Articles | Volume 20, issue 15
https://doi.org/10.5194/bg-20-3329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short-term response of benthic foraminifera to fine-sediment depositional events simulated in microcosm
Corentin Guilhermic
CORRESPONDING AUTHOR
Université Angers, Nantes Univ., Le Mans Univ, CNRS, LPG,
Laboratoire de planétologie et géosciences, UMR CNRS 6112, 49000
Angers, France
Maria Pia Nardelli
Université Angers, Nantes Univ., Le Mans Univ, CNRS, LPG,
Laboratoire de planétologie et géosciences, UMR CNRS 6112, 49000
Angers, France
Aurélia Mouret
Université Angers, Nantes Univ., Le Mans Univ, CNRS, LPG,
Laboratoire de planétologie et géosciences, UMR CNRS 6112, 49000
Angers, France
Damien Le Moigne
Université Angers, Nantes Univ., Le Mans Univ, CNRS, LPG,
Laboratoire de planétologie et géosciences, UMR CNRS 6112, 49000
Angers, France
Hélène Howa
Université Angers, Nantes Univ., Le Mans Univ, CNRS, LPG,
Laboratoire de planétologie et géosciences, UMR CNRS 6112, 49000
Angers, France
Related authors
No articles found.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Eleonora Fossile, Maria Pia Nardelli, Arbia Jouini, Bruno Lansard, Antonio Pusceddu, Davide Moccia, Elisabeth Michel, Olivier Péron, Hélène Howa, and Meryem Mojtahid
Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, https://doi.org/10.5194/bg-17-1933-2020, 2020
Short summary
Short summary
This study focuses on benthic foraminiferal distribution in an Arctic fjord characterised by continuous sea ice production during winter and the consequent cascading of salty and corrosive waters (brine) to the seabed. The inner fjord is dominated by calcareous species (C). In the central deep basins, where brines are persistent, calcareous foraminifera are dissolved and agglutinated (A) dominate. The high A/C ratio is suggested as a proxy for brine persistence and sea ice production.
Julie Meilland, Hélène Howa, Vivien Hulot, Isaline Demangel, Joëlle Salaün, and Thierry Garlan
Biogeosciences, 17, 1437–1450, https://doi.org/10.5194/bg-17-1437-2020, https://doi.org/10.5194/bg-17-1437-2020, 2020
Short summary
Short summary
This study reports on planktonic foraminifera (PF) diversity and distribution in the Barents Sea. The species Globigerinita uvula and Turborotalita quinqueloba dominate the water column while surface sediments are dominated by Neogloboquadrina pachyderma. We hypothesize the unusual dominance of G. uvula in the water to be a seasonal signal or a result of climate forcing. Size-normalized-protein concentrations of PF show a northward decrease, suggesting biomass to vary with the environment.
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
Inge van Dijk, Christine Barras, Lennart Jan de Nooijer, Aurélia Mouret, Esmee Geerken, Shai Oron, and Gert-Jan Reichart
Biogeosciences, 16, 2115–2130, https://doi.org/10.5194/bg-16-2115-2019, https://doi.org/10.5194/bg-16-2115-2019, 2019
Short summary
Short summary
Systematics in the incorporation of different elements in shells of marine organisms can be used to test calcification models and thus processes involved in precipitation of calcium carbonates. On different scales, we observe a covariation of sulfur and magnesium incorporation in shells of foraminifera, which provides insights into the mechanics behind shell formation. The observed patterns imply that all species of foraminifera actively take up calcium and carbon in a coupled process.
Shauna Ní Fhlaithearta, Christophe Fontanier, Frans Jorissen, Aurélia Mouret, Adriana Dueñas-Bohórquez, Pierre Anschutz, Mattias B. Fricker, Detlef Günther, Gert J. de Lange, and Gert-Jan Reichart
Biogeosciences, 15, 6315–6328, https://doi.org/10.5194/bg-15-6315-2018, https://doi.org/10.5194/bg-15-6315-2018, 2018
Short summary
Short summary
This study looks at how foraminifera interact with their geochemical environment in the seabed. We focus on the incorporation of the trace metal manganese (Mn), with the aim of developing a tool to reconstruct past pore water profiles. Manganese concentrations in foraminifera are investigated relative to their ecological preferences and geochemical environment. This study demonstrates that Mn in foraminiferal tests is a promising tool to reconstruct oxygen conditions in the seabed.
Jassin Petersen, Christine Barras, Antoine Bézos, Carole La, Lennart J. de Nooijer, Filip J. R. Meysman, Aurélia Mouret, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 15, 331–348, https://doi.org/10.5194/bg-15-331-2018, https://doi.org/10.5194/bg-15-331-2018, 2018
Short summary
Short summary
In Lake Grevelingen, a coastal ecosystem, foraminifera experience important temporal variations in oxygen concentration and in pore water manganese. The high resolution of LA-ICP-MS allows us to analyse the chambers of foraminiferal shells separately and to obtain signals from a series of calcification events. We estimate the variability in Mn/Ca observed within single shells due to biomineralization and show that a substantial part of the signal is related to environmental variability.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
A. Thibault de Chanvalon, E. Metzger, A. Mouret, F. Cesbron, J. Knoery, E. Rozuel, P. Launeau, M. P. Nardelli, F. J. Jorissen, and E. Geslin
Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015, https://doi.org/10.5194/bg-12-6219-2015, 2015
Short summary
Short summary
We present a new rapid and accurate protocol to simultaneously sample, in two dimensions, benthic living foraminifera at the centimetre scale and dissolved iron and phosphorus at the submillimetre scale. It was applied to a highly bioturbated site in a mudflat of the Loire estuary and showed that, in the suboxic zone, foraminifera are less affected by active burrows (i.e. reoxygenated) than by iron reactive hotspots. This unexpected result calls for a generalization of this new protocol.
M. P. Nardelli, C. Barras, E. Metzger, A. Mouret, H. L. Filipsson, F. Jorissen, and E. Geslin
Biogeosciences, 11, 4029–4038, https://doi.org/10.5194/bg-11-4029-2014, https://doi.org/10.5194/bg-11-4029-2014, 2014
Related subject area
Biogeophysics: Biota & Sediment Stability
Mobilisation thresholds for coral rubble and consequences for windows of reef recovery
Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging
Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment
A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage
Tania M. Kenyon, Daniel Harris, Tom Baldock, David Callaghan, Christopher Doropoulos, Gregory Webb, Steven P. Newman, and Peter J. Mumby
Biogeosciences, 20, 4339–4357, https://doi.org/10.5194/bg-20-4339-2023, https://doi.org/10.5194/bg-20-4339-2023, 2023
Short summary
Short summary
The movement of rubble on coral reefs can lead to persistent unstable rubble beds that hinder reef recovery. To identify where such rubble beds are, we need to know the minimum velocity that will move rubble. We found that loose rubble had a 50 % chance of being moved when near-bed wave orbital velocities reached ~0.3 m s−1; rubble moved more if pieces were small and had no branches. Rubble beds that experience frequent movement would be good candidates for rubble stabilisation interventions.
Marinka E. B. van Puijenbroek, Corjan Nolet, Alma V. de Groot, Juha M. Suomalainen, Michel J. P. M. Riksen, Frank Berendse, and Juul Limpens
Biogeosciences, 14, 5533–5549, https://doi.org/10.5194/bg-14-5533-2017, https://doi.org/10.5194/bg-14-5533-2017, 2017
Short summary
Short summary
Understanding the contribution of the vegetation and dune size to nebkha dune growth could improve model predictions on coastal dune development. We monitored a natural nebkha dune field with a drone with camera. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation. In our study area the growth of exposed dunes was restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply.
T. Balke, T. J. Bouma, P. M. J. Herman, E. M. Horstman, C. Sudtongkong, and E. L. Webb
Biogeosciences, 10, 5411–5419, https://doi.org/10.5194/bg-10-5411-2013, https://doi.org/10.5194/bg-10-5411-2013, 2013
E. Vidal Vázquez, J. G. V. Miranda, and J. Paz-Ferreiro
Biogeosciences, 7, 2989–3004, https://doi.org/10.5194/bg-7-2989-2010, https://doi.org/10.5194/bg-7-2989-2010, 2010
Cited articles
Alve, E.: Colonization of new habitats by benthic foraminifera: a review,
Earth-Sci. Rev., 46, 167–185,
https://doi.org/10.1016/S0012-8252(99)00016-1, 1999.
Alve, E.: Temporal variability in vertical distributions of live (stained)
intertidal foraminifera, Southern England, J. Foramin.
Res., 31, 12–24, https://doi.org/10.2113/0310012, 2001.
Alve, E., Korsun, S., Schönfeld, J., Dijkstra, N., Golikova, E., Hess, S., Husum,
K., and Panieri, G.: Foram-AMBI: A sensitivity index based on benthic
foraminiferal faunas from North-East Atlantic and Arctic fjords, continental
shelves and slopes, Mar. Micropaleontol., 122, 1–12,
https://doi.org/10.1016/j.marmicro.2015.11.001, 2016.
Anschutz, P., Jorissen, F. J., Chaillou, G., Abu-Zied, R., and Fontanier,
C.: Recent turbidite deposition in the eastern Atlantic: Early diagenesis
and biotic recovery, J. Mar. Res., 60, 835–854,
https://doi.org/10.1357/002224002321505156, 2002.
Barras, C., Jorissen, F. J., Labrune, C., Andral, B., and Boissery, P.: Live benthic foraminiferal
faunas from the French Mediterranean Coast: Towards a new biotic index of
environmental quality, Ecol. Ind., 36, 719–743,
https://doi.org/10.1016/j.ecolind.2013.09.028, 2014.
Belart, P., Clemente, I., Raposo, D., Habib, R., Volino, E., Villar, A.,
Alves, M., Fontana, L., Lorini, M., Panigai, G., Frontalini, F., Figueiredo,
M., Vasconcelos, S., and Laut, L.: Living and dead Foraminifera as
bioindicators in Saquarema Lagoon System, Brazil, Lat. Am. J. Aquat. Res., 46, 1055–1072,
https://doi.org/10.3856/vol46-issue5-fulltext-18, 2018.
Bernhard, J. M. and Bowser, S. S.: Novel epifluorescence microscopy method
to determine life position of foraminifera in sediments, J.
Micropalaeontol., 15, 68–68, https://doi.org/10.1144/jm.15.1.68, 1996.
Bernhard, J. M., Ostermann, D. R., Williams, D. S., and Blanks, J. K.:
Comparison of two methods to identify live benthic foraminifera: A test
between Rose Bengal and CellTracker Green with implications for stable
isotope paleoreconstructions: foraminifera viability method comparison,
Paleoceanography, 21, PA4110, https://doi.org/10.1029/2006PA001290, 2006.
Bolam, S. G.: Burial survival of benthic macrofauna following deposition of
simulated dredged material, Environ. Monit. Assess., 181, 13–27,
https://doi.org/10.1007/s10661-010-1809-5, 2011.
Bolliet, T., Jorissen, F. J., Schmidt, S., and Howa, H.: Benthic
foraminifera from Capbreton Canyon revisited; faunal evolution after
repetitive sediment disturbance, Deep-Sea Res. Pt. II, 104, 319–334, https://doi.org/10.1016/j.dsr2.2013.09.009,
2014.
Bornmalm, L., Corliss, B. H., and Tedesco, K.: Laboratory observations of
rates and patterns of movement of continental margin benthic foraminifera,
Mar. Micropaleontol., 29, 175–184,
https://doi.org/10.1016/S0377-8398(96)00013-8, 1997.
Bouchet, V. M. P., Sauriau, P.-G., Debenay, J.-P., Mermillod-Blondin, F.,
Schmidt, S., Amiard, J.-C., and Dupas, B.: Influence of the mode of
macrofauna-mediated bioturbation on the vertical distribution of living
benthic foraminifera: First insight from axial tomodensitometry, J. Exp. Mar. Biol. Ecol., 371, 20–33,
https://doi.org/10.1016/j.jembe.2008.12.012, 2009.
Bouchet, V. M. P., Alve, E., Rygg, B., and Telford, R. J.: Benthic
foraminifera provide a promising tool for ecological quality assessment of
marine waters, Ecol. Indicat., 23, 66–75,
https://doi.org/10.1016/j.ecolind.2012.03.011, 2012.
Bouchet, V. M. P., Goberville, E., and Frontalini, F.: Benthic foraminifera
to assess Ecological Quality Statuses in Italian transitional waters,
Ecol. Indicat., 84, 130–139,
https://doi.org/10.1016/j.ecolind.2017.07.055, 2018a.
Bouchet, V. M. P., Telford, R. J., Rygg, B., Oug, E., and Alve, E.: Can
benthic foraminifera serve as proxies for changes in benthic macrofaunal
community structure?, Implications for the definition of reference
conditions, Mar. Environ. Res., 137, 24–36,
https://doi.org/10.1016/j.marenvres.2018.02.023, 2018b.
Bradshaw, J. S.: Laboratory studies on the rate of growth of the
foraminifer, “Streblus beccarii (linné) var. tepida (Cushman)”,
J. Paleontol., 31, 1138–1147, 1957.
Budillon, F., Vicinanza, D., Ferrante, V., and Iorio, M.: Sediment transport and deposition during extreme sea storm events at the Salerno Bay (Tyrrhenian Sea): comparison of field data with numerical model results, Nat. Hazards Earth Syst. Sci., 6, 839–852, https://doi.org/10.5194/nhess-6-839-2006, 2006.
Bussi, G., Dadson, S. J., Prudhomme, C., and Whitehead, P. G.: Modelling the
future impacts of climate and land-use change on suspended sediment
transport in the River Thames (UK), J. Hydrol., 542, 357–372,
https://doi.org/10.1016/j.jhydrol.2016.09.010, 2016.
Cesbron, F., Geslin, E., Jorissen, F. J., Delgard, M. L., Charrieau, L.,
Deflandre, B., Jézéquel, D., Anschutz, P., and Metzger, E.: Vertical
distribution and respiration rates of benthic foraminifera: Contribution to
aerobic remineralization in intertidal mudflats covered by Zostera noltei
meadows, Estuar. Coast. Shelf Sci., 179, 23–38,
https://doi.org/10.1016/j.ecss.2015.12.005, 2016.
Choquel, C.: Ecologie des foraminifères benthiques, interactions biologiques et géochimiques ; approche pluridisciplinaire à différentes échelles, Angers, 2021.
Choquel, C., Geslin, E., Metzger, E., Filipsson, H. L., Risgaard-Petersen, N., Launeau, P., Giraud, M., Jauffrais, T., Jesus, B., and Mouret, A.: Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment, Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, 2021.
Contreras-Rosales, L. A., Koho, K. A., Duijnstee, I. A. P., de Stigter, H.
C., García, R., Koning, E., and Epping, E.: Living deep-sea benthic
foraminifera from the Cap de Creus Canyon (western Mediterranean):
Faunal–geochemical interactions, Deep-Sea Res. Pt. I, 64, 22–42, https://doi.org/10.1016/j.dsr.2012.01.010,
2012.
Corliss, B. H.: Morphology and microhabitat preferences of benthic
foraminifera from the northwest Atlantic Ocean, Mar. Micropaleontol.,
17, 195–236, https://doi.org/10.1016/0377-8398(91)90014-W, 1991.
Cottrell, R. S., Black, K. D., Hutchison, Z. L., and Last, K. S.: The
Influence of Organic Material and Temperature on the Burial Tolerance of the
Blue Mussel, Mytilus edulis: Considerations for the Management of Marine
Aggregate Dredging, PLOS ONE, 11, e0147534,
https://doi.org/10.1371/journal.pone.0147534, 2016.
D'Angelo, A., Giglio, F., Miserocchi, S., Sanchez-Vidal, A., Aliani, S., Tesi, T., Viola, A., Mazzola, M., and Langone, L.: Multi-year particle fluxes in Kongsfjorden, Svalbard, Biogeosciences, 15, 5343–5363, https://doi.org/10.5194/bg-15-5343-2018, 2018. 18.
Deldicq, N., Seuront, L., Langlet, D., and Bouchet, V.: Assessing
behavioural traits of benthic foraminifera: implications for sediment
mixing, Mar. Ecol. Prog. Ser., 643, 21–31,
https://doi.org/10.3354/meps13334, 2020.
Deldicq, N., Langlet, D., Delaeter, C., Beaugrand, G., Seuront, L., and
Bouchet, V. M. P.: Effects of temperature on the behaviour and metabolism of
an intertidal foraminifera and consequences for benthic ecosystem
functioning, Sci. Rep., 11, 4013, https://doi.org/10.1038/s41598-021-83311-z,
2021.
Denoyelle, M., Jorissen, F. J., Martin, D., Galgani, F., and Miné, J.:
Comparison of benthic foraminifera and macrofaunal indicators of the impact
of oil-based drill mud disposal, Mar. Pollut. Bull., 60, 2007–2021,
https://doi.org/10.1016/j.marpolbul.2010.07.024, 2010.
Denoyelle, M., Geslin, E., Jorissen, F. J., Cazes, L., and Galgani, F.:
Innovative use of foraminifera in ecotoxicology: A marine chronic bioassay
for testing potential toxicity of drilling muds, Ecol. Indicat., 12,
17–25, https://doi.org/10.1016/j.ecolind.2011.05.011, 2012.
Dessandier, P.-A., Bonnin, J., Kim, J.-H., Bichon, S., Deflandre, B.,
Grémare, A., and Sinninghe Damsté, J. S.: Impact of organic matter
source and quality on living benthic foraminiferal distribution on a
river-dominated continental margin: A study of the Portuguese margin:
benthic foraminifera, J. Geophys. Res.-Biogeo., 121, 1689–1714,
https://doi.org/10.1002/2015JG003231, 2016.
Dudgeon, D.: Multiple threats imperil freshwater biodiversity in the
Anthropocene, Curr. Biol., 29, 960–967,
https://doi.org/10.1016/j.cub.2019.08.002, 2019.
Dupuy, C., Rossignol, L., Geslin, E., and Pascal, P.-Y.: Predation of
mudflat meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia
tepida (Cushman, 1926), J. Foramin. Res., 40, 305–312,
https://doi.org/10.2113/gsjfr.40.4.305, 2010.
Duros, P., Silva Jacinto, R., Dennielou, B., Schmidt, S., Martinez Lamas,
R., Gautier, E., Roubi, A., and Gayet, N.: Benthic foraminiferal response to
sedimentary disturbance in the Capbreton canyon (Bay of Biscay, NE
Atlantic), Deep-Sea Res. Pt. I, 120,
61–75, https://doi.org/10.1016/j.dsr.2016.11.012, 2017.
Dyer, K. R.: Fine Sediment Particle Transport in Estuaries, in: Physical
Processes in Estuaries, edited by: Dronkers, J. and van Leussen, W.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 295–310,
https://doi.org/10.1007/978-3-642-73691-9_ 16, 1988.
Ernst, S., Duijnstee, I., and van der Zwaan, B.: The dynamics of the benthic
foraminiferal microhabitat: recovery after experimental disturbance, Mar. Micropaleontol., 46, 343–361,
https://doi.org/10.1016/S0377-8398(02)00080-4, 2002.
Extence, C., P. Chadd, R., England, J., J. Dunbar, M., J. Wood, P., and
Taylor, E.: The assessment of fine sediment accumulation in rivers using
macro-invertebrate community response: macro-invertebrate assessment of fine
sediment accumulation, River Res. Appl., 29, 17–55,
https://doi.org/10.1002/rra.1569, 2013.
Fontanier, C., Dissard, D., Ruffine, L., Mamo, B., Ponzevera, E., Pelleter,
E., Baudin, F., Roubi, A., Chéron, S., Boissier, A., Gayet, N.,
Bermell-Fleury, S., Pitel, M., Guyader, V., Lesongeur, F., and Savignac, F.:
Living (stained) deep-sea foraminifera from the Sea of Marmara: A
preliminary study, Deep-Sea Res. Pt. II, 153, 61–78, https://doi.org/10.1016/j.dsr2.2017.12.011, 2018.
Fontanier, C., Mamo, B., Mille, D., Duros, P., and Herlory, O.: Deep-sea
benthic foraminifera at a bauxite industrial waste site in the Cassidaigne
Canyon (NW Mediterranean): Ten months after the cessation of red mud
dumping, Comptes Rendus. Géosci., 352, 87–101,
https://doi.org/10.5802/crgeos.5, 2020.
Fossile, E., Nardelli, M. P., Howa, H., Baltzer, A., Poprawski, Y.,
Baneschi, I., Doveri, M., and Mojtahid, M.: Influence of modern
environmental gradients on foraminiferal faunas in the inner Kongsfjorden
(Svalbard), Mar. Micropaleontol., 173, 102117,
https://doi.org/10.1016/j.marmicro.2022.102117, 2022.
Frontalini, F. and
Coccioni, R.: Benthic foraminifera for heavy metal pollution monitoring: A
case study from the central Adriatic Sea coast of Italy, Estuar. Coast.
Shelf Sci., 76, 404–417, https://doi.org/10.1016/j.ecss.2007.07.024,
2008.
Frontalini, F., Buosi, C., Da Pelo, S., Coccioni, R., Cherchi, A., and
Bucci, C.: Benthic foraminifera as bio-indicators of trace element pollution
in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy), Mar.
Pollut. Bull., 58, 858–877,
https://doi.org/10.1016/j.marpolbul.2009.01.015, 2009.
García-Robledo, E., Corzo, A., and Papaspyrou, S.: A fast and direct
spectrophotometric method for the sequential determination of nitrate and
nitrite at low concentrations in small volumes, Mar. Chem., 162,
30–36, https://doi.org/10.1016/j.marchem.2014.03.002, 2014.
Geslin, E., Heinz, P., Jorissen, F., and Hemleben, C.: Migratory responses
of deep-sea benthic foraminifera to variable oxygen conditions: laboratory
investigations, Mar. Micropaleont., 53, 227–243,
https://doi.org/10.1016/j.marmicro.2004.05.010, 2004.
Geslin, E., Barras, C., Langlet, D., Nardelli, M. P., Kim, J.-H., Bonnin,
J., Metzger, E., and Jorissen, F. J.: Survival, reproduction and
calcification of three benthic foraminiferal species in response to
experimentally induced hypoxia, in: Approaches to Study Living Foraminifera,
edited by: Kitazato, H. and Bernhard, J., Springer Japan, Tokyo,
163–193, https://doi.org/10.1007/978-4-431-54388-6_ 10, 2014.
Goineau, A., Fontanier, C., Jorissen, F., Buscail, R., Kerhervé, P., Cathalot, C., Pruski, A. M., Lantoine, F., Bourgeois, S., Metzger, E., Legrand, E., and Rabouille, C.: Temporal variability of live (stained) benthic foraminiferal faunas in a river-dominated shelf – Faunal response to rapid changes of the river influence (Rhône prodelta, NW Mediterranean), Biogeosciences, 9, 1367–1388, https://doi.org/10.5194/bg-9-1367-2012, 2012.
Gooday, A. J., Bernhard, J. M., Levin, L. A., and Suhr, S. B.: Foraminifera
in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings:
taxonomic composition, diversity, and relation to metazoan faunas, Deep-Sea Res. Pt. II, 47, 25–54, 2000.
Griess, P.: Bemerkungen zu der Abhandlung der HH, Weselsky und Benedikt
“Ueber einige Azoverbindungen”?, Ber. Dtsch. Chem. Ges., 12,
426–428, https://doi.org/10.1002/cber.187901201117, 1879.
Gross, O.: Influence of temperature, oxygen and food availability on the
migrational activity of bathyal benthic foraminifera: evidence by microcosm
experiments, in: Life at Interfaces and Under Extreme Conditions, edited by:
Liebezeit, G., Dittmann, S., and Kröncke, I., Springer Netherlands,
Dordrecht, 123–137,
https://doi.org/10.1007/978-94-011-4148-2_ 12, 2000.
Hansen, L. and Blackburn, T.: Aerobic and anaerobic mineralization of
organic material in marine sediment microcosms, Mar. Ecol. Prog. Ser., 75,
283–291, https://doi.org/10.3354/meps075283, 1991.
Hansen, L. S. and Blackburn, T. H.: Mineralization budgets in sediment
microcosms: Effect of the infauna and anoxic conditions, FEMS Microb.
Lett., 102, 33–43, https://doi.org/10.1111/j.1574-6968.1992.tb05793.x,
1992.
Hayward, B. W., Holzmann, M., Pawlowski, J., Parker, J. H., Kaushik, T.,
Toyofuku, M. S., and Tsuchiya, M.: Molecular and morphological taxonomy of
living Ammonia and related taxa (Foraminifera) and their biogeography, Micropaleontology,
67, 109–274, https://doi.org/10.47894/mpal.67.3.01, 2021.
Heinz, P. and Geslin, E.: Ecological and Biological Response of Benthic
Foraminifera Under Oxygen-Depleted Conditions: Evidence from Laboratory
Approaches, in: Anoxia, vol. 21, edited by: Altenbach, A. V., Bernhard, J.
M., and Seckbach, J., Springer Netherlands, Dordrecht, 287–303,
https://doi.org/10.1007/978-94-007-1896-8_ 15, 2012.
Hemleben, C. and Kitazato, H.: Deep-sea foraminifera under long time
observation in the laboratory, Deep-Sea Res. Pt. I, 42, 827–832, https://doi.org/10.1016/0967-0637(95)00024-Z,
1995.
Hess, S. and Jorissen, F. J.: Distribution patterns of living benthic
foraminifera from Cap Breton canyon, Bay of Biscay: Faunal response to
sediment instability, Deep-Sea Res. Pt. I, 56, 1555–1578, https://doi.org/10.1016/j.dsr.2009.04.003, 2009.
Hess, S., Alve, E., Trannum, H. C., and Norling, K.: Benthic foraminiferal
responses to water-based drill cuttings and natural sediment burial: Results
from a mesocosm experiment, Mar. Micropaleontol., 101, 1–9,
https://doi.org/10.1016/j.marmicro.2013.03.004, 2013.
Hir, P. L., Ficht, A., Jacinto, R. S., Lesueur, P., Dupont, J.-P., Lafite,
R., Brenon, I., Thouvenin, B., and Cugier, P.: Fine Sediment Transport and
Accumulations at the Mouth of the Seine Estuary (France), Estuaries, 24,
950, https://doi.org/10.2307/1353009, 2001.
Hodson, A., Gurnell, A., Tranter, M., Bogen, J., Hagen, J. O., and Clark,
M.: Suspended sediment yield and transfer processes in a small High-Arctic
glacier basin, Svalbard, Hydrol. Process., 12, 73–86,
https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<
73::AID-HYP564>3.0.CO;2-S, 1998.
Holzmann, M. and Pawlowski, J.: Taxonomic relationships in the genus Ammonia
(Foraminifera) based on ribosomal DNA sequences, J.
Micropaleontol., 19, 11, https://doi.org/10.1144/jm.19.1.85, 2000.
Jalón-Rojas, I., Schmidt, S., and Sottolichio, A.: Turbidity in the fluvial Gironde Estuary (southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions, Hydrol. Earth Syst. Sci., 19, 2805–2819, https://doi.org/10.5194/hess-19-2805-2015, 2015.
Jauffrais, T., Jesus, B., Metzger, E., Mouget, J.-L., Jorissen, F., and Geslin, E.: Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida), Biogeosciences, 13, 2715–2726, https://doi.org/10.5194/bg-13-2715-2016, 2016a.
Jauffrais, T., Jesus, B., Geslin, E., Briand, F., and Jézéquel, V.
M.: Locomotion speed of the benthic foraminifer Ammonia tepida exposed to
different nitrogen and carbon sources, J. Sea Res., 118, 52–58,
https://doi.org/10.1016/j.seares.2016.07.001, 2016b.
Jørgensen, B. B.: The sulfur cycle of a coastal marine sediment
(Limfjorden, Denmark)1: Sulfur cycle of marine sediment, Limnol. Oceanogr.,
22, 814–832, https://doi.org/10.4319/lo.1977.22.5.0814, 1977.
Jorissen, F. J.: Benthic foraminiferal microhabitats below the
sediment-water interface, in: Modern Foraminifera, Springer Netherlands,
Dordrecht, 161–179, https://doi.org/10.1007/0-306-48104-9_
10, 1999.
Jorissen, F. J., Barmawidjaja, D. M., Puskaric, S., and van der Zwaan, G.
J.: Vertical distribution of benthic foraminifera in the northern Adriatic
Sea: The relation with the organic flux, Mar. Micropaleontol., 19,
131–146, https://doi.org/10.1016/0377-8398(92)90025-F, 1992.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V.: A conceptual
model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, https://doi.org/10.1016/0377-8398(95)00047-X,
1995.
Jorissen, F. J., Fouet, M. P. A., Singer, D., and Howa, H.: The Marine
Influence Index (MII): a tool to assess estuarine intertidal mudflat
environments for the purpose of foraminiferal biomonitoring, Water, 14, 676,
https://doi.org/10.3390/w14040676, 2022.
Khare, N. and Nigam, R.: Laboratory experiment to record rate of movement of
cultured benthic foraminifera, ONGC Bull., 37, 53–61, 2000.
Kitazato, H.: Locomotion of some benthic foraminifera in and on sediments,
J. Foramin. Res., 18, 344–349,
https://doi.org/10.2113/gsjfr.18.4.344, 1988.
Koho, K. A., de Nooijer, L. J., and Reichart, G. J.: Combining benthic
foraminiferal ecology and shell to deconvolve past bottom water
oxygenation and paleoproductivity, Geochim. Cosmochim. Ac., 165,
294–306, https://doi.org/10.1016/j.gca.2015.06.003, 2015.
Koho, K. A., LeKieffre, C., Nomaki, H., Salonen, I., Geslin, E., Mabilleau,
G., Søgaard Jensen, L. H., and Reichart, G.-J.: Changes in
ultrastructural features of the foraminifera Ammonia spp. in response to
anoxic conditions: Field and laboratory observations, Mar.
Micropaleont., 138, 72–82,
https://doi.org/10.1016/j.marmicro.2017.10.011, 2018.
Kristensen, E. and Blackburn, T. H.: The fate of organic carbon and nitrogen
in experimental marine sediment systems: Influence of bioturbation and
anoxia, J. Mar. Res., 45, 231–257, https://doi.org/10.1357/002224087788400927,
1987.
Kuhnle, R. A., Bingner, R. L., Foster, G. R., and Grissinger, E. H.: Effect
of land use changes on sediment transport in Goodwin Creek, Water Resour.
Res., 32, 3189–3196, https://doi.org/10.1029/96WR02104, 1996.
Langezaal, A. M., Jorissen, F. J., Braun, B., Chaillou, G., Fontanier, C.,
Anschutz, P., and van der Zwaan, G. J.: The influence of seasonal processes
on geochemical profiles and foraminiferal assemblages on the outer shelf of
the Bay of Biscay, Cont. Shelf Res., 26, 1730–1755,
https://doi.org/10.1016/j.csr.2006.05.005, 2006.
Langlet, D.: Motion behavior and metabolic response to microplastic
leachates in the benthic foraminifera Haynesina germanica, J.
Exp. Mar. Biol. Ecol., 6, 151395, https://doi.org/10.1016/j.jembe.2020.151395, 2020.
Laut, L., da Matta, G.,
Camara, G., Belart, P., Clemente, I., Ballalai, J., Volino, E., and Couto,
E. C. G.: Living and dead foraminifera assemblages as environmental
indicators in the Almada River Estuary, Ilhéus, northeastern Brazil,
J. South Am. Earth Sci., 105, 102883,
https://doi.org/10.1016/j.jsames.2020.102883, 2021.
Larson, F. and Sundbäck, K.: Recovery of microphytobenthos and benthic
functions after sediment deposition, Mar. Ecol. Prog. Ser., 446, 31–44,
https://doi.org/10.3354/meps09488, 2012.
Le Cadre, V. and Debenay, J.-P.: Morphological and cytological responses of
Ammonia (foraminifera) to copper contamination: Implication for the use of
foraminifera as bioindicators of pollution, Environ. Pollut., 143,
304–317, https://doi.org/10.1016/j.envpol.2005.11.033, 2006.
Lee, J. J., McEnery, M. E., Kuile, B. T., Erez, J., Röttger, R.,
Rockwell, R. F., Faber, W. W., Lagziel, A., and Rottger, R.: Identification
and Distribution of Endosymbiotic Diatoms in Larger Foraminifera,
Micropaleontology, 35, 353, https://doi.org/10.2307/1485677, 1989.
Lehto, N. J., Larsen, M., Zhang, H., Glud, R. N., and Davison, W.: A
mesocosm study of oxygen and trace metal dynamics in sediment microniches of
reactive organic material, Sci. Rep., 7, 11369,
https://doi.org/10.1038/s41598-017-10179-3, 2017.
LeKieffre, C., Spangenberg, J. E., Mabilleau, G., Escrig, S., Meibom, A.,
and Geslin, E.: Surviving anoxia in marine sediments: The metabolic response
of ubiquitous benthic foraminifera (Ammonia tepida), PLoS ONE, 12, e0177604,
https://doi.org/10.1371/journal.pone.0177604, 2017.
LeKieffre, C., Bernhard, J. M., Mabilleau, G., Filipsson, H. L., Meibom, A.,
and Geslin, E.: An overview of cellular ultrastructure in benthic
foraminifera: New observations of rotalid species in the context of existing
literature, Mar. Micropaleont., 138, 12–32,
https://doi.org/10.1016/j.marmicro.2017.10.005, 2018a.
LeKieffre, C., Jauffrais, T., Geslin, E., Jesus, B., Bernhard, J. M.,
Giovani, M.-E., and Meibom, A.: Inorganic carbon and nitrogen assimilation
in cellular compartments of a benthic kleptoplastic foraminifer, Sci. Rep., 8,
10140, https://doi.org/10.1038/s41598-018-28455-1, 2018b.
Maire, O., Barras, C., Gestin, T., Nardelli, M., Romero-Ramirez, A.,
Duchêne, J., and Geslin, E.: How does macrofaunal bioturbation influence
the vertical distribution of living benthic foraminifera?, Mar. Ecol. Prog.
Ser., 561, 83–97, https://doi.org/10.3354/meps11929, 2016.
Martins, V. A.,
Frontalini, F., Tramonte, K. M., Figueira, R. C. L., Miranda, P., Sequeira,
C., Fernández-Fernández, S., Dias, J. A., Yamashita, C., Renó,
R., Laut, L. L. M., Silva, F. S., Rodrigues, M. A. C., Bernardes, C.,
Nagai, R., Sousa, S. H. M., Mahiques, M., Rubio, B., Bernabeu, A., Rey, D.,
and Rocha, F.: Assessment of the health quality of Ria de Aveiro (Portugal):
Heavy metals and benthic foraminifera, Mar. Pollut. Bull., 70,
18–33, https://doi.org/10.1016/j.marpolbul.2013.02.003, 2013.
Martins, M. V. A., Silva, F., Laut, L. L. M., Frontalini, F., Clemente, I. M. M. M.,
Miranda, P., Figueira, R., Sousa, S. H. M., and Dias, J. M. A.: Response of
Benthic Foraminifera to Organic Matter Quantity and Quality and Bioavailable
Concentrations of Metals in Aveiro Lagoon (Portugal), PLoS ONE, 10,
e0118077, https://doi.org/10.1371/journal.pone.0118077, 2015.
Martins, M. V. A., Pinto, A. F. S., Frontalini, F., da Fonseca, M. C. M.,
Terroso, D. L., Laut, L. L. M., Zaaboub, N., da Conceição Rodrigues,
M. A., and Rocha, F.: Can benthic foraminifera be used as bio-indicators of
pollution in areas with a wide range of physicochemical variability?,
Estuarine, Coast. Shelf Sci., 182, 211–225,
https://doi.org/10.1016/j.ecss.2016.10.011, 2016.
Mathers, K. L., Doretto, A., Fenoglio, S., Hill, M. J., and Wood, P. J.:
Temporal effects of fine sediment deposition on benthic macroinvertebrate
community structure, function and biodiversity likely reflects landscape
setting, Sci. Total Environ., 829, 154612,
https://doi.org/10.1016/j.scitotenv.2022.154612, 2022.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.: Vertical distributions
and stable isotopic compositions of live (stained) benthic foraminifera from
the North Carolina and California continental margins, Deep-Sea Res. Pt. I, 44, 983–1024,
https://doi.org/10.1016/S0967-0637(97)00004-6, 1997.
Meslard, F., Bourrin, F., Many, G., and Kerhervé, P.: Suspended particle
dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard), Estuar. Coast. Shelf Sci., 204, 212–224,
https://doi.org/10.1016/j.ecss.2018.02.020, 2018.
Mestdagh, S., Bagaço, L., Braeckman, U., Ysebaert, T., De Smet, B., Moens, T., and Van Colen, C.: Functional trait responses to sediment deposition reduce macrofauna-mediated ecosystem functioning in an estuarine mudflat, Biogeosciences, 15, 2587–2599, https://doi.org/10.5194/bg-15-2587-2018, 2018.
Metzger, E., Barbe, A., Cesbron, F., Thibault de Chanvalon, A., Jauffrais,
T., Jézéquel, D., and Mouret, A.: Two-dimensional ammonium
distribution in sediment pore waters using a new colorimetric diffusive
equilibration in thin-film technique, Water Res., 2, 100023,
https://doi.org/10.1016/j.wroa.2018.100023, 2019.
Mojtahid, M., Griveaud, C., Fontanier, C., Anschutz, P., and Jorissen, F.
J.: Live benthic foraminiferal faunas along a bathymetrical transect
(140–4800 m) in the Bay of Biscay (NE Atlantic), Rev. Micropaléontol., 53, 139–162,
https://doi.org/10.1016/j.revmic.2010.01.002, 2010.
Mojtahid, M., Jorissen, F., Durrieu, J., Galgani, F., Howa, H., Redois, F.,
and Camps, R.: Benthic foraminifera as bio-indicators of drill cutting
disposal in tropical east Atlantic outer shelf environments, Mar.
Micropaleontol., 61, 58–75,
https://doi.org/10.1016/j.marmicro.2006.05.004, 2006
Mojtahid, M., Zubkov, M. V., Hartmann, M., and Gooday, A. J.: Grazing of
intertidal benthic foraminifera on bacteria: Assessment using pulse-chase
radiotracing, J. Exp. Mar. Biol. Ecol., 399,
25–34, https://doi.org/10.1016/j.jembe.2011.01.011, 2011.
Morvan, J., Debenay, J.-P., Jorissen, F., Redois, F., Bénéteau, E.,
Delplancke, M., and Amato, A.-S.: Patchiness and life cycle of intertidal
foraminifera: Implication for environmental and paleoenvironmental
interpretation, Mar. Micropaleont., 61, 131–154,
https://doi.org/10.1016/j.marmicro.2006.05.009, 2006.
Murray, J. W.: Ecology and Applications of Benthic Foraminifera, xi 426 pp. Cambridge, New York, Melbourne: Cambridge University Press, ISBN 9780 521 82839 0, Geological Magazine, 145, 600–601, https://doi.org/10.1017/S0016756808004676, 2006.
Murray, J. W. and Alve, E.: Major aspects of foraminiferal variability
(standing crop and biomass) on a monthly scale in an intertidal zone,
J. Foramin. Res., 30, 177–191,
https://doi.org/10.2113/0300177, 2000.
Nardelli, M. P., Barras, C., Metzger, E., Mouret, A., Filipsson, H. L., Jorissen, F., and Geslin, E.: Experimental evidence for foraminiferal calcification under anoxia, Biogeosciences, 11, 4029–4038, https://doi.org/10.5194/bg-11-4029-2014, 2014.
Nesbitt, E. A., Martin, R. A.,
Martin, D. E., and Apple, J.: Rapid deterioration of sediment surface
habitats in Bellingham Bay, Washington State, as indicated by benthic
foraminifera, Mar. Pollut. Bull., 97, 273–284,
https://doi.org/10.1016/j.marpolbul.2015.06.006, 2015.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote
calcification by elevating their intracellular pH, P. Natl. Acad. Sci. USA, 106, 15374–15378, https://doi.org/10.1073/pnas.0904306106, 2009.
Norkko, A., Rosenberg, R., Thrush, S. F., and Whitlatch, R. B.: Scale- and
intensity-dependent disturbance determines the magnitude of opportunistic
response, J. Exp. Mar. Biol. Ecol., 330, 195–207,
https://doi.org/10.1016/j.jembe.2005.12.027, 2006.
Papaspyrou, S., Diz, P., García-Robledo, E., Corzo, A., and
Jimenez-Arias, J.: Benthic foraminiferal community changes and their
relationship to environmental dynamics in intertidal muddy sediments (Bay of
Cádiz, SW Spain), Mar. Ecol. Prog. Ser., 490, 121–135,
https://doi.org/10.3354/meps10447, 2013.
Pascal, P.-Y., Dupuy, C., Richard, P., Mallet, C., telet, E. A. du C., and
Niquilb, N.: Seasonal variation in consumption of benthic bacteria by meio-
and macrofauna in an intertidal mudflat, Limnol. Oceanogr., 54, 1048–1059,
https://doi.org/10.4319/lo.2009.54.4.1048, 2009.
Pillet, L., de Vargas, C., and Pawlowski, J.: Molecular identification of
sequestered diatom chloroplasts and kleptoplastidy in foraminifera, Protist,
162, 394–404, https://doi.org/10.1016/j.protis.2010.10.001, 2011.
Porter, E. T., Owens, M. S., and Cornwell, J. C.: Effect of Sediment
Manipulation on the Biogeochemistry of Experimental Sediment Systems,
J. Coast. Res., 226, 1539–1551,
https://doi.org/10.2112/05-0478, 2006.
Pucci, F., Geslin, E., Barras, C., Morigi, C., Sabbatini, A., Negri, A.,
and Jorissen, F. J.: Survival of benthic foraminifera under hypoxic conditions:
Results of an experimental study using the CellTracker Green method, Mar.
Pollut. Bull., 59, 336–351,
https://doi.org/10.1016/j.marpolbul.2009.08.015, 2009.
Revsbech, N. P.: An oxygen microsensor with a guard cathode, Limnol.
Oceanogr., 34, 474–478, https://doi.org/10.4319/lo.1989.34.2.0474, 1989.
Richirt, J., Riedel, B., Mouret, A., Schweizer, M., Langlet, D., Seitaj, D., Meysman, F. J. R., Slomp, C. P., and Jorissen, F. J.: Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands), Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, 2020.
Ross, B. J. and Hallock, P.: Challenges in using CellTracker Green on
foraminifers that host algal endosymbionts, Peer J, 6, e5304,
https://doi.org/10.7717/peerj.5304, 2018.
Sánchez-Bayo, F. and Wyckhuys, K. A. G.: Worldwide decline of the
entomofauna: A review of its drivers, Biol. Conserv., 232, 8–27,
https://doi.org/10.1016/j.biocon.2019.01.020, 2019.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ:
25 years of image analysis, Nat. Methods, 9, 671–675,
https://doi.org/10.1038/nmeth.2089, 2012.
Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., and
Spezzaferri, S.: The FOBIMO (FOraminiferal BIo-MOnitoring)
initiative – Towards a standardised protocol for soft-bottom benthic
foraminiferal monitoring studies, Mar. Micropaleontol., 94, 1–13,
https://doi.org/10.1016/j.marmicro.2012.06.001, 2012.
Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E., and Gooday, A.
J.: Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen
minimum zone of the Pakistan continental margin (Arabian Sea), Mar. Micropaleontol., 62, 45–73,
https://doi.org/10.1016/j.marmicro.2006.07.004, 2007.
Seuront, L. and Bouchet, V. M. P.: The devil lies in details: new insights
into the behavioural ecology of intertidal foraminifera, J. Foramin. Res., 45, 390–401,
https://doi.org/10.2113/gsjfr.45.4.390, 2015.
Severin, K. P. and Erskian, M. G.: Laboratory experiments on the vertical
movement of Quinqueloculina impressa Reuss through sand, J. Foramin. Res., 11, 133–136,
https://doi.org/10.2113/gsjfr.11.2.133, 1981.
Silverberg, N., Gagnon, J.-M., and Lee, K.: A benthic mesocosm facility for
maintaining soft-bottom sediments, Neth. J. Sea Res., 34,
289–302, https://doi.org/10.1016/0077-7579(95)90039-X, 1995.
Stouff, V., Geslin, E., Debenay, J.-P., and Lesourd, M.: Origin of
morphological abnormalities in Ammonia (foraminifera): studies in laboratory
and natural environments, J. Foramin. Res., 29,
152–170, https://doi.org/10.2113/gsjfr.29.2.152, 1999.
Suokhrie, T., Saraswat, R., and Nigam, R.: Foraminifera as Bio-Indicators of
pollution: A review of research over the last decade, Adv.
Micropaleontol., 267–286, 2017.
Thibault de Chanvalon, A., Metzger, E., Mouret, A., Cesbron, F., Knoery, J.,
Rozuel, E., Launeau, P., Nardelli, M. P., Jorissen, F. J., and Geslin, E.:
Two-dimensional distribution of living benthic foraminifera in anoxic
sediment layers of an estuarine mudflat (Loire estuary, France),
Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015,
2015.
Thrush, S. F., Gray, J. S., Hewitt, J. E., and Ugland, K. I.: Predicting the
effects of habitat homogenization on marine biodiversity, Ecol.
Appl., 16, 1636–1642,
https://doi.org/10.1890/1051-0761(2006)016[1636:PTEOHH]2.0.CO;2, 2006.
Tsujimoto, A., Nomura, R., Arai, K., Nomaki, H., Inoue, M., and Fujikura,
K.: Changes in deep-sea benthic foraminiferal fauna caused by turbidites
deposited after the 2011 Tohoku-oki earthquake, Mar. Geol., 419, 106045,
https://doi.org/10.1016/j.margeo.2019.106045, 2020.
Van der Zwaan, G. J., Duijnstee, I. A. P., den Dulk, M., Ernst, S. R.,
Jannink, N. T., and Kouwenhoven, T. J.: Benthic foraminifers: proxies or
problems?, Earth-Sci. Rev., 46, 213–236,
https://doi.org/10.1016/S0012-8252(99)00011-2, 1999.
Whomersley, P., Huxham, M., Schratzberger, M., and Bolam, S.: Differential
response of meio- and macrofauna to in situ burial, J. Mar. Biol. Assoc. UK, 89, 1091–1098,
https://doi.org/10.1017/S0025315409000344, 2009.
Widerlund, A., Nowell, G. M., Davison, W., and Pearson, D. G.:
High-resolution measurements of sulphur isotope variations in sediment
pore-waters by laser ablation multicollector inductively coupled plasma mass
spectrometry, Chem. Geol., 291, 278–285,
https://doi.org/10.1016/j.chemgeo.2011.10.018, 2012.
Włodarska-Kowalczuk, M., Pearson, T., and Kendall, M.: Benthic response to
chronic natural physical disturbance by glacial sedimentation in an Arctic
fjord, Mar. Ecol. Prog. Ser., 303, 31–41,
https://doi.org/10.3354/meps303031, 2005.
Włodarska-Kowalczuk, M., Pawłowska, J., and Zajączkowski, M.: Do
foraminifera mirror diversity and distribution patterns of macrobenthic
fauna in an Arctic glacial fjord?, Mar. Micropaleontol., 103, 30–39,
https://doi.org/10.1016/j.marmicro.2013.07.002, 2013.
Wolanski, E. and Gibbs, R.: Resuspension and clearing of dredge spoils after
dredging, Cleveland Bay, Australia, Water Environ. Res., 64,
910–914, https://doi.org/10.2175/WER.64.7.9, 1992.
Wood, P. J.: Biological effects of fine sediment in the lotic environment,
Environ. Manage., 21, 203–217,
https://doi.org/10.1007/s002679900019, 1997.
Wukovits, J., Oberrauch, M., Enge, A. J., and Heinz, P.: The distinct roles of two intertidal foraminiferal species in phytodetrital carbon and nitrogen fluxes – results from laboratory feeding experiments, Biogeosciences, 15, 6185–6198, https://doi.org/10.5194/bg-15-6185-2018, 2018.
Wukovits, J.,
Enge, A., Bukenberger, P., Wanek, W., Watzka, M., and Heinz, P.:
Phytodetrital quality (C:N ratio) and temperature changes affect C and N
cycling of the intertidal mixotrophic foraminifer Haynesina germanica,
Aquat. Biol., 30, 119–132, https://doi.org/10.3354/ab00746, 2021.
Short summary
Coastal seas experience sediment discharges whose intensity and frequency can strongly be affected by human activities and climate change. We analysed the response of benthic species in an experimental set-up. After the burial under a single thick layer of sediment or multiple thin layers at different times, the analysed species migrate rapidly towards the surface. A stronger effect of a single thick deposit on standing stocks and biodiversity is visible compared to frequent low-sediment inputs.
Coastal seas experience sediment discharges whose intensity and frequency can strongly be...
Altmetrics
Final-revised paper
Preprint