Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-251-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-251-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Bailu Zhao
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, West Lafayette, IN 47907, USA
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, West Lafayette, IN 47907, USA
Department of Agronomy, Purdue University, West Lafayette, IN 47907,
USA
Related authors
No articles found.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Ye Yuan, Qianlai Zhuang, Bailu Zhao, and Narasinha Shurpali
EGUsphere, https://doi.org/10.5194/egusphere-2023-1047, https://doi.org/10.5194/egusphere-2023-1047, 2023
Preprint archived
Short summary
Short summary
We use a biogeochemistry model to calculate the regional N2O emissions considering the effects of N2O uptake, thawing permafrost, and N deposition. Our simulations show there is an increasing trend in regional net N2O emissions from 1969 to 2019. Annual N2O emissions exhibited big spatial variabilities. Nitrogen deposition leads to a significant increase in emission. Our results suggest that in the future, the pan-Arctic terrestrial ecosystem might act as an even larger N2O.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration – Guidelines for computing crop water requirements – FAO
Irrigation and drainage paper, 56, ISBN 92-5-104219-5, 1998.
Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global
land cover mapping from Earth observation data, Int. J.
Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology / Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci.
Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Blok, D., Heijmans, M. M. P. D., Schaepman-Strub, G., Kononov, A. V.,
Maximov, T. C., and Berendse, F.: Shrub expansion may reduce summer
permafrost thaw in Siberian tundra, Glob. Change Biol., 16, 1296–1305,
https://doi.org/10.1111/j.1365-2486.2009.02110.x, 2010.
Bohn, T. J., Podest, E., Schroeder, R., Pinto, N., McDonald, K. C.,
Glagolev, M., Filippov, I., Maksyutov, S., Heimann, M., Chen, X., and
Lettenmaier, D. P.: Modeling the large-scale effects of surface moisture
heterogeneity on wetland carbon fluxes in the West Siberian Lowland,
Biogeosciences, 10, 6559–6576, https://doi.org/10.5194/bg-10-6559-2013, 2013.
Brooks, R. H.: Hydraulic properties of porous media, Ph.D., Colorado State
University, Ann Arbor, 101 pp., 1965.
Carter, A. J. and Scholes, R. J.: SoilData v2.0: Generating a Global
Database of Soil Properties CSIR Environmentek, Pretoria, South Africa,
2000.
Chaudhary, N., Miller, P. A., and Smith, B.: Modelling past, present and
future peatland carbon accumulation across the pan-Arctic region,
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, 2017.
Chaudhary, N., Westermann, S., Lamba, S., Shurpali, N., Sannel, A. B. K.,
Schurgers, G., Miller, P. A., and Smith, B.: Modelling past and future
peatland carbon dynamics across the pan-Arctic, Glob. Change Biol., 26, 4119–4133, https://doi.org/10.1111/gcb.15099, 2020.
Davidson, N. C.: How much wetland has the world lost? Long-term and recent
trends in global wetland area, Mar. Fresh. Res., 65, 934–941,
https://doi.org/10.1071/MF14173, 2014.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table Depth, Science, 339, 940–943, 2013.
FAO/UNESCO: Soil Map of the World, Food and Agriculture Organization of the
United Nations, Paris, ISBN: 92-3-101125-1, 1974.
Finger Higgens, R. A., Chipman, J. W., Lutz, D. A., Culler, L. E., Virginia,
R. A., and Ogden, L. A.: Changing Lake Dynamics Indicate a Drier Arctic in
Western Greenland, J. Geophys. Res.-Biogeo., 124,
870–883, https://doi.org/10.1029/2018JG004879, 2019.
Finlayson, C. M. and Milton, G. R.: Peatlands, in: The Wetland Book: II:
Distribution, Description, and Conservation, edited by: Finlayson, C. M.,
Milton, G. R., Prentice, R. C., and Davidson, N. C., Springer Netherlands,
Dordrecht, 227–244, https://doi.org/10.1007/978-94-007-4001-3_202, 2018.
Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual
rainfall-runoff models, J. Hydrol., 122, 161–219,
https://doi.org/10.1016/0022-1694(91)90178-K, 1991.
Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D.,
Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A.,
Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS:
algorithms and early results, Remote Sens. Environ., 83, 287–302,
https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Prentice, I.
C., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W.,
Björck, S., Blyakharchuk, T., Bochicchio, C., Booth, R. K., Bunbury, J.,
Camill, P., Carless, D., Chimner, R. A., Clifford, M., Cressey, E.,
Courtney-Mustaphi, C., De Vleeschouwer, F., de Jong, R., Fialkiewicz-Koziel,
B., Finkelstein, S. A., Garneau, M., Githumbi, E., Hribjlan, J., Holmquist,
J., Hughes, P. D. M., Jones, C., Jones, M. C., Karofeld, E., Klein, E. S.,
Kokfelt, U., Korhola, A., Lacourse, T., Le Roux, G., Lamentowicz, M., Large,
D., Lavoie, M., Loisel, J., Mackay, H., MacDonald, G. M., Makila, M.,
Magnan, G., Marchant, R., Marcisz, K., Martínez Cortizas, A., Massa,
C., Mathijssen, P., Mauquoy, D., Mighall, T., Mitchell, F. J. G., Moss, P.,
Nichols, J., Oksanen, P. O., Orme, L., Packalen, M. S., Robinson, S.,
Roland, T. P., Sanderson, N. K., Sannel, A. B. K., Silva-Sánchez, N.,
Steinberg, N., Swindles, G. T., Turner, T. E., Uglow, J., Väliranta, M.,
van Bellen, S., van der Linden, M., van Geel, B., Wang, G., Yu, Z.,
Zaragoza-Castells, J., and Zhao, Y.: Latitudinal limits to the predicted
increase of the peatland carbon sink with warming, Nat. Clim. Change, 8,
907–913, https://doi.org/10.1038/s41558-018-0271-1, 2018.
Gandois, L., Hoyt, A. M., Hatté, C., Jeanneau, L., Teisserenc, R.,
Liotaud, M., and Tananaev, N.: Contribution of Peatland Permafrost to
Dissolved Organic Matter along a Thaw Gradient in North Siberia,
Environ. Sci. Technol., 53, 14165–14174, https://doi.org/10.1021/acs.est.9b03735, 2019.
Gasser, T., Kechiar, M., Ciais, P., Burke, E. J., Kleinen, T., Zhu, D.,
Huang, Y., Ekici, A., and Obersteiner, M.: Path-dependent reductions in CO2
emission budgets caused by permafrost carbon release, Nat. Geosci., 11,
830–835, https://doi.org/10.1038/s41561-018-0227-0, 2018.
GISTEMP-Team: GISS Surface Temperature Analysis (GISTEMP), version 4, NASA
Goddard Institute for Space Studies [dataset], https://data.giss.nasa.gov/gistemp/
(last access date: 1 November 2023), 2021.
Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The
Variable Infiltration Capacity model version 5 (VIC-5): infrastructure
improvements for new applications and reproducibility, Geosci. Model Dev.,
11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, 2018.
Hanson, P. J., Griffiths, N. A., Iversen, C. M., Norby, R. J., Sebestyen, S.
D., Phillips, J. R., Chanton, J. P., Kolka, R. K., Malhotra, A., Oleheiser,
K. C., Warren, J. M., Shi, X., Yang, X., Mao, J., and Ricciuto, D. M.: Rapid
Net Carbon Loss From a Whole-Ecosystem Warmed Peatland, AGU Advances, 1,
e2020AV000163, https://doi.org/10.1029/2020AV000163, 2020.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.
He, F.: Simulating transient climate evolution of the last deglaciation with
CCSM3, Atmospheric and Oceanic Sciences, University of Wisconsin-Madison,
Madison, 2011.
Helbig, M., Chasmer, L. E., Desai, A. R., Kljun, N., Quinton, W. L., and
Sonnentag, O.: Direct and indirect climate change effects on carbon dioxide
fluxes in a thawing boreal forest–wetland landscape, Glob. Change Biol.,
23, 3231–3248, https://doi.org/10.1111/gcb.13638, 2017.
Hu, S., Niu, Z., Chen, Y., Li, L., and Zhang, H.: Global wetlands: Potential
distribution, wetland loss, and status, Sci. Total Environ.,
586, 319–327, https://doi.org/10.1016/j.scitotenv.2017.02.001,
2017.
Huang, Y., Ciais, P., Luo, Y., Zhu, D., Wang, Y., Qiu, C., Goll, D. S.,
Guenet, B., Makowski, D., De Graaf, I., Leifeld, J., Kwon, M. J., Hu, J.,
and Qu, L.: Tradeoff of CO2 and CH4 emissions from global peatlands under
water-table drawdown, Nat. Clim. Change, 11, 618–622, https://doi.org/10.1038/s41558-021-01059-w, 2021.
Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G.,
Harden, J. W., Johnson, K., Jorgenson, T., Koven, C. D., Kuhry, P.,
Michaelson, G., Mishra, U., Palmtag, J., Ping, C. L., O'Donnell, J.,
Schirrmeister, L., Schuur, E. A. G., Sheng, Y., Smith, L. C., Strauss, J.,
and Yu, Z.: A new data set for estimating organic carbon storage to 3 m
depth in soils of the northern circumpolar permafrost region, Earth Syst.
Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, 2013.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M.,
MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B.,
Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland
carbon and nitrogen are vulnerable to permafrost thaw, P.
Natl. Acad. Sci. USA, 117, 20438, https://doi.org/10.1073/pnas.1916387117, 2020.
Iversen, C. M., Latimer, J., Brice, D. J., Childs, J., Vander Stel, H. M.,
Defrenne, C. E., Graham, J., Griffiths, N. A., Malhotra, A., Norby, R. J.,
Oleheiser, K. C., Phillips, J. R., Salmon, V. G., Sebestyen, S. D., Yang,
X., and Hanson, P. J.: Whole-Ecosystem Warming Increases Plant-Available
Nitrogen and Phosphorus in an Ombrotrophic Bog, Ecosystems, https://doi.org/10.1007/s10021-022-00744-x, 2022.
Kåresdotter, E., Destouni, G., Ghajarnia, N., Hugelius, G., and
Kalantari, Z.: Mapping the Vulnerability of Arctic Wetlands to Global
Warming, Earth's Future, 9, e2020EF001858, https://doi.org/10.1029/2020EF001858, 2021.
Kleinen, T., Mikolajewicz, U., and Brovkin, V.: Terrestrial methane
emissions from the Last Glacial Maximum to the preindustrial period, Clim.
Past, 16, 575–595, https://doi.org/10.5194/cp-16-575-2020, 2020.
Lawrence, D. M., Slater, A. G., and Swenson, S. C.: Simulation of
Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in
CCSM4, J. Clim., 25, 2207–2225, https://doi.org/10.1175/JCLI-D-11-00334.1, 2012.
Lehner, B. and Döll, P.: Development and validation of a global database
of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Li, X., Bellerby, R., Craft, C., and Widney, S. E.: Coastal wetland loss,
consequences, and challenges for restoration, Anthropocene Coasts, 1, 1–15, https://doi.org/10.1139/anc-2017-0001, 2018.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Liu, C., Sun, G., McNulty, S. G., Noormets, A., and Fang, Y.: Environmental
controls on seasonal ecosystem evapotranspiration/potential
evapotranspiration ratio as determined by the global eddy flux measurements,
Hydrol. Earth Syst. Sci., 21, 311–322, https://doi.org/10.5194/hess-21-311-2017, 2017.
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J.,
Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R.,
Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M.,
Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C.,
Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz,
M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M.,
Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R.,
Nichols, J., O'Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard,
P. J. H., Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K.,
Tarnocai, C., Thom, T., Tuittila, E.-S., Turetsky, M., Väliranta, M.,
van der Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and
Zhou, W.: A database and synthesis of northern peatland soil properties and
Holocene carbon and nitrogen accumulation, The Holocene, 24, 1028–1042, https://doi.org/10.1177/0959683614538073, 2014.
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G.,
Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J.,
Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla,
C. A., Müller, J., van Bellen, S., West, J. B., Yu, Z., Bubier, J. L.,
Garneau, M., Moore, T., Sannel, A. B. K., Page, S., Väliranta, M.,
Bechtold, M., Brovkin, V., Cole, L. E. S., Chanton, J. P., Christensen, T.
R., Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S.,
Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt,
A. M., Jones, M. C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T.,
Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A. M.,
Minkkinen, K., Moss, P., Naafs, B. D. A., Nichols, J., O'Donnell, J., Payne,
R., Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P.,
Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot, J.,
Treat, C., Valach, A. C., and Wu, J.: Expert assessment of future
vulnerability of the global peatland carbon sink, Nat. Clim. Change, 11,
70–77, https://doi.org/10.1038/s41558-020-00944-0, 2021.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J.
Remote Sens., 21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000.
Lu, X. and Zhuang, Q.: Modeling methane emissions from the Alaskan Yukon
River basin, 1986–2005, by coupling a large-scale hydrological model and a
process-based methane model, J. Geophys. Res.-Biogeo., 117, https://doi.org/10.1029/2011JG001843,
2012.
MacDougall, A. H. and Knutti, R.: Projecting the release of carbon from
permafrost soils using a perturbed parameter ensemble modelling approach,
Biogeosciences, 13, 2123–2136, https://doi.org/10.5194/bg-13-2123-2016, 2016.
Mäkiranta, P., Laiho, R., Mehtätalo, L., Straková, P., Sormunen,
J., Minkkinen, K., Penttilä, T., Fritze, H., and Tuittila, E.: Responses
of phenology and biomass production of boreal fens to climate warming under
different water-table level regimes, Glob. Change Biol., 24, 944–956, https://doi.org/10.1111/gcb.13934, 2018.
Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S., and Gedney, N.:
High-resolution global topographic index values for use in large-scale
hydrological modelling, Hydrol. Earth Syst. Sci., 19, 91–104, https://doi.org/10.5194/hess-19-91-2015, 2015.
McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen,
G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S.,
Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G.,
Moore, J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A.
G., and Zhuang, Q.: Dependence of the evolution of carbon dynamics in the
northern permafrost region on the trajectory of climate change, P. Natl. Acad. Sci. USA, 115, 3882, https://doi.org/10.1073/pnas.1719903115,
2018.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Climatic Change,
109, 213, https://doi.org/10.1007/s10584-011-0156-z, 2011.
Melton, J. R., Chan, E., Millard, K., Fortier, M., Winton, R. S., Martín-López, J. M., Cadillo-Quiroz, H., Kidd, D., and Verchot, L. V.: A map of global peatland extent created using machine learning (Peat-ML), Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, 2022.
Miao, C., Duan, Q., Sun, Q., Huang, Y., Kong, D., Yang, T., Ye, A., Di, Z.,
and Gong, W.: Assessment of CMIP5 climate models and projected temperature
changes over Northern Eurasia, Environ. Res. Lett., 9, 055007, https://doi.org/10.1088/1748-9326/9/5/055007, 2014.
Müller, J. and Joos, F.: Committed and projected future changes in
global peatlands – continued transient model simulations since the Last
Glacial Maximum, Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021,
2021.
Nichols, J. E. and Peteet, D. M.: Rapid expansion of northern peatlands and
doubled estimate of carbon storage, Nat. Geosci., 12, 917–921, https://doi.org/10.1038/s41561-019-0454-z, 2019.
Niu, Z., Zhang, H., Wang, X., Yao, W., Zhou, D., Zhao, K., Zhao, H., Li, N.,
Huang, H., Li, C., Yang, J., Liu, C., Liu, S., Wang, L., Li, Z., Yang, Z.,
Qiao, F., Zheng, Y., Chen, Y., Sheng, Y., Gao, X., Zhu, W., Wang, W., Wang,
H., Weng, Y., Zhuang, D., Liu, J., Luo, Z., Cheng, X., Guo, Z., and Gong,
P.: Mapping wetland changes in China between 1978 and 2008, Chinese Sci.
Bull., 57, 2813–2823, https://doi.org/10.1007/s11434-012-5093-3, 2012.
Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G.,
Heim, B., Hugelius, G., Irrgang, A., Kääb, A. M., Kroisleitner, C.,
Matthes, H., Nitze, I., Pellet, C., Seifert, F. M., Strozzi, T.,
Wegmüller, U., Wieczorek, M., and Wiesmann, A.: ESA Permafrost Climate
Change Initiative (Permafrost_cci): Permafrost Climate
Research Data Package v1., Centre for Environmental Data Analysis [dataset],
https://catalogue.ceda.ac.uk/uuid/1f88068e86304b0fbd34456115b6606f (last access: 1 November 2023), 2020.
Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T. J.,
Connolly, J., Crill, P., Euskirchen, E. S., Finkelstein, S. A., Genet, H.,
Grosse, G., Harris, L. I., Heffernan, L., Helbig, M., Hugelius, G.,
Hutchins, R., Juutinen, S., Lara, M. J., Malhotra, A., Manies, K., McGuire,
A. D., Natali, S. M., O'Donnell, J. A., Parmentier, F. J. W.,
Räsänen, A., Schädel, C., Sonnentag, O., Strack, M., Tank, S.
E., Treat, C., Varner, R. K., Virtanen, T., Warren, R. K., and Watts, J. D.:
The Boreal–Arctic Wetland and Lake Dataset (BAWLD), Earth Syst. Sci. Data,
13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, 2021.
Palmer, M. D., Harris, G. R., and Gregory, J. M.: Extending CMIP5
projections of global mean temperature change and sea level rise due to
thermal expansion using a physically-based emulator, Environ. Res.
Lett., 13, 084003, https://doi.org/10.1088/1748-9326/aad2e4, 2018.
Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M.,
Luyssaert, S., Margolis, H., Fang, J., Barr, A., Chen, A., Grelle, A.,
Hollinger, D. Y., Laurila, T., Lindroth, A., Richardson, A. D., and Vesala,
T.: Net carbon dioxide losses of northern ecosystems in response to autumn
warming, Nature, 451, 49–52, https://doi.org/10.1038/nature06444, 2008.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., and Peng, S.: The role of northern
peatlands in the global carbon cycle for the 21st century, Glob. Ecol. Biogeogr., 29, 956–973, https://doi.org/10.1111/geb.13081, 2020.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A.,
Ducharne, A., and Hastie, A.: Modelling northern peatland area and carbon
dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN
r5488), Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, 2019.
Qiu, C., Ciais, P., Zhu, D., Guenet, B., Chang, J., Chaudhary, N., Kleinen,
T., Li, X., Müller, J., Xi, Y., Zhang, W., Ballantyne, A., Brewer, S.
C., Brovkin, V., Charman, D. J., Gustafson, A., Gallego-Sala, A. V., Gasser,
T., Holden, J., Joos, F., Kwon, M. J., Lauerwald, R., Miller, P. A., Peng,
S., Page, S., Smith, B., Stocker, B. D., Sannel, A. B. K., Salmon, E.,
Schurgers, G., Shurpali, N. J., Wårlind, D., and Westermann, S.: A
strong mitigation scenario maintains climate neutrality of northern
peatlands, One Earth, 5, 86–97, https://doi.org/10.1016/j.oneear.2021.12.008, 2022.
Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A.:
Infiltration and soil water movement, McGraw-Hill Inc., New York,
5.1–5.51, ISBN: 9780070397323, 1992.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E.,
Seyednasrollah, B., Krassovski, M. B., Latimer, J. M., Nettles, W. R.,
Heiderman, R. R., Warren, J. M., and Hanson, P. J.: Ecosystem warming
extends vegetation activity but heightens vulnerability to cold
temperatures, Nature, 560, 368–371, https://doi.org/10.1038/s41586-018-0399-1,
2018.
Schaperow, J. and Li, D.: VICGlobal: soil and vegetation parameters for
the Variable Infiltration Capacity hydrological model (1.6d), Zenodo [dataset],
https://doi.org/10.5281/zenodo.5038653, 2021.
Schneider von Deimling, T., Grosse, G., Strauss, J., Schirrmeister, L.,
Morgenstern, A., Schaphoff, S., Meinshausen, M., and Boike, J.:
Observation-based modelling of permafrost carbon fluxes with accounting for
deep carbon deposits and thermokarst activity, Biogeosciences, 12,
3469–3488, https://doi.org/10.5194/bg-12-3469-2015, 2015.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Sheffield, J., Barrett, A., Colle, B., Fernando, D., Fu, R., Geil, K., Hu,
Q., Kinter, J., Kumar, S., Langenbrunner, B., Lombardo, K., Long, L.,
Maloney, E., Mariotti, A., Meyerson, J., Mo, K., Neelin, J., Nigam, S., Pan,
Z., and Yin, L.: North American Climate in CMIP5 Experiments, Part I:
Evaluation of Historical Simulations of Continental and Regional
Climatology*, J. Clim., 26, 9209–9245, https://doi.org/10.1175/JCLI-D-12-00592.1,
2013.
Smith, S. L., O'Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V.
E.: The changing thermal state of permafrost, Nat. Rev. Earth
Environ., 3, 10–23, https://doi.org/10.1038/s43017-021-00240-1, 2022.
Spahni, R., Joos, F., Stocker, B. D., Steinacher, M., and Yu, Z. C.:
Transient simulations of the carbon and nitrogen dynamics in northern
peatlands: from the Last Glacial Maximum to the 21st century, Clim. Past, 9,
1287–1308, https://doi.org/10.5194/cp-9-1287-2013, 2013.
Stocker, B. D., Spahni, R., and Joos, F.: DYPTOP: a cost-efficient TOPMODEL
implementation to simulate sub-grid spatio-temporal dynamics of global
wetlands and peatlands, Geosci. Model Dev., 7, 3089–3110, https://doi.org/10.5194/gmd-7-3089-2014, 2014.
Tang, R., He, B., Chen, H. W., Chen, D., Chen, Y., Fu, Y. H., Yuan, W., Li,
B., Li, Z., Guo, L., Hao, X., Sun, L., Liu, H., Sun, C., and Yang, Y.:
Increasing terrestrial ecosystem carbon release in response to autumn
cooling and warming, Nat. Clim. Change, 12, 380–385, https://doi.org/10.1038/s41558-022-01304-w, 2022.
Tape, K. E. N., Sturm, M., and Racine, C.: The evidence for shrub expansion
in Northern Alaska and the Pan-Arctic, Glob. Change Biol., 12, 686–702,
https://doi.org/10.1111/j.1365-2486.2006.01128.x, 2006.
Treat, C. C., Jones, M. C., Brosius, L., Grosse, G., Walter Anthony, K., and
Frolking, S.: The role of wetland expansion and successional processes in
methane emissions from northern wetlands during the Holocene, Quaternary
Sci. Rev., 257, 106864, https://doi.org/10.1016/j.quascirev.2021.106864, 2021.
Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A.: Estimating carbon
accumulation rates of undrained mires in Finland–application to boreal and
subarctic regions, The Holocene, 12, 69–80, https://doi.org/10.1191/0959683602hl522rp, 2002.
Wood, E. F., Lettenmaier, D. P., and Zartarian, V. G.: A land-surface
hydrology parameterization with subgrid variability for general circulation
models, J. Geophys. Res.-Atmos., 97, 2717–2728,
https://doi.org/10.1029/91JD01786, 1992.
Xu, J., Morris, P. J., Liu, J., and Holden, J.: PEATMAP: Refining estimates
of global peatland distribution based on a meta-analysis, CATENA, 160,
134–140, https://doi.org/10.1016/j.catena.2017.09.010, 2018.
Yi, Y. and Kimball, J. S.: ABoVE: Active Layer Thickness from Remote Sensing
Permafrost Model, Alaska, 2001–2015, https://doi.org/10.3334/ORNLDAAC/1760, 2020.
Yokohata, T., Saito, K., Ito, A., Ohno, H., Tanaka, K., Hajima, T., and
Iwahana, G.: Future projection of greenhouse gas emissions due to permafrost
degradation using a simple numerical scheme with a global land surface
model, Prog. Earth Pl. Sci., 7, 56, https://doi.org/10.1186/s40645-020-00366-8, 2020.
Yu, Z., Beilman, D., and Jones, M.: Sensitivity of Northern Peatland Carbon
Dynamics to Holocene Climate Change, Washington DC American Geophysical
Union Geophysical Monograph Series, 184, 55–69, https://doi.org/10.1029/2008GM000822, 2009.
Zhao, B. and Zhuang, Q.: Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: A process-based biogeochemistry model analysis, Purdue University Research Repository (data set), https://doi.org/10.4231/QP7V-V527, 2022.
Zhao, B., Zhuang, Q., Treat, C., and Frolking, S.: A Model Intercomparison
Analysis for Controls on C Accumulation in North American Peatlands, J. Geophys. Res.-Biogeo., 127, e2021JG006762, https://doi.org/10.1029/2021JG006762, 2022a.
Zhao, B., Zhuang, Q., and Frolking, S.: Modeling Carbon Accumulation and
Permafrost Dynamics of Northern Peatlands Since the Holocene, J.
Geophys. Res.-Biogeo., 127, e2022JG007009,
https://doi.org/10.1029/2022JG007009, 2022b.
Zhao, R. J., Liu, X. R., and Singh, V. P.: The Xinanjiang model, edited by: Singh, V. P., Water Resources Publications, Colorado,
ISBN: 9780918334916,
1995.
Zhuang, Q., McGuire, A. D., O'Neill, K. P., Harden, J. W., Romanovsky, V.
E., and Yarie, J.: Modeling soil thermal and carbon dynamics of a fire
chronosequence in interior Alaska, J. Geophys. Res.-Atmos., 107, FFR 3-1–FFR 3-26, https://doi.org/10.1029/2001JD001244, 2002.
Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A.
D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between
terrestrial ecosystems and the atmosphere at northern high latitudes during
the past century: A retrospective analysis with a process-based
biogeochemistry model, Global Biogeochem. Cy., 18, GB3010, https://doi.org/10.1029/2004GB002239, 2004.
Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity Index
and Potential Evapotranspiration Database, Sci. Data, 9, 409,
https://doi.org/10.1038/s41597-022-01493-1, 2022.
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
In this study, we use a process-based model to simulate the northern peatland's C dynamics in...
Altmetrics
Final-revised paper
Preprint