Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-27-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-27-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Limits and CO2 equilibration of near-coast alkalinity enhancement
MIT-WHOI Joint Program in Oceanography and Applied Ocean Science and Engineering, Cambridge, MA, 02139, USA
Google Inc., 601 N 34th St, Seattle, WA 98103, USA
Related authors
No articles found.
Michael Dominik Tyka, Mengyang Zhou, Elizabeth Yankovsky, and Dustin Carroll
EGUsphere, https://doi.org/10.5194/egusphere-2025-3713, https://doi.org/10.5194/egusphere-2025-3713, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Quantification of the kinetics of the induced ocean CO2 uptake following application of marine carbon dioxide removal technologies (mCDR) is crucial for such technologies to gain scientific and social acceptance. Here, we compare two circulation models commonly used for this purpose and find substantial differences in their predictions. We analyze which physical aspects of the models contribute the most to the inter-model discrepancies, and thus require future research.
Michael D. Tyka
Biogeosciences, 22, 341–353, https://doi.org/10.5194/bg-22-341-2025, https://doi.org/10.5194/bg-22-341-2025, 2025
Short summary
Short summary
Marine CO2 removal (mCDR) is a promising technology for removing legacy emissions from the atmosphere. Its indirect nature makes it difficult to assess experimentally; instead one relies heavily on simulation. Many past papers have treated the atmosphere as non-responsive to the intervention studied. We show that even under these simplified assumptions, the increase in ocean CO2 inventory is equal to the equivalent quantity of direct CO2 removals occurring over time, in a realistic atmosphere.
Cited articles
Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K.,
Mason, B. M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K.,
Silverman, J., Wolfe, K., Zhu, K., and Caldeira, K.: Reversal of ocean acidification enhances net coral reef
calcification, Nature, 531, 362–365, https://doi.org/10.1038/nature17155, 2016. a
Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U.,
Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.:
Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Pl.
Sc., 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206, 2009. a, b
Byrne, C., Law, R., Hudson, P., Thain, J., and Fileman, T.: Measurements of the
dispersion of liquid industrial waste discharged into the wake of a dumping
vessel, Water Res., 22, 1577–1584, https://doi.org/10.1016/0043-1354(88)90171-6,
1988. a
Carroll, D., Menemenlis, D., Adkins, J. F., Bowman, K. W., Brix, H.,
Dutkiewicz, S., Fenty, I., Gierach, M. M., Hill, C., Jahn, O.,
Landschützer, P., Lauderdale, J. M., Liu, J., Manizza, M., Naviaux,
J. D., Rödenbeck, C., Schimel, D. S., Van der Stocken, T., and Zhang, H.:
The ECCO-Darwin Data-Assimilative Global Ocean Biogeochemistry Model:
Estimates of Seasonal to Multidecadal Surface Ocean pCO2 and Air-Sea CO2
Flux, J. Adv. Model. Earth Sy., 12, e2019MS001888,
https://doi.org/10.1029/2019MS001888, 2020. a
Carroll, D., Menemenlis, D., Dutkiewicz, S., Lauderdale, J. M., Adkins, J. F.,
Bowman, K. W., Brix, H., Fenty, I., Gierach, M. M., Hill, C., Jahn, O.,
Landschützer, P., Manizza, M., Mazloff, M. R., Miller, C. E., Schimel,
D. S., Verdy, A., Whitt, D. B., and Zhang, H.: Attribution of Space-Time
Variability in Global-Ocean Dissolved Inorganic Carbon, Global Biogeochem.
Cy., 36, e2021GB007162, https://doi.org/10.1029/2021GB007162,
2022. a
Chou, H.-T.: On the dilution of liquid waste in ships' wakes, J. Mar.
Sci. Technol., 1, 149–154, https://doi.org/10.1007/BF02391175, 1996. a, b, c
Davies, P. A., Yuan, Q., and de Richter, R.: Desalination as a negative
emissions technology, Environ. Sci.-Wat. Res., 4, 839–850,
https://doi.org/10.1039/C7EW00502D, 2018. a, b, c
de Lannoy, C.-F., Eisaman, M. D., Jose, A., Karnitz, S. D., DeVaul, R. W.,
Hannun, K., and Rivest, J. L.: Indirect ocean capture of atmospheric CO2:
Part I. Prototype of a negative emissions technology, Int. J.
Greenh. Gas Con., 70, 243–253, https://doi.org/10.1016/j.ijggc.2017.10.007,
2018. a, b, c
Digdaya, I. A., Sullivan, I., Lin, M., Han, L., Cheng, W.-H., Atwater, H. A.,
and Xiang, C.: A direct coupled electrochemical system for capture and
conversion of CO2 from oceanwater, Nat. Commun., 11, 362–365,
https://doi.org/10.1038/s41467-020-18232-y, 2020. a, b
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci., 1,
169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009. a
Dutkiewicz, S., Sokolov, A., Scott, J., and Stone, P.: A three-dimensional
ocean-seaice-carbon cycle model and its coupling to a two dimensional
atmospheric model: Uses in climate change studies. Report 122, MIT Joint
Program on the Science and Policy of Global Change,
http://mit.edu/globalchange/www/MITJPSPGC_Rpt122.pdf (last access:
20 April 2021), 2005. a, b, c
Eisaman, M. D., Rivest, J. L., Karnitz, S. D., de Lannoy, C.-F., Jose, A.,
DeVaul, R. W., and Hannun, K.: Indirect ocean capture of atmospheric CO2:
Part II. Understanding the cost of negative emissions, Int.
J. Greenh. Gas Con., 70, 254–261,
https://doi.org/10.1016/j.ijggc.2018.02.020, 2018. a, b
Fakhraee, M., Li, Z., Planavsky, N., and Reinhard, C.: Environmental impacts and carbon
capture potential of ocean alkalinity enhancement, 11 April 2022, PREPRINT (Version 1),Research Square, https://doi.org/10.21203/rs.3.rs-1475007/v1, 2022. a
Fassbender, A. J., Orr, J. C., and Dickson, A. G.: Technical note: Interpreting pH changes, Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, 2021. a
Feng, E. Y., Keller, D. P., Koeve, W., and Oschlies, A.: Could artificial ocean
alkalinization protect tropical coral ecosystems from ocean acidification?,
Environ. Res. Lett., 11, 074008, https://doi.org/10.1088/1748-9326/11/7/074008, 2016. a
Feng, E. Y., Koeve, W., Keller, D. P., and Oschlies, A.: Model-Based Assessment
of the CO2 Sequestration Potential of Coastal Ocean Alkalinization, Earth's
Future, 5, 1252–1266, https://doi.org/10.1002/2017EF000659, 2017. a, b, c, d
Ferderer, A., Chase, Z., Kennedy, F., Schulz, K. G., and Bach, L. T.: Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2022-17, in review, 2022. a, b
Fuhr, M., Geilert, S., Schmidt, M., Liebetrau, V., Vogt, C., Ledwig, B., and
Wallmann, K.: Kinetics of Olivine Weathering in Seawater: An Experimental
Study, Frontiers in Climate, 4, 831587, https://doi.org/10.3389/fclim.2022.831587, 2022. a
Gernon, T. M., Hincks, T. K., Merdith, A. S., Rohling, E. J., Palmer, M. R.,
Foster, G. L., Bataille, C. P., and Müller, R. D.: Global chemical
weathering dominated by continental arcs since the mid-Palaeozoic, Nat.
Geosci., 14, 690–696, https://doi.org/10.1038/s41561-021-00806-0, 2021. a
Goldberg, D. S., Takahashi, T., and Slagle, A. L.: Carbon dioxide sequestration
in deep-sea basalt, P. Natl. Acad. Sci. USA, 105,
9920–9925, https://doi.org/10.1073/pnas.0804397105, 2008. a
González, M. F. and Ilyina, T.: Impacts of artificial ocean
alkalinization on the carbon cycle and climate in Earth system simulations,
Geophys. Res. Lett., 43, 6493–6502, https://doi.org/10.1002/2016gl068576, 2016. a, b
Guo, J. A., Strzepek, R., Willis, A., Ferderer, A., and Bach, L. T.: Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement, Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, 2022. a, b
Hangx, S. J. and Spiers, C. J.: Coastal spreading of olivine to control
atmospheric CO2 concentrations: A critical analysis of viability,
Int. J. Greenh. Gas Con., 3, 757–767,
https://doi.org/10.1016/j.ijggc.2009.07.001, 2009. a, b, c
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in Ocean Alkalinity Enhancement (OAE) approaches – consequences for durability of CO2 storage, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2022-126, in review, 2022. a, b, c, d, e
He, J. and Tyka, M. D.: Limits and equilibration dynamics of near-coast alkalinity enhancement (Version 0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7460358, 2022. a
House, K. Z., House, C. H., Schrag, D. P., and Aziz, M. J.: Electrochemical
Acceleration of Chemical Weathering as an Energetically Feasible Approach to
Mitigating Anthropogenic Climate Change, Environ. Sci. Technol., 41,
8464–8470, https://doi.org/10.1021/es0701816, 2007. a, b
Humphreys, M. P., Gregor, L., Pierrot, D., van Heuven, S. M. A. C., Lewis,
E. R., and Wallace, D. W. R.: PyCO2SYS: marine carbonate system calculations
in Python, Zenodo [code], https://doi.org/10.5281/ZENODO.3744275, 2020. a, b
Jones, S. D., Le Quéré, C., and Rödenbeck, C.: Autocorrelation
characteristics of surface ocean pCO2 and air-sea CO2 fluxes, Global
Biogeochem. Cy., 26, GB2042, https://doi.org/10.1029/2010GB004017, 2012. a
Keller, D. P., Feng, E. Y., and Oschlies, A.: Potential climate engineering
effectiveness and side effects during a high carbon dioxide-emission
scenario, Nat. Commun., 5, 3304, https://doi.org/10.1038/ncomms4304, 2014. a
Keller, D. P., Lenton, A., Littleton, E. W., Oschlies, A., Scott, V., and
Vaughan, N. E.: The Effects of Carbon Dioxide Removal on the Carbon Cycle,
Current Climate Change Reports, 4, 250–265, https://doi.org/10.1007/s40641-018-0104-3,
2018. a
Kheshgi, H. S.: Sequestering atmospheric carbon dioxide by increasing ocean
alkalinity, Energy, 20, 915–922,
https://doi.org/10.1016/0360-5442(95)00035-F, 1995. a
Köhler, P., Abrams, J. F., Völker, C., Hauck, J., and Wolf-Gladrow, D. A.:
Geoengineering impact of open ocean dissolution of olivine on atmospheric
CO2, surface ocean pH and marine biology, Environ. Res. Lett., 8,
014009, https://doi.org/10.1088/1748-9326/8/1/014009, 2013. a, b
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the 1∘ × 1∘ GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016. a, b, c, d
Lewis, E. R. and Wallace, D. W. R.: Program Developed for CO2 System
Calculations, ESS-Dive [data set], https://doi.org/10.15485/1464255, 1998. a
Lewis, R.: The dilution of waste in the wake of a ship, Water Res., 19,
941–945, https://doi.org/10.1016/0043-1354(85)90360-4, 1985. a
Lewis, R. E. and Riddle, A. M.: Sea disposal: Modelling studies of waste field
dilution, Mar. Pollut. Bull., 20, 124–129,
https://doi.org/10.1016/0025-326x(88)90817-x, 1989. a
Li, J. and Hitch, M.: Ultra-fine grinding and mechanical activation of mine
waste rock using a high-speed stirred mill for mineral carbonation, Int. J.
Min. Met. Mater., 22, 1005–1016, https://doi.org/10.1007/s12613-015-1162-3, 2015. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997. a
IPCC: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis,
Contribution of Working Group I
to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Cambridge University Press,
Cambridge, United Kingdom and New
York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021. a
Matter, J. M., Broecker, W., Stute, M., Gislason, S., Oelkers, E.,
Stefánsson, A., Wolff-Boenisch, D., Gunnlaugsson, E., Axelsson, G., and
Björnsson, G.: Permanent Carbon Dioxide Storage into Basalt: The CarbFix
Pilot Project, Iceland, Enrgy. Proced., 1, 3641–3646,
https://doi.org/10.1016/j.egypro.2009.02.160, 2009. a
McGrail, B. P., Schaef, H. T., Ho, A. M., Chien, Y.-J., Dooley, J. J., and
Davidson, C. L.: Potential for carbon dioxide sequestration in flood basalts,
J. Geophys. Res., 111, B12201, https://doi.org/10.1029/2005jb004169, 2006. a
IPCC: IPCC Special Report on Carbon Dioxide Capture and Storage, Prepared by
Working Group III of the Intergovernmental Panel on Climate Change, edited by: Metz, B.,
Davidson, O., de Coninck, H. C., Loos, M., and Meyer, L. A., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp., https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ (last access: 1 June 2022), 2005. a
Meysman, F. J. R. and Montserrat, F.: Negative CO2 emissions via
enhanced silicate weathering in coastal environments, Biol. Lett., 13,
20160905, https://doi.org/10.1098/rsbl.2016.0905, 2017. a, b
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean Alkalinity, Buffering
and Biogeochemical Processes, Rev. Geophys., 58, e2019RG000681, https://doi.org/10.1029/2019rg000681,
2020. a, b
Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., and
Meysman, F. J. R.: Olivine Dissolution in Seawater: Implications for
CO2 Sequestration through Enhanced Weathering in Coastal Environments,
Environ. Sci. Technol., 51, 3960–3972, https://doi.org/10.1021/acs.est.6b05942,
2017. a, b, c
Morse, J. W. and He, S.: Influences of T, S and PCO2 on the pseudo-homogeneous
precipitation of CaCO3 from seawater: implications for whiting formation,
Mar. Chem., 41, 291–297,
https://doi.org/10.1016/0304-4203(93)90261-L, 1993. a
Olsen, A., Key, R. M., Lauvset, S. K., Kozyr, A., Tanhua, T., Hoppema, M.,
Ishii, M., Jeansson, E., Van Heuven, S. M. A. C., Jutterström, S.,
Schirnick, C., Steinfeldt, R., Suzuki, T., Lin, X., Velo, A., and Pérez,
F. F.: Global Ocean Data Analysis Project, Version 2 (GLODAPv2) (NCEI
Accession 0162565), NOAA [data set], https://doi.org/10.7289/V5KW5D97, 2017. a, b, c, d
Pan, Y., Li, Y., Ma, Q., He, H., Wang, S., Sun, Z., Cai, W.-J., Dong, B., Di,
Y., Fu, W., and Chen, C.-T. A.: The role of Mg2+ in inhibiting CaCO3
precipitation from seawater, Mar. Chem., 237, 104036, 2021. a
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., and Winnick, M. J.:
Silicate weathering as a feedback and forcing in Earth's climate and carbon
cycle, Earth-Sci. Rev., 209, 103298,
https://doi.org/10.1016/j.earscirev.2020.103298, 2020. a
Pokrovsky, O.: Precipitation of calcium and magnesium carbonates from
homogeneous supersaturated solutions, J. Cryst. Growth, 186,
233–239, https://doi.org/10.1016/S0022-0248(97)00462-4, 1998. a
Pokrovsky, O. and Savenko, V.: The role of magnesium at homogeneous
precipitation of calcium carbonate from seawater, Oceanology, 34, 493–497,
1995. a
Pokrovsky, O. S.: Kinetics of CaCO3 Homogeneous Precipitation in Seawater,
Mineral. Mag., 58A, 738–739, https://doi.org/10.1180/minmag.1994.58a.2.121,
1994. a
Rau, G. H.: Electrochemical CO2 capture and storage with hydrogen generation,
Enrgy. Proced., 1, 823–828,
https://doi.org/10.1016/j.egypro.2009.01.109, 2009. a, b
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon
sequestration, Rev. Geophys., 55, 636–674,
https://doi.org/10.1002/2016rg000533, 2017. a, b, c, d
Riebesell, U. and Tortell, P. D.: Effects of Ocean Acidification on Pelagic
Organisms and Ecosystems, in: Ocean Acidification, Oxford University Press,
https://doi.org/10.1093/oso/9780199591091.003.0011, 2011. a
Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M.,
Kyratsi, T., and Oelkers, E. H.: Carbon sequestration via enhanced weathering
of peridotites and basalts in seawater, Appl. Geochem., 91, 197–207,
https://doi.org/10.1016/j.apgeochem.2017.11.001, 2018. a, b
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D.,
Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler,
E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J.,
Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E.,
and Tavoni, M.: Scenarios towards limiting global mean temperature increase
below 1.5 ∘C, Nat. Clim. Change, 8, 325–332,
https://doi.org/10.1038/s41558-018-0091-3, 2018. a, b
Sano, Y., Hao, Y., and Kuwahara, F.: Development of an electrolysis based
system to continuously recover magnesium from seawater, Heliyon, 4,
e00923, https://doi.org/10.1016/j.heliyon.2018.e00923, 2018. a
Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton
University Press, Princeton, oCLC: ocm60651167, ISBN: 9780691017075, 2006. a
Schuiling, R. D. and de Boer, P. L.: Rolling stones; fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification, Earth Syst. Dynam. Discuss., 2, 551–568, https://doi.org/10.5194/esdd-2-551-2011, 2011. a, b, c
Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto,
J. G., Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.: Regionally
coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1.
Description and validation, J. Adv. Model. Earth Sy., 7,
268–304, https://doi.org/10.1002/2014MS000357, 2015. a
Subhas, A. V., Marx, L., Reynolds, S., Flohr, A., Mawji, E. W., Brown, P. J.,
and Cael, B. B.: Microbial ecosystem responses to alkalinity enhancement in
the North Atlantic Subtropical Gyre, Frontiers in Climate, 4, https://doi.org/10.3389/fclim.2022.784997, 2022. a
Sun, W., Jayaraman, S., Chen, W., Persson, K. A., and Ceder, G.: Nucleation of
metastable aragonite CaCO3 in seawater, P.
Natl. Acad. Sci. USA, 112, 3199–3204, https://doi.org/10.1073/pnas.1423898112,
2015. a, b
Thorsen, T. G., Hagen, R. I., Wærnes, O., and Langseth, B.: Method for
production of magnesium hydroxide from sea water,
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2000029326 (last access: 1 June 2022),
2000. a
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary,
S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.,
Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121,
49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
Wang, H., Pilcher, D. J., Eisaman, M. D., and Carter, B. R.: Simulated impact of ocean alkalinity enhancement on atmospheric CO2 removal in the
Bering Sea, AGU Earth's Future, in press, https://doi.org/10.1029/2022EF002816, 2022.
a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res.-Oceans, 97, 7373–7382,
https://doi.org/10.1029/92JC00188, 1992. a
Wunsch, C. and Heimbach, P.: Chapter 21 – Dynamically and Kinematically
Consistent Global Ocean Circulation and Ice State Estimates, in: Ocean
Circulation and Climate, edited by: Siedler, G., Griffies, S. M., Gould, J.,
and Church, J. A., Vol. 103 of International Geophysics,
553–579, Academic Press,
https://doi.org/10.1016/B978-0-12-391851-2.00021-0, 2013. a
Wunsch, C., Heimbach, P., Ponte, R. M., Fukumori, I., and The ECCO-GODAE Consortium Members: The global general circulation of the ocean
estimated by the ECCO-Consortium, Oceanography, 22, 88–103,
https://doi.org/10.5670/oceanog.2009.41, 2009. a
Short summary
Recently, ocean alkalinity enhancement (OAE) has gained interest as a scalable way to address the urgent need for negative CO2 emissions. In this paper we examine the capacity of different coastlines to tolerate alkalinity enhancement and the time scale of CO2 uptake following the addition of a given quantity of alkalinity. The results suggest that OAE has significant potential and identify specific favorable and unfavorable coastlines for its deployment.
Recently, ocean alkalinity enhancement (OAE) has gained interest as a scalable way to address...
Altmetrics
Final-revised paper
Preprint