Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5751-2022
https://doi.org/10.5194/bg-19-5751-2022
Research article
 | Highlight paper
 | 
15 Dec 2022
Research article | Highlight paper |  | 15 Dec 2022

Quantification of blue carbon in salt marshes of the Pacific coast of Canada

Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis

Related authors

Carbon Stocks and Accumulation Rates in Salt Marshes of the Pacific Coast of Canada
Stephen G. Chastain, Karen Kohfeld, and Marlow G. Pellatt
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-166,https://doi.org/10.5194/bg-2018-166, 2018
Revised manuscript not accepted
Short summary

Related subject area

Biogeochemistry: Wetlands
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024,https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024,https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary
Reviews and syntheses: Greenhouse gas emissions from drained organic forest soils – synthesizing data for site-specific emission factors for boreal and cool temperate regions
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023,https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023,https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Plant mercury accumulation and litter input to a Northern Sedge-dominated Peatland
Ting Sun and Brian A. Branfireun
Biogeosciences, 20, 2971–2984, https://doi.org/10.5194/bg-20-2971-2023,https://doi.org/10.5194/bg-20-2971-2023, 2023
Short summary

Cited articles

Abbott, K. M., Elsey-Quirk, T., and DeLaune, R. D.: Factors influencing blue carbon accumulation across a 32-year chronosequence of created coastal marshes, Ecosphere, 10, e02828, https://doi.org/10.1002/ecs2.2828, 2019. 
Abdul-Aziz, O. I., Ishtiaq, K. S., Tang, J., Moseman-Valtierra, S., Kroeger, K. D., Gonneea, M. E., Mora, J., and Morkeski, K.: Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes, J. Geophys. Res.-Biogeo., 123, 2234–2256, https://doi-org.proxy.lib.sfu.ca/10.1029/2018JG004556 
Adams, C. A., Andrews, J. E., and Jickells, T.: Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments, Sci. Total Environ., 434, 240–251, https://doi.org/10.1016/j.scitotenv.2011.11.058, 2012. 
Arias-Ortiz, A., Masqué, P., Garcia-Orellana, J., Serrano, O., Mazarrasa, I., Marbà, N., Lovelock, C. E., Lavery, P. S., and Duarte, C. M.: Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight, Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, 2018. 
Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., and Trettin, C.: The carbon balance of North American wetlands, Wetlands, 26, 889–916, https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2, 2006. 
Download
Co-editor-in-chief
The carbon accumulation rates of the described salt marsh soils are approximately 2-7 times greater than net C uptake rates of Canadian boreal forests, which highlights their potential importance as C reservoirs and the need to consider their C accumulation capacity as a climate mitigation co-benefit when conserving for other salt marsh ecosystem services.
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Altmetrics
Final-revised paper
Preprint