environment relationships in the tidal marshes of
the Fraser River Delta, British Columbia, MSc, The University of British
Columbia Vancouver, BC, Canada, https://doi.org/10.14288/1.0095820, 1982.
Postlethwaite, V. R., McGowan, A. E., Kohfeld, K. E., Robinson, C. L. K.,
and Pellatt, M. G.: Low blue carbon storage in eelgrass (Zostera marina)
meadows on the Pacific Coast of Canada, PLoS One, 13, e0198348,
https://doi.org/10.1371/journal.pone.0198348, 2018.
Price, D. T., Alfaro, R. I., Brown, K. J., Flannigan, M. D., Fleming, R. A.,
Hogg, E. H., Girardin, M. P., Lakusta, T., Johnston, M., McKenney, D. W.,
Pedlar, J. H., Stratton, T., Sturrock, R. N., Thompson, I. D., Trofymow, J.
A., and Venier, L. A.: Anticipating the consequences of climate change for
Canada's boreal forest ecosystems, Environ. Rev., 21, 322–365,
https://doi.org/10.1139/er-2013-0042, 2013
Ryder, J. L., Kenyon, J. K., Buffett, D., Moore, K., Ceh, M., and Stipec, K.:
An integrated biophysical assessment of estuarine habitats in British
Columbia to assist regional conservation planning, No. 476, Technical Report
Series, ISBN 0-662-45252-2, 2007.
Schumacher, B. A.: Methods for the Determination of Total Organic Carbon
in Soils and Sediments, US Environmental Protection Agency Environmental
Sciences Division-National Exposure Research Laboratory, Las Vegas, NV,
USA, 2–11, 2002.
Stinson, G., Kurz, W. A., Smyth, C. E., Neilson, E. T., Dymond, C. C.,
Metsaranta, J. M., Boisvenue, C., Rampley, G. J., Li, Q., White, T. M., and
Blain, D.: An inventory-based analysis of Canada's managed forest carbon
dynamics, 1990 to 2008, Glob. Change Biol. 17, 2227–2244,
https://doi.org/10.1111/j.1365-2486.2010.02369.x, 2011.
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz,
S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E. A. G., Turetsky,
M. R., and Mack, M. C.: Increasing wildfires threaten historic carbon sink
of boreal forest soils, Nature, 572, 520–523, https://doi.org/10.1038/s41586-019-1474-y,
2019.
Wei, S., Han, G., Chu, X., Song, W., He, W., Xia, J., and Wu, H.: Effect of
tidal flooding on ecosystem CO2 and CH4 fluxes in a salt marsh in
the Yellow River Delta, Estuarine, Coast. Shelf Sci., 238, 106727, https://doi.org/10.1016/j.ecss.2020.106727, 2020.
Weinmann, F. M., Boule, M., Brunner, K., Malek, J., and Yoshino V.: Wetland
Plants of the Pacific Northwest, US Army Corps of Engineers, Seattle, WA,
USA, https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/5366/ (last access: 14 November 2022), 1984.
Co-editor-in-chief
The carbon accumulation rates of the described salt marsh soils are approximately 2-7 times greater than net C uptake rates of Canadian boreal forests, which highlights their potential importance as C reservoirs and the need to consider their C accumulation capacity as a climate mitigation co-benefit when conserving for other salt marsh ecosystem services.
The carbon accumulation rates of the described salt marsh soils are approximately 2-7 times...
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Salt marshes are thought to be important carbon sinks because of their ability to store carbon...
Altmetrics
Final-revised paper
Preprint