Articles | Volume 20, issue 24
https://doi.org/10.5194/bg-20-5229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-5229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Joséphine Hazera
CORRESPONDING AUTHOR
Earth Sciences and Environmental Technologies Division, IFP Energies Nouvelles, 1–4 avenue du Bois Préau, 92852 Rueil-Malmaison, France
Eco&Sols, University of Montpellier, CIRAD, Institut Agro Montpellier, INRAE, IRD, Montpellier, France
David Sebag
Earth Sciences and Environmental Technologies Division, IFP Energies Nouvelles, 1–4 avenue du Bois Préau, 92852 Rueil-Malmaison, France
Isabelle Kowalewski
Earth Sciences and Environmental Technologies Division, IFP Energies Nouvelles, 1–4 avenue du Bois Préau, 92852 Rueil-Malmaison, France
Eric Verrecchia
Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
Herman Ravelojaona
Earth Sciences and Environmental Technologies Division, IFP Energies Nouvelles, 1–4 avenue du Bois Préau, 92852 Rueil-Malmaison, France
Tiphaine Chevallier
CORRESPONDING AUTHOR
Eco&Sols, University of Montpellier, CIRAD, Institut Agro Montpellier, INRAE, IRD, Montpellier, France
Related authors
No articles found.
Camille Rieder, Eric P. Verrecchia, Saskia Bindschedler, Guillaume Cailleau, Aviram Rozin, Munisamy Anbarashan, Shubhendu Dasgupta, Thomas Junier, Nicolas Roeschli, Pascal Vittoz, and Mike C. Rowley
EGUsphere, https://doi.org/10.5194/egusphere-2025-3388, https://doi.org/10.5194/egusphere-2025-3388, 2025
Short summary
Short summary
The oxalate-carbonate pathway, where trees and microbes store inorganic carbon as minerals was studied on four tree species of the threatened tropical dry evergreen forest Indian forest. We used high-throughput sequencing of a gene to detect oxalate-degrading microbes. For all tree species, produced oxalate led to carbonate formation in soils and on wood. This carbon may be leached into water, suggesting a hidden source of inorganic carbon with implications for climate and conservation.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Cited articles
Apesteguia, M., Plante, A. F., and Virto, I.: Methods assessment for organic and inorganic carbon quantification in calcareous soils of the Mediterranean region, Geoderma Regional, 12, 39–48, https://doi.org/10.1016/j.geodrs.2017.12.001, 2018.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 47, 151–163, https://doi.org/10.1111/j.1365-2389.1996.tb01386.x, 1996.
Baudin, F., Ammouial, J., Barré, P., Behar, F., Benoit, Y., Bouton, N., Cécillon, L., Copard, Y., Espitalié, J., Kanari, E., Lamoureux-Var, V., Romero-Sarmiento, M.-F., and Wattripont, A.: La méthode Rock-Eval principes et applications, IFPEN, Rueil-Malmaison, 315 pp., ISBN 978-1-394-25622-8, 2022.
Baudin, F., Disnar, J.-R., Aboussou, A., and Savignac, F.: Guidelines for Rock–Eval analysis of recent marine sediments, Org. Geochem., 86, 71–80, https://doi.org/10.1016/j.orggeochem.2015.06.009, 2015.
Behar, F., Beaumont, V., and B. Penteado, H. L. de: Rock-Eval 6 Technology: Performances and Developments, Oil Gas Sci. Technol., 56, 111–134, https://doi.org/10.2516/ogst:2001013, 2001.
Bertrand, I., Delfosse, O., and Mary, B.: Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects, Soil Biol. Biochem., 39, 276–288, https://doi.org/10.1016/j.soilbio.2006.07.016, 2007.
Bispo, A., Andersen, L., Angers, D. A., Bernoux, M., Brossard, M., Cécillon, L., Comans, R. N. J., Harmsen, J., Jonassen, K., Lamé, F., Lhuillery, C., Maly, S., Martin, E., Mcelnea, A. E., Sakai, H., Watabe, Y., and Eglin, T. K.: Accounting for Carbon Stocks in Soils and Measuring GHGs Emission Fluxes from Soils: Do We Have the Necessary Standards?, Front. Environ. Sci., 5, 41, https://doi.org/10.3389/fenvs.2017.00041, 2017.
Bisutti, I., Hilke, I., Schumacher, J., and Raessler, M.: A novel single-run dual temperature combustion (SRDTC) method for the determination of organic, in-organic and total carbon in soil samples, Talanta, 71, 521–528, https://doi.org/10.1016/j.talanta.2006.04.022, 2007.
Bughio, M. A., Wang, P., Meng, F., Qing, C., Kuzyakov, Y., Wang, X., and Junejo, S. A.: Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil, Geoderma, 262, 12–19, https://doi.org/10.1016/j.geoderma.2015.08.003, 2016.
Cailleau, G., Braissant, O., and Verrecchia, E. P.: Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem, Biogeosciences, 8, 1755–1767, https://doi.org/10.5194/bg-8-1755-2011, 2011.
Cardinael, R., Chevallier, T., Barthès, B. G., Saby, N. P., Parent, T., Dupraz, C., Bernoux, M., and Chenu, C.: Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon – A case study in a Mediterranean context, Geoderma, 259–260, 288–299, https://doi.org/10.1016/j.geoderma.2015.06.015, 2015.
Cardinael, R., Chevallier, T., Guenet, B., Girardin, C., Cozzi, T., Pouteau, V., and Chenu, C.: Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system, Eur. J. Soil Sci., 71, 909–923, https://doi.org/10.1111/ejss.12908, 2019.
Cécillon, L., Baudin, F., Chenu, C., Christensen, B. T., Franko, U., Houot, S., Kanari, E., Kätterer, T., Merbach, I., van Oort, F., Poeplau, C., Quezada, J. C., Savignac, F., Soucémarianadin, L. N., and Barré, P.: Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU), Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, 2021.
Chatterjee, A., Lal, R., Wielopolski, L., Martin, M. Z., and Ebinger, M. H.: Evaluation of Different Soil Carbon Determination Methods, CRC Cr. Rev. Plant Sci., 28, 164–178, https://doi.org/10.1080/07352680902776556, 2009.
Chen, Y. and Barak, P.: Iron Nutrition of Plants in Calcareous Soils, Adv. Agr., 35, 217–240, https://doi.org/10.1016/S0065-2113(08)60326-0, 1982.
Chevallier, T., Cournac, L., Hamdi, S., Gallali, T., and Bernoux, M.: Temperature dependence of CO2 emissions rates and isotopic signature from a calcareous soil, J. Arid Environ., 135, 132–139, https://doi.org/10.1016/j.jaridenv.2016.08.002, 2016.
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C., and Sebag, D.: Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations, Org. Geochem., 34, 327–343, https://doi.org/10.1016/S0146-6380(02)00239-5, 2003.
Espitalié, J., Deroo, G., and Marquis, F.: La pyrolyse rock-Eval et ses applications, Oil Gas Sci. Technol., 40, 563–579, 1985.
Gao, Y., Tian, J., Pang, Y., and Liu, J.: Soil Inorganic Carbon Sequestration Following Afforestation Is Probably Induced by Pedogenic Carbonate Formation in Northwest China, Front. Plant Sci., 8, 1282, https://doi.org/10.3389/fpls.2017.01282, 2017.
Harris, D., Horwath, W. R., and van Kessel, C.: Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis, Soil Soc. Am. J., 65, 1853–1856, https://doi.org/10.2136/sssaj2001.1853, 2001.
ISO: Détermination de la teneur en carbonate – Méthode volumétrique, https://www.iso.org/fr/standard/18781.html (last access: 27 October 2022), 1995a.
ISO: Dosage du carbone organique et du carbone total après combustion sèche (analyse élémentaire), https://www.iso.org/obp/ui/#iso:std:iso:10694:ed-1:v1:fr (last access: 11 June 2022), 1995b.
ISO: Dosage du carbone organique par oxydation sulfochromique, https://www.iso.org/fr/standard/23140.html (last access: 27 October 2022), 1998.
IUSS Working group WRB: World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports, FAO, No. 106, ISBN 978-92-5-130380-1, 2015.
Lafargue, E., Marquis, F., and Pillot, D.: Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies, Oil Gas Sci. Technol., 53, 421–437, https://doi.org/10.2516/ogst:1998036, 1998.
Lever, T., Haines, P., Rouquerol, J., Charsley, E. L., van Eckeren, P., and Burlett, D. J.: ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014), Pure Appl. Chem., 86, 545–553, https://doi.org/10.1515/pac-2012-0609, 2014.
Malou, O. P., Sebag, D., Moulin, P., Chevallier, T., Badiane-Ndour, N. Y., Thiam, A., and Chapuis-Lardy, L.: The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter?, Agr. Ecosyst. Environ., 301, 107030, https://doi.org/10.1016/j.agee.2020.107030, 2020.
Martin, J., de Grammont, P., Covington, M., and Toran, L.: A New Focus on the Neglected Carbonate Critical Zone, EOS, 102, https://doi.org/10.1029/2021EO163388, 2021.
Nayak, A. K., Rahman, M. M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., Tripathi, R., Shahid, M., Islam, M. R., and Pathak, H.: Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review, Sci. Total Environ., 665, 890–912, https://doi.org/10.1016/j.scitotenv.2019.02.125, 2019.
Pillot, D., Deville, E., and Prinzhofer, A.: Identification and Quantification of Carbonate Species Using Rock-Eval Pyrolysis, Oil Gas Sci. Technol., 69, 341–349, https://doi.org/10.2516/ogst/2012036, 2014.
Plante, A. F., Fernández, J. M., and Leifeld, J.: Application of thermal analysis techniques in soil science, Geoderma, 153, 1–10, https://doi.org/10.1016/j.geoderma.2009.08.016, 2009.
Plaza, C., Zaccone, C., Sawicka, K., Méndez, A. M., Tarquis, A., Gascó, G., Heuvelink, G. B. M., Schuur, E. A. G., and Maestre, F. T.: Soil resources and element stocks in drylands to face global issues, Sci. Rep., 8, 13788, https://doi.org/10.1038/s41598-018-32229-0, 2018.
R Core Team: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, R-project.org [code], https://www.R-project.org/, 2023.
Rowley, M., Grand, S., and Verrecchia, É.: Calcium-mediated stabilisation of soil organic carbon, Biogeochemistry, 137, 27–49, https://doi.org/10.1007/s10533-017-0410-1, 2018.
Saenger, A., Cécillon, L., Sebag, D., and Brun, J.-J.: Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: A Rock–Eval pyrolysis survey, Org. Geochem., 54, 101–114, https://doi.org/10.1016/j.orggeochem.2012.10.008, 2013.
Schlacher, T. A. and Connolly, R. M.: Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: a review and synthesis, Methods Ecol. Evol., 5, 541–550, https://doi.org/10.1111/2041-210X.12183, 2014.
Sebag, D., Verrecchia, E. P., Cécillon, L., Adatte, T., Albrecht, R., Aubert, M., Bureau, F., Cailleau, G., Copard, Y., Decaens, T., Disnar, J.-R., Hetényi, M., Nyilas, T., and Trombino, L.: Dynamics of soil organic matter based on new Rock-Eval indices, Geoderma, 284, 185–203, https://doi.org/10.1016/j.geoderma.2016.08.025, 2016.
Sebag, D., Lamoureux-Var, V., Kowalewski, I., Pillot, D., and Ravelojoana, H.: Procédé pour la quantification et la caractérisation du carbone dans les sols, IFP Energies Nouvelles, Patent no. FR3121224B1, 2022a.
Sebag, D., Lamoureux-Var, V., Kowalewski, I., Ravelojoana, H., and Lefrançois, N. (Eds.): Improved quantification of SOC and SIC in Rock-Eval® thermal analysis, https://doi.org/10.13140/RG.2.2.27606.52800, 2022b.
Shabtai, I., Wilhelm, R., Schweizer, S., Hoeschen, C., Buckley, D., and Lehmann, J.: Calcium promotes persistent soil organic matter by altering microbial transformation of plant litter, Nat. Commun., 14, 6609, https://doi.org/10.1038/s41467-023-42291-6, 2023.
Sharififar, A., Minasny, B., Arrouays, D., Boulonne, L., Chevallier, T., van Deventer, P., Field, D. J., Gomez, C., Jang, H.-J., Jeon, S.-H., Koch, J., McBratney, A. B., Malone, B. P., Marchant, B. P., Martin, M. P., Monger, C., Munera-Echeverri, J.-L., Padarian, J., Pfeiffer, M., Richer-de-Forges, A. C., Saby, N. P., Singh, K., Song, X.-D., Zamanian, K., Zhang, G.-L., and van Zijl, G.: Soil inorganic carbon, the other and equally important soil carbon pool: Distribution, controlling factors, and the impact of climate change, Adv. Agron., 178, 165–231, https://doi.org/10.1016/bs.agron.2022.11.005, 2023.
Soucémarianadin, L., Cécillon, L., Chenu, C., Baudin, F., Nicolas, M., Girardin, C., and Barré, P.: Is Rock-Eval 6 thermal analysis a good indicator of soil organic carbon lability? – A method-comparison study in forest soils, Soil Biol. Biochem. 117, 108–116, https://doi.org/10.1016/j.soilbio.2017.10.025, 2018.
Vicca, S., Goll, D. S., Hagens, M., Hartmann, J., Janssens, I. A., Neubeck, A., Peñuelas, J., Poblador, S., Rijnders, J., Sardans, J., Struyf, E., Swoboda, P., van Groenigen, J. W., Vienne, A., and Verbruggen, E.: Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes?, Glob. Change Biol., 28, 711–726, https://doi.org/10.1111/gcb.15993, 2022.
Virto, I., de Soto, I., Antón, R., and Poch, R. M.: Management of carbonate-rich soils and trade-offs with soil inorganic carbon cycling, in: Understanding and fostering soil carbon sequestration, edited by: Rumpel, C., Burleigh Dodds Series in Agricultural Science, Burleigh Dodds Science Publishing, 707–736, https://doi.org/10.19103/AS.2022.0106.22, 2022.
Vuong, X. T., Prietzel, J., and Heitkamp, F.: Measurement of organic and inorganic carbon in dolomite-containing samples, Soil Use Manage., 32, 53–59, https://doi.org/10.1111/sum.12233, 2016.
Wattripont, A., Baudin, F., de Rafelis, M., and Deconinck, J.-F.: Specifications for carbonate content quantification in recent marine sediments using Rock-Eval pyrolysis, J. Anal. Appl. Pyrol., 140, 393–403, https://doi.org/10.1016/j.jaap.2019.04.019, 2019.
Zamanian, K. and Kuzyakov, Y.: Soil inorganic carbon: stocks, functions, losses and their consequences, in: Understanding and fostering soil carbon sequestration, edited by: Rumpel, C., Burleigh Dodds Series in Agricultural Science, Burleigh Dodds Science Publishing, 209–236, https://doi.org/10.19103/AS.2022.0106.07, 2022.
Zamanian, K., Zarebanadkouki, M., and Kuzyakov, Y.: Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment, Glob. Change Biol., 24, 2810–2817, https://doi.org/10.1111/gcb.14148, 2018.
Zamanian, K., Zhou, J., and Kuzyakov, Y.: Soil carbonates: The unaccounted, irrecoverable carbon source, Geoderma, 384, 114817, https://doi.org/10.1016/j.geoderma.2020.114817, 2021.
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil...
Altmetrics
Final-revised paper
Preprint