Articles | Volume 20, issue 6
https://doi.org/10.5194/bg-20-1181-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1181-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Xiangyu Liu
Department of Earth, Atmospheric, Planetary Sciences, Purdue
University, West Lafayette, IN, USA
Department of Earth, Atmospheric, Planetary Sciences, Purdue
University, West Lafayette, IN, USA
Department of Agronomy, Purdue University, West Lafayette, IN, USA
Purdue Climate Change Research Center, West Lafayette, IN, USA
Related authors
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Ye Yuan, Qianlai Zhuang, Bailu Zhao, and Narasinha Shurpali
EGUsphere, https://doi.org/10.5194/egusphere-2023-1047, https://doi.org/10.5194/egusphere-2023-1047, 2023
Preprint archived
Short summary
Short summary
We use a biogeochemistry model to calculate the regional N2O emissions considering the effects of N2O uptake, thawing permafrost, and N deposition. Our simulations show there is an increasing trend in regional net N2O emissions from 1969 to 2019. Annual N2O emissions exhibited big spatial variabilities. Nitrogen deposition leads to a significant increase in emission. Our results suggest that in the future, the pan-Arctic terrestrial ecosystem might act as an even larger N2O.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Cited articles
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams, Science, 361,
585–588, https://doi.org/10.1126/science.aat0636, 2018.
AMAP: AMAP Assessment 2015: Human Health in the Arctic, Arctic Monitoring
and Assessment Programme (AMAP), Oslo, Norway, https://doi.org/10.3402/ijch.v75.33949, 2015.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater Methane Emissions Offset the Continental Carbon
Sink, Science, 331, 50–50, https://doi.org/10.1126/science.1196808, 2011.
Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney, C., Tans, P., and Worthy, D.: CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane, Atmos. Chem. Phys., 14, 8269–8293, https://doi.org/10.5194/acp-14-8269-2014, 2014.
Chen, L. and Frauenfeld, O. W.: A comprehensive evaluation of precipitation
simulations over China based on CMIP5 multimodel ensemble projections, J.
Geophys. Res.-Atmos., 119, 5767–5786, https://doi.org/10.1002/2013JD021190, 2014.
Chen, X., Bohn, T. J., and Lettenmaier, D. P.: Model estimates of climate controls on pan-Arctic wetland methane emissions, Biogeosciences, 12, 6259–6277, https://doi.org/10.5194/bg-12-6259-2015, 2015.
Du, Y., Wang, D., Zhu, J., Wang, D., Qi, X., and Cai, J.: Comprehensive
assessment of CMIP5 and CMIP6 models in simulating and projecting
precipitation over the global land, Int. J. Climatol.,
42, 6859–6875, https://doi.org/10.1002/joc.7616, 2022.
Guo, M., Zhuang, Q., Tan, Z., Shurpali, N., Juutinen, S., Kortelainen, P.,
and Martikainen, P. J.: Rising methane emissions from boreal lakes due to
increasing ice-free days, Environ. Res. Lett., 15, 64008,
https://doi.org/10.1088/1748-9326/ab8254, 2020.
Guo, M., Zhuang, Q., Yao, H., Golub, M., Leung, L. R., Pierson, D., and Tan,
Z.: Validation and Sensitivity Analysis of a 1-D Lake Model Across Global
Lakes, J. Geophys. Res.-Atmos., 126, e2020JD033417,
https://doi.org/10.1029/2020JD033417, 2021.
Guseva, S., Bleninger, T., Jöhnk, K., Polli, B. A., Tan, Z., Thiery, W., Zhuang, Q., Rusak, J. A., Yao, H., Lorke, A., and Stepanenko, V.: Multimodel simulation of vertical gas transfer in a temperate lake, Hydrol. Earth Syst. Sci., 24, 697–715, https://doi.org/10.5194/hess-24-697-2020, 2020.
Hamdan, L. J. and Wickland, K. P.: Methane emissions from oceans, coasts, and
freshwater habitats: New perspectives and feedbacks on climate, Limnol.
Oceanogr., 61, S3–S12, https://doi.org/10.1002/lno.10449, 2016.
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water CO2
and CH4 emissions from very small ponds, Nat. Geosci., 9, 222–226,
https://doi.org/10.1038/ngeo2654, 2016.
Hopcroft, P. O., Valdes, P. J., O'Connor, F. M., Kaplan, J. O., and
Beerling, D. J.: Understanding the glacial methane cycle, Nat. Commun., 8,
14383, https://doi.org/10.1038/ncomms14383, 2017.
Huang, J., Li, Q., and Song, Z.: Historical global land surface air apparent
temperature and its future changes based on CMIP6 projections, Sci. Total
Environ., 816, 151656, https://doi.org/10.1016/j.scitotenv.2021.151656, 2022.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
https://doi.org/10.1017/9781009157896.001, 2021.
Jammet, M., Crill, P., Dengel, S., and Friborg, T.: Large methane emissions
from a subarctic lake during spring thaw: Mechanisms and landscape
significance, J. Geophys. Res.-Biogeo., 120, 2015JG003137,
https://doi.org/10.1002/2015JG003137, 2015.
Jens, S., Sebastian, L., Lutz, S., Alexander, N. F., Daniel, F., Duane, G.
F., Matthias, F., Frank, G., Mikhail, N. G., Jennifer, W. H., Gustaf, H.,
Loeka, L. J., Mikhail, Z. J., Alexander, L. K., Viktor, K., Gleb, K.,
Anatoly, V. S., Elizaveta, R., Yuri, S., Christine, S., Valentin, S., Irina,
S., Mathias, U., Sergey, L. V., Alexandra, V., Katey, M. W. A., Sebastian,
W., Nikita, S. Z., and Guido, G.: Database of Ice-Rich Yedoma Permafrost Version
2 (IRYP v2), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940078, 2022.
Jensen, K. and McDonald, K.: Surface Water Microwave Product Series Version
3: A Near-Real Time and 25-Year Historical Global Inundated Area Fraction
Time Series From Active and Passive Microwave Remote Sensing, IEEE Geosci. Remote S., 16, 1402–1406,
https://doi.org/10.1109/LGRS.2019.2898779, 2019.
Kyzivat, E. D., Smith, L. C., Garcia-Tigreros, F., Huang, C., Wang, C.,
Langhorst, T., Fayne, J. V. Harlan, M. E., Ishitsuka, Y. Feng, D., Dolan,
W., Pitcher, L. H., Wickland, K. P., Dornblaser, M. M., Striegl, R. G.,
Pavelsky, T. M., Butman, D. E., and Gleason, C. J.: The importance of lake
emergent aquatic vegetation for estimating Arctic-boreal methane emissions,
J. Geophys. Res.-Biogeo., 127, 2021JG006635,
https://doi.org/10.1029/2021JG006635, 2022.
Lange, S., Mengel, M., Treu, S., and Büchner, M.: ISIMIP3a atmospheric
climate input data (v1.0), ISIMIP Repository [data set],
https://doi.org/10.48364/ISIMIP.982724, 2022.
Li, M., Peng, C., Zhu, Q., Zhou, X., Yang, G., Song, X., and Zhang, K.: The
significant contribution of lake depth in regulating global lake diffusive
methane emissions, Water Res., 172, 115465,
https://doi.org/10.1016/j.watres.2020.115465, 2020.
Liu, L., Zhuang, Q., Oh, Y., Shurpali, N. J., Kim, S., and Poulter, B.:
Uncertainty Quantification of Global Net Methane Emissions from Terrestrial
Ecosystems Using a Mechanistically Based Biogeochemistry Model, J.
Geophys. Res.-Biogeo., 125, e2019JG005428,
https://doi.org/10.1029/2019JG005428, 2020.
Matthews, E., Johnson, M. S., Genovese, V., Du, J., and Bastviken, D.:
Methane emission from high latitude lakes: methane-centric lake
classification and satellite-driven annual cycle of emissions, Sci. Rep.,
10, 12465, https://doi.org/10.1038/s41598-020-68246-1, 2020.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, 2009.
Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty,
C. J., and Schloss, A. L.: Global climate change and terrestrial net primary
production, Nature, 363, 234–240, 1993.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.:
Estimating the volume and age of water stored in global lakes using a
geo-statistical approach, Nat. Commun., 7, 13603,
https://doi.org/10.1038/ncomms13603, 2016.
Meyer, M. F., Labou, S. G., Cramer, A. N., Brousil, M. R., and Luff, B. T.:
The global lake area, climate, and population dataset, Sci. Data, 7, 174,
https://doi.org/10.1038/s41597-020-0517-4, 2020.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D. J., Hugelius, G., Kuhry, P.,
Sannel, B., Schuur, E. A. G., and Turetsky, M. R.: Arctic Circumpolar Distribution
and Soil Carbon of Thermokarst Landscapes, ORNL DAAC, Oak Ridge,
Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/1332, 2016a.
Olefeldt, D., Goswami, S., Grosse, G., and Hayes, D.: Circumpolar
distribution and carbon storage of thermokarst landscapes, Nature, 7, 13043,
https://doi.org/10.1038/ncomms13043, 2016b.
Olid, C., Rodellas, V., Rocher-Ros, G., Garcia-Orellana, J., Diego-Feliu, M., Alorda-Kleinglass, A., Bastviken D., and Karlsson, J.: Groundwater discharge as a
driver of methane emissions from Arctic lakes, Nat. Commun., 13, 3667,
https://doi.org/10.1038/s41467-022-31219-1, 2022.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540, 418–422,
https://doi.org/10.1038/nature20584, 2016.
Phelps, A. R., Peterson, K. M., and Jeffries, M. O.: Methane efflux from
high-latitude lakes during spring ice melt, J. Geophys. Res.-Atmos., 103,
29029–29036, 1998.
Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Marielle
Saunois, Arora, V. K., Beerling, D. J., Brovkin, V., Jones, C. D., Joos, F.,
Nicola Gedney, Ito, A., Kleinen, T., Koven, C. D., McDonald, K., Melton, J.
R., Peng, C., Shushi Peng, Prigent, C., Schroeder, R., Riley, W. J., Saito,
M., Spahni, R., Tian, H., Lyla Taylor, Viovy, N., Wilton, D., Wiltshire, A.,
Xu, X., Zhang, B., Zhang, Z., and Zhu, Q.: Global wetland contribution to
2000–2012 atmospheric methane growth rate dynamics, Environ. Res. Lett.,
12, 094013, https://doi.org/10.1088/1748-9326/aa8391, 2017.
Quiquet, A., Archibald, A. T., Friend, A. D., Chappellaz, J., Levine, J. G.,
Stone, E. J., Telford, P. J., and Pyle, J. A.: The relative importance of
methane sources and sinks over the Last Interglacial period and into the
last glaciation, Quaternary Sci. Rev., 112, 1–16, 2015.
Sasaki, M., Kim, Y.-W., Uchida, M., and Utsumi, M.: Diffusive summer methane
flux from lakes to the atmosphere in the Alaskan arctic zone, Polar Sci.,
10, 303–311, 2016.
Sepulveda-Jauregui, A., Hoyos-Santillan, J., Martinez-Cruz, K., Walter
Anthony, K. M., Casper, P., Belmonte-Izquierdo, Y., and Thalasso, F.:
Eutrophication exacerbates the impact of climate warming on lake methane
emission, Sci. Total Environ., 636, 411–419,
https://doi.org/10.1016/j.scitotenv.2018.04.283, 2018.
Tan, Z. and Zhuang, Q.: Arctic lakes are continuous methane sources to the
atmosphere under warming conditions, Environ. Res. Lett., 10, 054016,
https://doi.org/10.1088/1748-9326/10/5/054016, 2015a.
Tan, Z. and Zhuang, Q.: Methane emissions from pan-Arctic lakes during the
21st century: An analysis with process-based models of lake evolution and
biogeochemistry, J. Geophys. Res.-Biogeo., 120, 2641–2653,
https://doi.org/10.1002/2015JG003184, 2015b.
Tan, Z., Zhuang, Q., and Walter Anthony, K. M.: Modeling methane emissions
from arctic lakes: model development and site-level study, J. Adv. Model.
Earth Sy., 7, 459–483, https://doi.org/10.1002/2014MS000344, 2015.
Tan, Z., Zhuang, Q., Henze, D. K., Frankenberg, C., Dlugokencky, E.,
Sweeney, C., Turner, A. J., Sasakawa, M., and Machida, T.: Inverse modeling
of pan-Arctic methane emissions at high spatial resolution: what can we
learn from assimilating satellite retrievals and using different
process-based wetland and lake biogeochemical models?, Atmos. Chem. Phys.,
16, 12649–12666, https://doi.org/10.5194/acp-16-12649-2016, 2016.
Tan, Z., Zhuang, Q., Shurpali, N. J., Marushchak, M. E., Biasi, C., Eugster,
W., and Walter Anthony, K.: Modeling CO2 emissions from Arctic lakes: Model
development and site-level study, J. Adv. Model. Earth Sys., 9, 2190–2213,
https://doi.org/10.1002/2017MS001028, 2017.
Tan, Z., Yao, H., and Zhuang, Q.: A Small Temperate Lake in the 21st
Century: Dynamics of Water Temperature, Ice Phenology, Dissolved Oxygen, and
Chlorophyll a, Water Resour. Res., 54, 4681–4699, 2018.
Thornton, B. F., Wik, M., and Crill, P. M.: Double-counting challenges the
accuracy of high-latitude methane inventories, Geophys. Res. Lett., 43,
12569–12577, https://doi.org/10.1002/2016GL071772, 2016.
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys. Res.
Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Walter, B. P. and Heimann, M.: A process-based, climate-sensitive
model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cy., 14, 745–765,
https://doi.org/10.1029/1999GB001204, 2000.
Watts, J. D., Kimball, J. S., Bartsch, A., and McDonald, K. C.: Surface
water inundation in the boreal-Arctic: potential impacts on regional methane
emissions, Environ. Res. Lett., 9, 075001,
https://doi.org/10.1088/1748-9326/9/7/075001, 2014.
West, W. E., Creamer, K. P., and Jones, S. E.: Productivity and depth
regulate lake contributions to atmospheric methane: Lake productivity fuels
methane emissions, Limnol. Oceanogr., 61, S51–S61,
https://doi.org/10.1002/lno.10247, 2016.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578,
2016.
Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G.,
Huang, C., and Poulter, B.: Emerging role of wetland methane emissions in
driving 21st century climate change, P. Natl. Acad. Sci. USA, 14,
9647–9652, https://doi.org/10.1073/pnas.1618765114, 2017.
Zhang, Z., Fluet-Chouinard, E., Jensen, K., McDonald, K., Hugelius, G., Gumbricht, T., Carroll, M., Prigent, C., Bartsch, A., and Poulter, B.: Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M), Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, 2021.
Zhang, Z., Poulter, B., Melton, J. R., Riley, W. J., Beerling, D. J., Ciais,
P., Gedney, N., Gustafson, A., Hopcroft, P. O., Ito, A., and Jain, A. K.:
Global Methane Budget 2000–2020: Wetland model synthesis, in: Fall
Meeting 2022, December 2022, Chicago, AGU, https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1179170 (last access: 23 March 2023), 2022.
Zhuang, Q. and Guo, M.: A process-based biogeochemistry model and analysis for current and future global lake methane emissions, Purdue University Research Repository [code], https://doi.org/10.4231/67YG-V518, 2023.
Zhuang, Q. and Liu, X.: Methane emissions from Arctic landscapes during 2000-2015: An analysis with land and lake biogeochemistry models, Purdue University Research Repository [data set], https://doi.org/10.4231/SJC1-9F83, 2022.
Zhuang, Q., Romanovsky, V. E., and McGuire, A. D.: Incorporation of a
permafrost model into a large-scale ecosystem model: Evaluation of temporal
and spatial scaling issues in simulating soil thermal dynamics, J. Geophys.
Res.-Atmos., 106, 33649–33670, 2001.
Zhuang, Q., McGuire, A. D., O'Neill, K. P., Harden, J. W., Romanovsky, V.
E., and Yarie, J.: Modeling soil thermal and carbon dynamics of a fire
chronosequence in interior Alaska, J. Geophys. Res.-Atmos., 108, 8147,
https://doi.org/10.1029/2001JD001244, 2002.
Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J.,
Kicklighter, D. W., Myneni, R. B., Dong, J., Romanovsky, V. E., Harden, J.,
and Hobbie, J. E.: Carbon cycling in extratropical terrestrial ecosystems of
the Northern Hemisphere during the 20th century: a modeling analysis of the
influences of soil thermal dynamics, Tellus B, 55, 751–776, 2003.
Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A.
D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between
terrestrial ecosystems and the atmosphere at northern high latitudes during
the past century: A retrospective analysis with a process-based
biogeochemistry model, Global Biogeochem. Cy., 18, GB3010,
https://doi.org/10.1029/2004GB002239, 2004.
Zhuang, Q., Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Prinn, R.
G., Steudler, P. A., Felzer, B. S., and Hu, S.: Net emissions of CH4 and CO2
in Alaska: Implications for the region's greenhouse gas budget, Ecol. Appl.,
17, 203–212, 2007.
Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y., Melillo, J. M.,
Prinn, R. G., and McGuire, A. D.: Response of global soil consumption of
atmospheric methane to changes in atmospheric climate and nitrogen
deposition, Global Biogeochem. Cy., 27, 650–663,
https://doi.org/10.1002/gbc.20057, 2013.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl,
A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold
season emissions dominate the Arctic tundra methane budget, P. Natl. Acad.
Sci. USA, 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
We are among the first to quantify methane emissions from inland water system in the pan-Arctic....
Altmetrics
Final-revised paper
Preprint