Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-861-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-861-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Junqi Wei
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining 810008, China
Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810016, China
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
Torben Røjle Christensen
Department of Ecoscience, Arctic Research Center, Aarhus University, Roskilde 4000, Denmark
Oulanka Research Station, University of Oulu, Oulu, Finland
Zhiyun Jiang
School of Geography, South China Normal University, Guangzhou 510631, China
Yujun Ma
School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
Xiuchen Wu
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Hongyun Yao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Efrén López-Blanco
Department of Environment and Minerals, Greenland Institute of Natural Resources, Nuuk 3900, Greenland
Department of Ecoscience, Arctic Research Center, Aarhus University, Roskilde 4000, Denmark
Related authors
No articles found.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Johan H. Scheller, Mikhail Mastepanov, Hanne H. Christiansen, and Torben R. Christensen
Biogeosciences, 18, 6093–6114, https://doi.org/10.5194/bg-18-6093-2021, https://doi.org/10.5194/bg-18-6093-2021, 2021
Short summary
Short summary
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14 summers, which shows large variations between years. The methane emissions from the valley are expected to more than double in the late 21st century. This warming increases permafrost thaw, which could increase surface erosion in the valley. Increased erosion could offset some of the rise in methane fluxes from the valley, but this would require large-scale impacts on vegetated surfaces.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Cited articles
Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., and Zhang, W.: Soil moisture and hydrology projections of the permafrost region – a model intercomparison, The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, 2020.
Bai, W., Xi, J., and Wang, G.: Effects of short-term warming and nitrogen
addition on CO2 emission during growing season in an alpine swamp
meadow ecosystem of Qinghai-Tibetan Plateau, Chin. J. Ecol., 38, 927–936,
https://doi.org/10.13292/j.1000-4890.201904.001, 2019.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmuller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kroger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G., Meiklejohn,
I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K.,
Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K.,
Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale,
Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bohn, T. J., Lettenmaier, D. P., Sathulur, K., Bowling, L. C., Podest, E.,
McDonald, K. C., and Friborg, T.: Methane emissions from western Siberian
wetlands: heterogeneity and sensitivity to climate change, Environ. Res.
Lett., 2, 045015, https://doi.org/10.1088/1748-9326/2/4/045015, 2007.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001.
Cao, S. K., Cao, G. C., Feng, Q., Han, G. Z., Lin, Y. Y., Yuan, J., Wu, F.
T., and Cheng, S. Y.: Alpine wetland ecosystem carbon sink and its controls
at the Qinghai Lake, Environ. Earth Sci., 76, 210,
https://doi.org/10.1007/s12665-017-6529-5, 2017.
Chai, X., Shi, P. L., Zong, N., Niu, B., He, Y. T., and Zhang, X. Z.:
Biophysical regulation of carbon flux in different rainfall regime in a
northern Tibetan alpine meadow, J. Resour. Ecol., 8, 30–41,
https://doi.org/10.5814/j.issn.1674-764x.2017.01.005, 2017.
Chen, D., Xu, B., Yao, T., Guo, Z., Cui, P., Chen, F., Zhang, R., Zhang, X.,
Zhang, Y., Fan, J., Hou, Z., and Zhang, T.: Assessment of past, present and
future environmental changes on the Tibetan Plateau, Chinese Sci. Bull., 60,
3025–3035, https://doi.org/10.1360/n972014-01370, 2015.
Cheng, Z., Liu, X., Fan, G., Bai, A., and Wang, B.: Spatiotemporal
Distribution of Climate Change over the Qinghai-Tibetan Plateau in 21st
Century, Arid Zone Res., 28, 669–676, 2011.
Chimner, R. A. and Cooper, D. J.: Influence of water table levels on
CO2 emissions in a Colorado subalpine fen: an in-situ microcosm study,
Soil Biol. Biochem., 35, 345–351,
https://doi.org/10.1016/s0038-0717(02)00284-5, 2003.
Christensen, T. R., Ekberg, A., Strom, L., Mastepanov, M., Panikov, N.,
Oquist, M., Svensson, B. H., Nykanen, H., Martikainen, P. J., and Oskarsson,
H.: Factors controlling large scale variations in methane emissions from
wetlands, Geophys. Res. Lett., 30, 1414, https://doi.org/10.1029/2002gl016848,
2003.
Foti, R., del Jesus, M., Rinaldo, A., and Rodriguez-Iturbe, I.: Signs of
critical transition in the Everglades wetlands in response to climate and
anthropogenic changes, P. Natl. Acad. Sci. USA, 110, 6296–6300,
https://doi.org/10.1073/pnas.1302558110, 2013.
Fu, G., Shen, Z.-X., Sun, W., Zhong, Z.-M., Zhang, X.-Z., and Zhou, Y.-T.: A
Meta-analysis of the Effects of Experimental Warming on Plant Physiology and
Growth on the Tibetan Plateau, J. Plant Growth Regul., 34, 57–65,
https://doi.org/10.1007/s00344-014-9442-0, 2015.
Fu, Y., Zheng, Z., Yu, G., Hu, Z., Sun, X., Shi, P., Wang, Y., and Zhao, X.: Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China, Biogeosciences, 6, 2879–2893, https://doi.org/10.5194/bg-6-2879-2009, 2009.
Ganjurjav, H., Gao, Q., Gornish, E. S., Schwartz, M. W., Liang, Y., Cao, X.,
Zhang, W., Zhang, Y., Li, W., Wan, Y., Li, Y., Danjiu, L., Guo, H., and Lin,
E.: Differential response of alpine steppe and alpine meadow to climate
warming in the central Qinghai-Tibetan Plateau, Agr. Forest Meteorol., 223,
233–240, https://doi.org/10.1016/j.agrformet.2016.03.017, 2016.
Ganjurjav, H., Hu, G., Wan, Y., Li, Y., Danjiu, L., and Gao, Q.: Different
responses of ecosystem carbon exchange to warming in three types of alpine
grassland on the central Qinghai-Tibetan Plateau, Ecol. Evol., 8, 1507–1520,
https://doi.org/10.1002/ece3.3741, 2018.
Gao, Y., Quan, M. Y., Shen, W. D., and Ren, X. D.: Research on experimental
warming effects of CO2 emissions and environmental response mechanisms
in an alpine swamp meadow ecosystem on the Qinghai-Tibet Plateau, J. Guangxi
Uni. (Nat. Sci. Ed.), 44, 580–586,
https://doi.org/10.13624/j.cnki.issn.1001-7445.2019.0580, 2019.
Han, G., Yang, L., Yu, J., Wang, G., Mao, P., and Gao, Y.: Environmental
Controls on Net Ecosystem CO2 Exchange Over a Reed (Phragmites
australis) Wetland in the Yellow River Delta, China, Estuar. Coast, 36,
401–413, https://doi.org/10.1007/s12237-012-9572-1, 2013.
Hao, Y. B., Cui, X. Y., Wang, Y. F., Mei, X. R., Kang, X. M., Wu, N., Luo,
P., and Zhu, D.: Predominance of Precipitation and Temperature Controls on
Ecosystem CO2 Exchange in Zoige Alpine Wetlands of Southwest China,
Wetlands, 31, 413–422, https://doi.org/10.1007/s13157-011-0151-1, 2011.
Hruby, T.: Assessments of Wetland Functions: What They Are and What They Are
Not, Environ. Manage., 23, 75–85, https://doi.org/10.1007/s002679900168,
1999.
Jansson, J. K. and Hofmockel, K. S.: Soil microbiomes and climate change,
Nat. Rev. Microbiol., 18, 35–46, https://doi.org/10.1038/s41579-019-0265-7,
2020.
Kang, X., Wang, Y., Chen, H., Tian, J., Cui, X., Rui, Y., Zhong, L., Kardol,
P., Hao, Y., and Xiao, X.: Modeling Carbon Fluxes Using Multi-Temporal MODIS
Imagery and CO2 Eddy Flux Tower Data in Zoige Alpine Wetland,
South-West China, Wetlands, 34, 603–618,
https://doi.org/10.1007/s13157-014-0529-y, 2014.
Lafrenière, M. J. and Lamoureux, S. F.: Effects of changing permafrost
conditions on hydrological processes and fluvial fluxes, Earth-Sci. Rev.,
191, 212–223, https://doi.org/10.1016/j.earscirev.2019.02.018, 2019.
Li, C., He, H., Liu, M., Su, W., Fu, Y., Zhang, L., Wen, X., and Yu, G.: The
design and application of CO2 flux data processing system at ChinaFLUX,
Geo-Info. Sci., 10, 557–565,
https://doi.org/10.3969/j.issn.1560-8999.2008.05.002, 2008.
Li, C., Yang, Y., Li, X., Chen, Q., and Zhou, H.: Effects of Simulated
Climate Warming and Grazing on Photosynthesis and Respiration of Permafrost
Meadow Plant Community, Russ. J. Ecol+, 51, 224–232,
https://doi.org/10.1134/s1067413620030042, 2020.
Li, H., Nicotra, A. B., Xu, D., and Du, G.: Habitat-specific responses of
leaf traits to soil water conditions in species from a novel alpine swamp
meadow community, Conserv. Physiol., 3, cov046,
https://doi.org/10.1093/conphys/cov046, 2015.
Liu, D., Li, Y., Wang, T., Peylin, P., MacBean, N., Ciais, P., Jia, G., Ma,
M., Ma, Y., Shen, M., Zhang, X., and Piao, S.: Contrasting responses of
grassland water and carbon exchanges to climate change between Tibetan
Plateau and Inner Mongolia, Agr. Forest Meteorol., 249, 163–175,
https://doi.org/10.1016/j.agrformet.2017.11.034, 2018.
Liu, L., Wang, X., Lajeunesse, M. J., Miao, G., Piao, S., Wan, S., Wu, Y.,
Wang, Z., Yang, S., Li, P., and Deng, M.: A cross-biome synthesis of soil
respiration and its determinants under simulated precipitation changes,
Glob. Change Biol., 22, 1394–1405, https://doi.org/10.1111/gcb.13156, 2016.
Liu, S. M., Xu, Z. W., Wang, W. Z., Jia, Z. Z., Zhu, M. J., Bai, J., and Wang, J. M.: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem, Hydrol. Earth Syst. Sci., 15, 1291–1306, https://doi.org/10.5194/hess-15-1291-2011, 2011.
Liu, X. W., Zhu, D., Zhan, W., Chen, H., Zhu, Q. A., Hao, Y. B., Liu, W. J., and He, Y. X.: Five‐year measurements of net ecosystem
CO2 exchange at a fen in the Zoige peatlands on the Qinghai‐Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 11803–11818, https://doi.org/10.1029/2019JD031429, 2019.
Liu, Y., Geng, X., Tenzintarchen, Wei, D., Dai, D., and Xu, R.: Divergence in
ecosystem carbon fluxes and soil nitrogen characteristics across alpine
steppe, alpine meadow and alpine swamp ecosystems in a biome transition
zone, Sci. Total Environ., 748, 142453, https://doi.org/10.1016/j.scitotenv.2020.142453,
2020.
Lloyd, J. and Taylor, J. A.: On the Temperature-Dependence of Soil
Respiration, Funct. Ecol., 8, 315–323, https://doi.org/10.2307/2389824,
1994.
López-Blanco, E., Lund, M., Williams, M., Tamstorf, M. P., Westergaard-Nielsen, A., Exbrayat, J.-F., Hansen, B. U., and Christensen, T. R.: Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance, Biogeosciences, 14, 4467–4483, https://doi.org/10.5194/bg-14-4467-2017, 2017.
López-Blanco, E., Lund, M., Christensen, T. R., Tamstorf, M. P.,
Smallman, T. L., Slevin, D., Westergaard-Nielsen, A., Hansen, B. U.,
Abermann, J., and Williams, M.: Plant Traits are Key Determinants in
Buffering the Meteorological Sensitivity of Net Carbon Exchanges of Arctic
Tundra, J. Geophys. Res.-Biogeo., 123, 2675–2694,
https://doi.org/10.1029/2018jg004386, 2018.
López-Blanco, E., Jackowicz-Korczynski, M., Mastepanov, M., Skov, K.,
Westergaard-Nielsen, A., Williams, M., and Christensen, T. R.: Multi-year
data-model evaluation reveals the importance of nutrient availability over
climate in arctic ecosystem C dynamics, Environ. Res. Lett., 15, 094007,
https://doi.org/10.1088/1748-9326/ab865b, 2020.
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A.
D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R.,
Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J.,
Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling
techniques for eddy covariance net carbon fluxes, Agr. Forest Meteorol.,
147, 209–232, https://doi.org/10.1016/j.agrformet.2007.08.011, 2007.
Niu, B., He, Y., Zhang, X., Du, M., Shi, P., Sun, W., and Zhang, L.:
CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau,
Wetlands, 37, 525–543, https://doi.org/10.1007/s13157-017-0888-2, 2017.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12,
2825–2830, 2011.
Peng, F., You, Q., Xu, M., Guo, J., Wang, T., and Xue, X.: Effects of
Warming and Clipping on Ecosystem Carbon Fluxes across Two Hydrologically
Contrasting Years in an Alpine Meadow of the Qinghai-Tibet Plateau, Plos
One, 9, 109319, https://doi.org/10.1371/journal.pone.0109319, 2014.
Qi, Y., Wei, D., Zhao, H., and Wang, X.: Carbon Sink of a Very High
Marshland on the Tibetan Plateau, J. Geophys. Res.-Biogeo., 126, e2020JG006235,
https://doi.org/10.1029/2020jg006235, 2021.
Quan, Q., Tian, D., Luo, Y., Zhang, F., Crowther, T. W., Zhu, K., Chen, H.
Y. H., Zhou, Q., and Niu, S.: Water scaling of ecosystem carbon cycle
feedback to climate warming, Sci. Adv., 5, eaav1131,
https://doi.org/10.1126/sciadv.aav1131, 2019.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A.,
Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta,
F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M.,
Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and
Valentini, R.: On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: review and improved algorithm, Glob. Change
Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x,
2005.
Reichstein, M., Moffat, A. M., Wutzler, T., and Sickel, K.: REddyProc: Data
processing and plotting utilities of (half-)hourly eddy-covariance
measurements, R package version 0.8-2/r14, https://R-Forge.R-project.org/projects/reddyproc/ (last access: 6 February 2022), 2016.
Saito, M., Kato, T., and Tang, Y.: Temperature controls ecosystem CO2
exchange of an alpine meadow on the northeastern Tibetan Plateau, Glob.
Change Biol., 15, 221–228, https://doi.org/10.1111/j.1365-2486.2008.01713.x,
2009.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and
Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and
net carbon exchange from tundra, Nature, 459, 556–559,
https://doi.org/10.1038/nature08031, 2009.
Song, C. C., Sun, L., Huang, Y., Wang, Y. S., and Wan, Z. M.: Carbon exchange in
a freshwater marsh in the Sanjiang Plain, northeastern China, Agr. Forest
Meteorol., 151, 1131–1138, https://doi.org/10.1016/j.agrformet.2011.04.001,
2011.
Sun, S., Che, T., Gentine, P., Chen, Q., Wang, L., Yan, Z., Chen, B., and
Song, Z.: Shallow groundwater inhibits soil respiration and favors carbon
uptake in a wet alpine meadow ecosystem, Agr. Forest Meteorol., 297, 108254,
https://doi.org/10.1016/j.agrformet.2020.108254, 2021.
Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W., Doughty, C.
E., Dobrowski, S. Z., and Townsend, A. R.: Temperature and rainfall interact
to control carbon cycling in tropical forests, Ecol. Lett., 20, 779–788,
https://doi.org/10.1111/ele.12765, 2017.
Wang, D., Wang, K., Zheng, X., Butterbach-Bahl, K., Diaz-Pines, E., and
Chen, H.: Applicability of a gas analyzer with dual quantum cascade lasers
for simultaneous measurements of N2O, CH4 and CO2 fluxes from cropland
using the eddy covariance technique, Sci. Total Environ., 729, 138784,
https://doi.org/10.1016/j.scitotenv.2020.138784, 2020.
Wang, H., Yu, L., Chen, L., Wang, C., and He, J.: Responses of soil
respiration to reduced water table and nitrogen addition in an alpine
wetland on the Qinghai-Xizang Plateau, Chin. J. Plant Ecol., 38, 619–625,
https://doi.org/10.3724/SP.J.1258.2014.00057, 2014.
Wang, L., Liu, H., Sun, J., and Shao, Y.: Biophysical effects on the interannual variation in carbon dioxide exchange of an alpine meadow on the Tibetan Plateau, Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017, 2017.
Wang, L., Liu, H., Shao, Y., Liu, Y., and Sun, J.: Water and CO2 fluxes
over semiarid alpine steppe and humid alpine meadow ecosystems on the
Tibetan Plateau, Theor. Appl. Climatol., 131, 547–556,
https://doi.org/10.1007/s00704-016-1997-1, 2018.
Wang, Y., Zhu, Z., Ma, Y., and Yuan, L.: Carbon and water fluxes in an
alpine steppe ecosystem in the Nam Co area of the Tibetan Plateau during two
years with contrasting amounts of precipitation, Int. J. Biometeorol., 64,
1183–1196, https://doi.org/10.1007/s00484-020-01892-2, 2020.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of Flux
Measurements for Density Effects Due to Heat and Water-Vapor Transfer, Q. J.
Roy. Meteor. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707,
1980.
Wei, D., Qi, Y. H., Ma, Y. M., Wang, X. F., Ma, W. Q., Gao, T. G., H, L., Zhao, H.,
Zhang, J. X., and Wang, X. D.: Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan
Plateau, P. Natl. Acad. Sci. USA, 118, e2015283118, https://doi.org/10.1073/pnas.2015283118, 2021.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt
correction algorithms, Bound-Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/a:1018966204465, 2001.
Woodward, R. T. and Wui, Y. S.: The economic value of wetland services: a
meta-analysis, Ecol. Econ., 37, 257–270,
https://doi.org/10.1016/s0921-8009(00)00276-7, 2001.
Wu, F., Cao, S., Cao, G., Han, G., Lin, Y., and Cheng, S.: Variation of
CO2 Flux of Alpine Wetland Ecosystem of Kobresia tibetica Wet Meadow in
Lake Qinghai, J. Ecol. Rural Environ., 34, 124–131,
https://doi.org/10.11934/j.issn.1673-4831.2018.02.004, 2018.
Wu, H., Zhao, G., Li, X. Y., Wang, Y., He, B., Jiang, Z., Zhang, S., and
Sun, W.: Identifying water sources used by alpine riparian plants in a
restoration zone on the Qinghai-Tibet Plateau: Evidence from stable
isotopes, Sci. Total Environ., 697, 134092,
https://doi.org/10.1016/j.scitotenv.2019.134092, 2019.
Wu, J., Wu, H., Ding, Y., Qin, J., and Zeng, D.: Interannual and seasonal
variations in carbon exchanges over an alpine meadow in the northeastern
edge of the Qinghai-Tibet Plateau, China, PloS one, 15, e0228470,
https://doi.org/10.1371/journal.pone.0228470, 2020.
Wu, L., Gu, S., Zhao, L., Xu, S., Zhou, H., Feng, C., Xu, W.-X., Li, Y.,
Zhao, X., and Tang, Y.: Variation in net CO2 exchange, gross primary
production and its affecting factors in the planted pasture ecosystem in
Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China, Chin. J. Plant
Ecol., 34, 521–528, https://doi.org/10.3724/SP.J.1142.2010.40521, 2010.
Wu, Z., Dijkstra, P., Koch, G. W., Penuelas, J., and Hungate, B. A.:
Responses of terrestrial ecosystems to temperature and precipitation change:
a meta-analysis of experimental manipulation, Glob. Change Biol., 17,
927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Yu, G. R., Zhu, X. J., Fu, Y. L., He, H. L., Wang, Q. F., Wen, X. F., Li, X. R., Zhang, L. M., Zhang, L., Su, W., Li, S. G., Sun, X. M., Zhang, Y. P., Zhang, J. H., Yan, J. H., Wang, H. M., Zhou, G. S., Jia, B. R., Xiang, W. H., Li, Y. N., Zhao, L., Wang, Y. F., Shi, P. L., Chen, S. P., Xin, X. P., Zhao, F. H., Wang, Y. Y., and Tong, C. L.: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China, Glob.
Change
Biol., 19, 798–810, https://doi.org/10.1111/gcb.12079, 2013.
Yu, L., Wang, H., Wang, Y., Zhang, Z., Chen, L., Liang, N., and He, J.-S.:
Temporal variation in soil respiration and its sensitivity to temperature
along a hydrological gradient in an alpine wetland of the Tibetan Plateau,
Agr. Forest Meteorol., 282–283, 107854, https://doi.org/10.1016/j.agrformet.2019.107854,
2020.
Zeng, J., Matsunaga, T., Tan, Z. H., Saigusa, N., Shirai, T., Tang, Y.,
Peng, S., and Fukuda, Y.: Global terrestrial carbon fluxes of 1999–2019
estimated by upscaling eddy covariance data with a random forest, Sci. Data,
7, 313, https://doi.org/10.1038/s41597-020-00653-5, 2020.
Zhang, G., Zhang, Y., Dong, J., and Xiao, X.: Green-up dates in the Tibetan
Plateau have continuously advanced from 1982 to 2011, P. Natl. Acad. Sci.
USA, 110, 4309–4314, https://doi.org/10.1073/pnas.1210423110, 2013.
Zhang, H., Wu, P., Yin, A., Yang, X., Zhang, M., and Gao, C.: Prediction of
soil organic carbon in an intensively managed reclamation zone of eastern
China: A comparison of multiple linear regressions and the random forest
model, Sci. Total Environ., 592, 704–713,
https://doi.org/10.1016/j.scitotenv.2017.02.146, 2017.
Zhang, S. Y.: Energy partitioning and evapotranspiration over the typical
ecosystems in the Qinghai Lake watershed, PhD thesis, College of Resources
Science and Technology, Beijing Normal University, China, 115 pp., 2014 (n Chinese with English abstract).
Zhang, S.-Y., Li, X.-Y., Zhao, G.-Q., and Huang, Y.-M.: Surface energy
fluxes and controls of evapotranspiration in three alpine ecosystems of
Qinghai Lake watershed, NE Qinghai-Tibet Plateau, Ecohydrology, 9, 267–279,
https://doi.org/10.1002/eco.1633, 2016.
Zhang, T., Zhang, Y., Xu, M., Zhu, J., Chen, N., Jiang, Y., Huang, K., Zu,
J., Liu, Y., and Yu, G.: Water availability is more important than
temperature in driving the carbon fluxes of an alpine meadow on the Tibetan
Plateau, Agr. Forest Meteorol., 256, 22–31,
https://doi.org/10.1016/j.agrformet.2018.02.027, 2018.
Zhao, J., Luo, T., Wei, H., Deng, Z., Li, X., Li, R., and Tang, Y.:
Increased precipitation offsets the negative effect of warming on plant
biomass and ecosystem respiration in a Tibetan alpine steppe, Agr. Forest
Meteorol., 279, 107761, https://doi.org/10.1016/j.agrformet.2019.107761, 2019.
Zhao, L., Li, Y. N., Zhao, X. Q., Xu, S. X., Tang, Y. H., Yu, G. R., Gu, S.,
Du, M. Y., and Wang, Q. X.: Comparative study of the net exchange of
CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau,
Chinese Sci. Bull., 50, 1767–1774, https://doi.org/10.1360/04wd0316, 2005.
Zhao, L., Li, Y., Xu, S., Zhou, H., Gu, S., Yu, G., and Zhao, X.: Diurnal,
seasonal and annual variation in net ecosystem CO2 exchange of an
alpine shrubland on Qinghai-Tibetan plateau, Glob. Change Biol., 12,
1940–1953, https://doi.org/10.1111/j.1365-2486.2006.01197.x, 2006.
Zhao, L., Li, J., Xu, S., Zhou, H., Li, Y., Gu, S., and Zhao, X.: Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau, Biogeosciences, 7, 1207–1221, https://doi.org/10.5194/bg-7-1207-2010, 2010.
Zhao, L., Hu, G., Zou, D., Wu, X., Ma, L., Sun, Z., Yuan, L., Zhou, H., and
Liu, S.: Permafrost changes and its effects on hydrological processes on
Qinghai-Tibet Plateau, Bull. Chin. Acad. Sci. (Chinese Version), 34,
1233–1246, https://doi.org/10.16418/j.issn.1000-3045.2019.11.006, 2019.
Zhu, J., Zhang, Y., and Jiang, L.: Experimental warming drives a seasonal
shift of ecosystem carbon exchange in Tibetan alpine meadow, Agr. Forest
Meteorol., 233, 242–249, https://doi.org/10.1016/j.agrformet.2016.12.005,
2017.
Zhu, J., Zhang, F., Li, H., He, H., Li, Y., Yang, Y., Zhang, G., Wang, C.,
and Luo, F.: Seasonal and Interannual Variations of CO2 Fluxes Over 10
Years in an Alpine Wetland on the Qinghai-Tibetan Plateau, J. Geophys.
Res.-Biogeo., 125, e2020JG006011, https://doi.org/10.1029/2020jg006011, 2020.
Zhu, X., Song, C., Swarzenski, C. M., Guo, Y., Zhang, X., and Wang, J.:
Ecosystem-atmosphere exchange of CO2 in a temperate herbaceous peatland
in the Sanjiang Plain of northeast China, Ecol. Eng., 75, 16–23,
https://doi.org/10.1016/j.ecoleng.2014.11.035, 2015.
Zhu, Z., Ma, Y., Li, M., Hu, Z., Xu, C., Zhang, L., Han, C., Wang, Y., and
Ichiro, T.: Carbon dioxide exchange between an alpine steppe ecosystem and
the atmosphere on the Nam Co area of the Tibetan Plateau, Agr. Forest
Meteorol., 203, 169–179, https://doi.org/10.1016/j.agrformet.2014.12.013,
2015.
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Although water availability has been linked to the response of ecosystem carbon (C) sink–source...
Altmetrics
Final-revised paper
Preprint