State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining 810008, China
Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810016, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Hongyun Yao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Although water availability has been linked to the response of ecosystem carbon (C) sink–source...