Articles | Volume 20, issue 11
https://doi.org/10.5194/bg-20-2049-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2049-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relationships between greenhouse gas production and landscape position during short-term permafrost thaw under anaerobic conditions in the Lena Delta
Mélissa Laurent
CORRESPONDING AUTHOR
Permafrost section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Matthias Fuchs
Permafrost section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Tanja Herbst
Permafrost section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Alexandra Runge
Permafrost section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Susanne Liebner
GFZ German Research Centre for Geosciences, Section Geomicrobiology,
Potsdam, Germany
University of Potsdam, Institute for Biochemistry and Biology,
Potsdam, Germany
Claire C. Treat
Permafrost section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Related authors
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1792, https://doi.org/10.5194/egusphere-2025-1792, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Palsas are peat permafrost mounds underlain by ice-rich permafrost. Due to climate change, they could disappeare by the end of the century. When palsas thaw, changes occur in hydrological conditions affecting the carbon (C) cycle. In our study, we simulated permafrost thaw under different water treatments using 1-meter soil columns from a palsa. We measured CH4 and CO2 emissions for 3-month incubation. Our results show that following thaw, flooding the cores leads to increased CO2 emissions.
Fabian Seemann, Michael Zech, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Claire Treat, Lutz Schirrmeister, Susanne Liebner, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3727, https://doi.org/10.5194/egusphere-2025-3727, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arctic coastal landscapes, like those in northernmost Alaska, often contain saline sediments that are more prone to thawing. We studied six sediment cores to understand how thawing and salinity affect organic carbon breakdown and land change. Our results show that salinity speeds up organic matter loss when permafrost thaws. This highlights the overlooked risk of salinity in shaping Arctic landscapes and carbon release as the climate continues to warm.
Katharina Jentzsch, Lona van Delden, Matthias Fuchs, and Claire C. Treat
Earth Syst. Sci. Data, 17, 2331–2372, https://doi.org/10.5194/essd-17-2331-2025, https://doi.org/10.5194/essd-17-2331-2025, 2025
Short summary
Short summary
Methane is a greenhouse gas that contributes to global warming, but we do not fully understand how much is released from natural sources like wetlands. To measure methane over large areas, many measurements are needed, often from small chambers that are placed on the ground. However, different researchers use different measurement setups, making it hard to combine data. We surveyed 36 researchers about their methods, summarized the responses, and identified ways to make the data more comparable.
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1792, https://doi.org/10.5194/egusphere-2025-1792, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Palsas are peat permafrost mounds underlain by ice-rich permafrost. Due to climate change, they could disappeare by the end of the century. When palsas thaw, changes occur in hydrological conditions affecting the carbon (C) cycle. In our study, we simulated permafrost thaw under different water treatments using 1-meter soil columns from a palsa. We measured CH4 and CO2 emissions for 3-month incubation. Our results show that following thaw, flooding the cores leads to increased CO2 emissions.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data, 17, 1707–1730, https://doi.org/10.5194/essd-17-1707-2025, https://doi.org/10.5194/essd-17-1707-2025, 2025
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
Biogeosciences, 22, 2069–2086, https://doi.org/10.5194/bg-22-2069-2025, https://doi.org/10.5194/bg-22-2069-2025, 2025
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases under more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in future.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Alexandra Runge, Verena Bischoff, Pia Petzold, Katharina Schwarzkopf, and Sarah Wocheslander
Polarforschung, 91, 59–62, https://doi.org/10.5194/polf-91-59-2023, https://doi.org/10.5194/polf-91-59-2023, 2023
Short summary
Short summary
The 6th European Conference on Permafrost (EUCOP), hosted by the International Permafrost Association (IPA), brought together researchers from all over the world in Puigcerdà, Spain, on 18–22 June 2023. The conference covered a number of relevant aspects of permafrost research. This is a report from five early-career researchers who attended the conference and presented their research.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Claude-Michel Nzotungicimpaye, Kirsten Zickfeld, Andrew H. MacDougall, Joe R. Melton, Claire C. Treat, Michael Eby, and Lance F. W. Lesack
Geosci. Model Dev., 14, 6215–6240, https://doi.org/10.5194/gmd-14-6215-2021, https://doi.org/10.5194/gmd-14-6215-2021, 2021
Short summary
Short summary
In this paper, we describe a new wetland methane model (WETMETH) developed for use in Earth system models. WETMETH consists of simple formulations to represent methane production and oxidation in wetlands. We also present an evaluation of the model performance as embedded in the University of Victoria Earth System Climate Model (UVic ESCM). WETMETH is capable of reproducing mean annual methane emissions consistent with present-day estimates from the regional to the global scale.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Cited articles
Adamczyk, M., Rüthi, J., and Frey, B.: Root exudates increase soil
respiration and alter microbial community structure in alpine permafrost and
active layer soils, Environ. Microbiol., 23, 2152–2168,
https://doi.org/10.1111/1462-2920.15383, 2021.
AMAP: Arctic Climate Change Update 2021: Key Trends and Impacts, Summary for
Policy-makers,
2021.
Andreev, A. A., Grosse, G., Schirrmeister, L., Kuznetsova, T. V., Kuzmina,
S. A., Bobrov, A. A., Tarasov, P. E., Novenko, E. Y., Meyer, H., Derevyagin,
A. Y., Kienast, F., Bryantseva, A., and Kunitsky, V. V.: Weichselian and
Holocene palaeoenvironmental history of the Bol'shoy Lyakhovsky Island, New
Siberian Archipelago, Arctic Siberia, Boreas, 38, 72–110,
https://doi.org/10.1111/j.1502-3885.2008.00039.x, 2009.
Anthony, K. M. W., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P. M.,
Iii, F. S. C., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P., and
Frolking, S.: A shift of thermokarst lakes from carbon sources to sinks
during the Holocene epoch, Nature, 511, 452–456,
https://doi.org/10.1038/nature13560, 2014.
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A.,
Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L.,
Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G.,
Westermann, S., Wischnewski, K., Wille, C., and Hubberten, H.-W.: Baseline
characteristics of climate, permafrost and land cover from a new permafrost
observatory in the Lena River Delta, Siberia (1998–2011),
Biogeosciences, 10, 2105–2128, https://doi.org/10.5194/bg-10-2105-2013,
2013.
Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt,
U., and Johansson, M.: A new climate era in the sub-Arctic: Accelerating
climate changes and multiple impacts, Geophysical Res. Lett., 37, L14705,
https://doi.org/10.1029/2009GL042064, 2010.
Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., and Rivers, J.
S.: Radiocarbon and stable carbon isotopic evidence for transport and
transformation of dissolved organic carbon, dissolved inorganic carbon, and
CH4 in a northern Minnesota peatland, Global Biogeochem. Cy., 14,
1095–1108, https://doi.org/10.1029/1999GB001221, 2000.
Conrad, R.: Control of microbial methane production in wetland rice fields,
Nutr. Cycl. Agroecosyst., 64, 59–69,
https://doi.org/10.1023/A:1021178713988, 2002.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G.,
Egger, M., Jetten, M. S. M., de Jong, A. E. E., Meisel, O. H., Rasigraf, O.,
Slomp, C. P., in't Zandt, M. H., and Dolman, A. J.: Methane Feedbacks to the
Global Climate System in a Warmer World, Rev. Geophys., 56, 207–250,
https://doi.org/10.1002/2017RG000559, 2018.
Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z.,
Wu, L., Schuur, E. A. G., Tiedje, J. M., and Zhou, J.: Shifts of tundra
bacterial and archaeal communities along a permafrost thaw gradient in
Alaska, Mol. Ecol., 24, 222–234, https://doi.org/10.1111/mec.13015,
2015.
Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall
stimulates permafrost thaw across a variety of Interior Alaskan boreal
ecosystems, npj Clim. Atmos. Sci., 3, 1–7,
https://doi.org/10.1038/s41612-020-0130-4, 2020.
Elder, C. D., Thompson, D. R., Thorpe, A. K., Hanke, P., Walter Anthony, K.
M., and Miller, C. E.: Airborne Mapping Reveals Emergent Power Law of Arctic
Methane Emissions, Geophys. Res. Lett., 47, e2019GL085707,
https://doi.org/10.1029/2019GL085707, 2020.
Elderfield, H. and Schlesinger, W.: Biogeochemistry. An Analysis of Global
Change, Earth System Science and Global Change, Geol. Mag., 135,
819–842, https://doi.org/10.1017/S0016756898231505, 1998.
Ernakovich, J. G., Barbato, R. A., Rich, V. I., Schädel, C., Hewitt, R.
E., Doherty, S. J., Whalen, E. D., Abbott, B. W., Barta, J., Biasi, C.,
Chabot, C. L., Hultman, J., Knoblauch, C., Vetter, M. C. Y. L., Leewis,
M.-C., Liebner, S., Mackelprang, R., Onstott, T. C., Richter, A.,
Schütte, U. M. E., Siljanen, H. M. P., Taş, N., Timling, I.,
Vishnivetskaya, T. A., Waldrop, M. P., and Winkel, M.: Microbiome assembly
in thawing permafrost and its feedbacks to climate, Glob. Change Biol.,
28, 5007–5026, https://doi.org/10.1111/gcb.16231, 2022.
Eskelinen, A., Stark, S., and Männistö, M.: Links between plant
community composition, soil organic matter quality and microbial communities
in contrasting tundra habitats, Oecologia, 161, 113–123,
https://doi.org/10.1007/s00442-009-1362-5, 2009.
Faucherre, S., Jørgensen, C. J., Blok, D., Weiss, N., Siewert, M. B.,
Bang-Andreasen, T., Hugelius, G., Kuhry, P., and Elberling, B.: Short and
Long-Term Controls on Active Layer and Permafrost Carbon Turnover Across the
Arctic, J. Geophys. Res.-Biogeo., 123, 372–390,
https://doi.org/10.1002/2017JG004069, 2018.
Fewster, R. E., Morris, P. J., Ivanovic, R. F., Swindles, G. T., Peregon, A.
M., and Smith, C. J.: Imminent loss of climate space for permafrost
peatlands in Europe and Western Siberia, Nat. Clim. Change, 12, 373–379,
https://doi.org/10.1038/s41558-022-01296-7, 2022.
Fuchs, M.: Soil organic carbon and nitrogen pools in thermokarst-affected
permafrost terrain, PhD thesis, Universität Potsdam, hdl: 10013/epic.393b95ff-1d0f-4659-9376-ef084d27741a, 2019.
Ganzert, L., Jurgens, G., Münster, U., and Wagner, D.: Methanogenic
communities in permafrost-affected soils of the Laptev Sea coast, Siberian
Arctic, characterized by 16S rRNA gene fingerprints, FEMS Microbiol.
Ecol., 59, 476–488, https://doi.org/10.1111/j.1574-6941.2006.00205.x,
2007.
Grigoriev, M. N.: Cryomorphogenesis in the Lena Delta, Yakutsk, Permafrost
Institute Press, 176 pp., 1993.
Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W., and
Saunders, J. R.: Isolation and identification of methanogen-specific DNA
from blanket bog peat by PCR amplification and sequence analysis, Appl.
Environ. Microbiol., 62, 668–675,
https://doi.org/10.1128/aem.62.2.668-675.1996, 1996.
Herbst, T.: Carbon Stocks and Potential Greenhouse Gas Release of
Permafrost-affected Active Floodplains in the Lena River Delta, Master thesis,
Faculty of Environment and Natural Resources, 73 pp., hdl: 10013/epic.0c07aee1-d4a7-467e-ad7c-3f3527267f73, 2022.
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M.
B., Fastie, C. L., Griffith, B., Hollister, R. D., Hope, A., Huntington, H.
P., Jensen, A. M., Jia, G. J., Jorgenson, T., Kane, D. L., Klein, D. R.,
Kofinas, G., Lynch, A. H., Lloyd, A. H., McGuire, A. D., Nelson, F. E.,
Oechel, W. C., Osterkamp, T. E., Racine, C. H., Romanovsky, V. E., Stone, R.
S., Stow, D. A., Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker, M. D.,
Walker, D. A., Webber, P. J., Welker, J. M., Winker, K. S., and Yoshikawa,
K.: Evidence and Implications of Recent Climate Change in Northern Alaska
and Other Arctic Regions, Climatic Change, 72, 251–298,
https://doi.org/10.1007/s10584-005-5352-2, 2005.
Holm, S., Walz, J., Horn, F., Yang, S., Grigoriev, M. N., Wagner, D.,
Knoblauch, C., and Liebner, S.: Methanogenic response to long-term
permafrost thaw is determined by paleoenvironment, FEMS Microbiol.
Ecol., 96, fiaa021, https://doi.org/10.1093/femsec/fiaa021, 2020.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag,
J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014a.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag,
J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014b.
Huissteden, J. van, Maximov, T. C., and Dolman, A. J.: High methane flux
from an arctic floodplain (Indigirka lowlands, eastern Siberia): methane
flux arctic floodplain Siberia, J. Geophys. Res., 110, G02002,
https://doi.org/10.1029/2005JG000010, 2005.
IPCC: IPCC, 2021: Climate Change 2021: The Physical Science Basis,
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press, Vol. 6, p. 131, 2021.
Jaatinen, K., Fritze, H., Laine, J., and Laiho, R.: Effects of short- and
long-term water-level drawdown on the populations and activity of aerobic
decomposers in a boreal peatland, Glob. Change Biol., 13, 491–510,
https://doi.org/10.1111/j.1365-2486.2006.01312.x, 2007.
Jongejans, L. L., Liebner, S., Knoblauch, C., Mangelsdorf, K., Ulrich, M.,
Grosse, G., Tanski, G., Fedorov, A. N., Konstantinov, P. Ya., Windirsch, T.,
Wiedmann, J., and Strauss, J.: Greenhouse gas production and lipid biomarker
distribution in Yedoma and Alas thermokarst lake sediments in Eastern
Siberia, Glob. Change Biol., 27, 2822–2839,
https://doi.org/10.1111/gcb.15566, 2021.
Juncher Jørgensen, C., Lund Johansen, K. M., Westergaard-Nielsen, A., and
Elberling, B.: Net regional methane sink in High Arctic soils of northeast
Greenland, Nat. Geosci., 8, 20–23, https://doi.org/10.1038/ngeo2305, 2015.
Keller, J. K. and Bridgham, S. D.: Pathways of anaerobic carbon cycling
across an ombrotrophic-minerotrophic peatland gradient, Limnol.
Oceanogr., 52, 96–107, https://doi.org/10.4319/lo.2007.52.1.0096, 2007.
Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., and Pfeiffer, E.-M.:
Predicting long-term carbon mineralization and trace gas production from
thawing permafrost of Northeast Siberia, Glob. Change Biol., 19,
1160–1172, https://doi.org/10.1111/gcb.12116, 2013.
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., and Pfeiffer, E.-M.:
Methane production as key to the greenhouse gas budget of thawing
permafrost, Nat. Clim. Change, 8, 309–312,
https://doi.org/10.1038/s41558-018-0095-z, 2018.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate
feedbacks accelerate global warming, P. Natl. Acad. Sci. USA, 108, 14769–14774,
https://doi.org/10.1073/pnas.1103910108, 2011.
Kuhn, M. A., Thompson, L. M., Winder, J. C., Braga, L. P. P., Tanentzap, A.
J., Bastviken, D., and Olefeldt, D.: Opposing Effects of Climate and
Permafrost Thaw on CH4 and CO2 Emissions From Northern Lakes, AGU Adv.,
2, e2021AV000515, https://doi.org/10.1029/2021AV000515, 2021.
Kuhry, P., Bárta, J., Blok, D., Elberling, B., Faucherre, S., Hugelius,
G., Jørgensen, C. J., Richter, A., Šantrůčková, H., and
Weiss, N.: Lability classification of soil organic matter in the northern
permafrost region, Biogeosciences, 17, 361–379,
https://doi.org/10.5194/bg-17-361-2020, 2020.
Lara, M. J., Lin, D. H., Andresen, C., Lougheed, V. L., and Tweedie, C. E.:
Nutrient Release From Permafrost Thaw Enhances CH4 Emissions From Arctic
Tundra Wetlands, J. Geophys. Res.-Biogeo., 124,
1560–1573, https://doi.org/10.1029/2018JG004641, 2019.
Laurent, M., Fuchs, M., Treat, C. C., Liebner, S., Runge, A.: One year anaerobic incubation measurements (CH4 + CO2) and microbe quantification from samples of Lena Delta collected in 2018, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945685, 2023.
Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M., and Chanton, J. P.:
The rate of permafrost carbon release under aerobic and anaerobic conditions
and its potential effects on climate, Glob. Change Biol., 18, 515–527,
https://doi.org/10.1111/j.1365-2486.2011.02519.x, 2012.
Li, F., Tianze, S., and Yahai, L.: Snapshot of methanogen sensitivity to
temperature in Zoige wetland from Tibetan plateau, Front.
Microbiol., 6, 131, https://doi.org/10.3389/fmicb.2015.00131, 2015.
Liebner, S., Ganzert, L., Kiss, A., Yang, S., Wagner, D., and Svenning, M.
M.: Shifts in methanogenic community composition and methane fluxes along
the degradation of discontinuous permafrost, Front. Microbiol., 6, https://doi.org/10.3389/fmicb.2015.00356,
2015.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Mann, P. J., Sobczak, W. V., LaRue, M. M., Bulygina, E., Davydova, A., Vonk,
J. E., Schade, J., Davydov, S., Zimov, N., Holmes, R. M., and Spencer, R. G.
M.: Evidence for key enzymatic controls on metabolism of Arctic river
organic matter, Glob. Change Biol., 20, 1089–1100,
https://doi.org/10.1111/gcb.12416, 2014.
McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E.-H.,
Mondav, R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G. W., and
Saleska, S. R.: Methane dynamics regulated by microbial community response
to permafrost thaw, Nature, 514, 478–481,
https://doi.org/10.1038/nature13798, 2014.
Megonigal, J. P. and Schlesinger, W. H.: Methane-limited methanotrophy in
tidal freshwater swamps, Global Biogeochem. Cy., 16, 1088,
https://doi.org/10.1029/2001GB001594, 2002.
Meijboom, F. and Noordwijk, M. van: Rhizon soil solu-tion samplers as
artificial roots, in: Root ecology and its practical application, Verein
für Wurzelforschung, A-9020 Klagenfurt Austria, 793–795, 1991.
Morgenstern, A., Overduin, P. P., Günther, F., Stettner, S., Ramage, J.,
Schirrmeister, L., Grigoriev, M. N., and Grosse, G.: Thermo-erosional
valleys in Siberian ice-rich permafrost, Permafrost Periglac., 32, 59–75, https://doi.org/10.1002/ppp.2087, 2021.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T.,
Blok, D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque,
E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S.,
Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub,
G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S., Goetz, S.,
Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P.,
Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems:
dynamics, impacts and research priorities, Environ. Res. Lett., 6, 045509,
https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Oblogov, G. E., Vasiliev, A. A., Streletskaya, I. D., Zadorozhnaya, N. A.,
Kuznetsova, A. O., Kanevskiy, M. Z., and Semenov, P. B.: Methane Content and
Emission in the Permafrost Landscapes of Western Yamal, Russian Arctic,
Geosciences, 10, p. 412, https://doi.org/10.3390/geosciences10100412, 2020.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial methane
emissions across permafrost zones, Glob. Change Biol., 19, 589–603,
https://doi.org/10.1111/gcb.12071, 2013.
Osterkamp, T. E., Jorgenson, M. T., Schuur, E. a. G., Shur, Y. L.,
Kanevskiy, M. Z., Vogel, J. G., and Tumskoy, V. E.: Physical and ecological
changes associated with warming permafrost and thermokarst in Interior
Alaska, Permafrost Periglac., 20, 235–256,
https://doi.org/10.1002/ppp.656, 2009.
Paul, S., Küsel, K., and Alewell, C.: Reduction processes in forest
wetlands: Tracking down heterogeneity of source/sink functions with a
combination of methods, Soil Biol. Biochem., 38, 1028–1039,
https://doi.org/10.1016/j.soilbio.2005.09.001, 2006.
Pegoraro, E., Mauritz, M., Bracho, R., Ebert, C., Dijkstra, P., Hungate, B.
A., Konstantinidis, K. T., Luo, Y., Schädel, C., Tiedje, J. M., Zhou,
J., and Schuur, E. A. G.: Glucose addition increases the magnitude and
decreases the age of soil respired carbon in a long-term permafrost
incubation study, Soil Biol. Biochem., 129, 201–211,
https://doi.org/10.1016/j.soilbio.2018.10.009, 2019.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 1 April 2023), 2021.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen,
O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed
nearly four times faster than the globe since 1979, Commun. Earth Environ., 3,
1–10, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Robertson, G. P., Coleman, D. C., Sollins, P., and Bledsoe, C. S.: Standard
Soil Methods for Long-term Ecological Research, Oxford University Press, Inc., 481
pp., ISBN: 0-19-512083-3, 1999.
Rößger, N., Sachs, T., Wille, C., Boike, J., and Kutzbach, L.:
Seasonal increase of methane emissions linked to warming in Siberian tundra,
Nat. Clim. Change, 12, 1031–1036,
https://doi.org/10.1038/s41558-022-01512-4, 2022.
Schädel, C., Schuur, E. A. G., Bracho, R., Elberling, B., Knoblauch, C.,
Lee, H., Luo, Y., Shaver, G. R., and Turetsky, M. R.: Circumpolar assessment
of permafrost C quality and its vulnerability over time using long-term
incubation data, Glob. Change Biol., 20, 641–652,
https://doi.org/10.1111/gcb.12417, 2014.
Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C.
E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., and
Sierra, C. A.: Decomposability of soil organic matter over time: the Soil
Incubation Database (SIDb, version 1.0) and guidance for incubation
procedures, Earth Syst. Sci. Data, 12, 1511–1524,
https://doi.org/10.5194/essd-12-1511-2020, 2020.
Schirrmeister, L., Kunitsky, V., Grosse, G., Wetterich, S., Meyer, H.,
Schwamborn, G., Babiy, O., Derevyagin, A., and Siegert, C.: Sedimentary
characteristics and origin of the Late Pleistocene Ice Complex on north-east
Siberian Arctic coastal lowlands and islands – A review, Quaternary
Int., 241, 3–25, https://doi.org/10.1016/j.quaint.2010.04.004,
2011.
Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G., and Wetterich, S.:
PERMAFROST AND PERIGLACIAL FEATURES – Yedoma: Late Pleistocene
Ice-Rich Syngenetic Permafrost of Beringia, in: Encyclopedia of Quaternary
Science, Elsevier, 542–552,
https://doi.org/10.1016/B978-0-444-53643-3.00106-0, 2013.
Schneider, J., Grosse, G., and Wagner, D.: Land cover classification of
tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data
and its application for upscaling of methane emissions, Remote Sens.
Environ., 113, 380–391, https://doi.org/10.1016/j.rse.2008.10.013, 2009.
Schuur, E. a. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Schwamborn, G., Rachold, V., and Grigoriev, M. N.: Late Quaternary
sedimentation history of the Lena Delta, Quaternary Int., 89,
119–134, https://doi.org/10.1016/S1040-6182(01)00084-2, 2002.
Serreze, M. C., Walsh, J. E., Chapin, F. S., Osterkamp, T., Dyurgerov, M.,
Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., and Barry, R. G.:
Observational Evidence of Recent Change in the Northern High-Latitude
Environment, Climatic Change, 46, 159–207,
https://doi.org/10.1023/A:1005504031923, 2000.
Siewert, M. B., Hugelius, G., Heim, B., and Faucherre, S.: Landscape
controls and vertical variability of soil organic carbon storage in
permafrost-affected soils of the Lena River Delta, CATENA, 147, 725–741,
https://doi.org/10.1016/j.catena.2016.07.048, 2016.
Soil Survey Staff: Keys to Soil Taxonomy, 12th Edn., Twelfth Edition,
USDA-Natural Resources Conservation Service, Washington, DC, 360 pp., ISBN: 978-0-359-57324-0, 2014.
Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C.,
Holmes, R. M., Zimov, N., and Stubbins, A.: Detecting the signature of
permafrost thaw in Arctic rivers, Geophys. Res. Lett., 42,
2830–2835, https://doi.org/10.1002/2015GL063498, 2015.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M.,
Herzschuh, U., and Hubberten, H.-W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40,
6165–6170, https://doi.org/10.1002/2013GL058088, 2013a.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M.,
Herzschuh, U., and Hubberten, H.-W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40,
6165–6170, https://doi.org/10.1002/2013GL058088, 2013b.
Symons, G. E. and Buswell, A. M.: The methane fermentation of
carbohydrates, J. Am. Chem. Soc., 55, 2028–2036, 1993.
Tabari, H.: Climate change impact on flood and extreme precipitation
increases with water availability, Sci. Rep., 10, 13768,
https://doi.org/10.1038/s41598-020-70816-2, 2020.
Thauer, R. K.: Biochemistry of methanogenesis: a tribute to Marjory
Stephenson:1998 Marjory Stephenson Prize Lecture, Microbiology, 144,
2377–2406, https://doi.org/10.1099/00221287-144-9-2377, 1998.
Theisen, A. R. and Murrell, J. C.: Facultative Methanotrophs Revisited,
J. Bacteriol., 187, 4303–4305,
https://doi.org/10.1128/JB.187.13.4303-4305.2005, 2005.
Treat, C. C., Natali, S. M., Ernakovich, J., Iversen, C. M., Lupascu, M.,
McGuire, A. D., Norby, R. J., Roy Chowdhury, T., Richter, A.,
Šantrůčková, H., Schädel, C., Schuur, E. A. G., Sloan,
V. L., Turetsky, M. R., and Waldrop, M. P.: A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations, Glob. Change
Biol., 21, 2787–2803, https://doi.org/10.1111/gcb.12875, 2015.
Treat, C. C., Marushchak, M. E., Voigt, C., Zhang, Y., Tan, Z., Zhuang, Q.,
Virtanen, T. A., Räsänen, A., Biasi, C., Hugelius, G., Kaverin, D.,
Miller, P. A., Stendel, M., Romanovsky, V., Rivkin, F., Martikainen, P. J.,
and Shurpali, N. J.: Tundra landscape heterogeneity, not interannual
variability, controls the decadal regional carbon balance in the Western
Russian Arctic, Glob. Change Biol., 24, 5188–5204,
https://doi.org/10.1111/gcb.14421, 2018.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Walter Anthony, K., Olefeldt,
D., Schuur, E. A. G., Koven, C., McGuire, A. D., Grosse, G., Kuhry, P.,
Hugelius, G., Lawrence, D. M., Gibson, C., and Sannel, A. B. K.: Permafrost
collapse is accelerating carbon release, Nature, 569, 32–34,
https://doi.org/10.1038/d41586-019-01313-4, 2019.
Wagner, D., Gattinger, A., Embacher, A., Pfeiffer, E.-M., Schloter, M., and
Lipski, A.: Methanogenic activity and biomass in Holocene permafrost
deposits of the Lena Delta, Siberian Arctic and its implication for the
global methane budget, Glob. Change Biol., 13, 1089–1099,
https://doi.org/10.1111/j.1365-2486.2007.01331.x, 2007.
Waldrop, M. P., Wickland, K. P., White Iii, R., Berhe, A. A., Harden, J. W.,
and Romanovsky, V. E.: Molecular investigations into a globally important
carbon pool: permafrost-protected carbon in Alaskan soils, Glob.Change
Biol., 16, 2543–2554, https://doi.org/10.1111/j.1365-2486.2009.02141.x,
2010.
Walz, J., Knoblauch, C., Böhme, L., and Pfeiffer, E.-M.: Regulation of
soil organic matter decomposition in permafrost-affected Siberian tundra
soils – Impact of oxygen availability, freezing and thawing, temperature,
and labile organic matter, Soil Biol. Biochem., 110, 34–43,
https://doi.org/10.1016/j.soilbio.2017.03.001, 2017.
Walz, J., Knoblauch, C., Tigges, R., Opel, T., Schirrmeister, L., and
Pfeiffer, E.-M.: Greenhouse gas production in degrading ice-rich permafrost
deposits in northeastern Siberia, Biogeosciences, 15, 5423–5436,
https://doi.org/10.5194/bg-15-5423-2018, 2018.
Wang, P., Huang, Q., Tang, Q., Chen, X., Yu, J., Pozdniakov, S. P., and
Wang, T.: Increasing annual and extreme precipitation in
permafrost-dominated Siberia during 1959–2018, J. Hydrol., 603,
126865, https://doi.org/10.1016/j.jhydrol.2021.126865, 2021.
Washburn, A. L.: Periglacial processes and environment, St. Martin's Press,
New York, Hodder & Stoughton Educational, ISBN 10: 0713156538, 1973.
Westermann, P.: Temperature regulation of methanogenesis in wetlands,
Chemosphere, 26, 321–328, https://doi.org/10.1016/0045-6535(93)90428-8,
1993.
Yavitt, J. B., Williams, C. J., and Wieder, R. K.: Production of methane and
carbon dioxide in peatland ecosystems across North America: Effects of
temperature, aeration, and organic chemistry of peat, Geomicrobiol.
J., 14, 299–316, https://doi.org/10.1080/01490459709378054, 1997.
Yavitt, J. B., Basiliko, N., Turetsky, M. R., and Hay, A. G.: Methanogenesis
and Methanogen Diversity in Three Peatland Types of the Discontinuous
Permafrost Zone, Boreal Western Continental Canada, Geomicrobiol. J.,
23, 641–651, https://doi.org/10.1080/01490450600964482, 2006.
Zhu, X., Wu, T., Li, R., Xie, C., Hu, G., Qin, Y., Wang, W., Hao, J., Yang,
S., Ni, J., and Yang, C.: Impacts of Summer Extreme Precipitation Events on
the Hydrothermal Dynamics of the Active Layer in the Tanggula Permafrost
Region on the Qinghai-Tibetan Plateau, J. Geophys. Res.-Atmos., 122, 11549–11567, https://doi.org/10.1002/2017JD026736, 2017.
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
In this study we investigated the effect of different parameters (temperature, landscape...
Altmetrics
Final-revised paper
Preprint