Articles | Volume 20, issue 5
https://doi.org/10.5194/bg-20-971-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-971-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
John T. Walker
CORRESPONDING AUTHOR
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
Xi Chen
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
now at: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Durham, NC, USA
Zhiyong Wu
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
now at: RTI International, Durham, NC, USA
Donna Schwede
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
retired
Ryan Daly
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
now at: Boulder A.I.R. LLC, Boulder, CO, USA
Aleksandra Djurkovic
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
A. Christopher Oishi
U.S. Department of Agriculture, Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, NC, USA
Eric Edgerton
Atmospheric Research & Analysis, Inc., Cary, NC, USA
Jesse Bash
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
Jennifer Knoepp
U.S. Department of Agriculture, Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, NC, USA
retired
Melissa Puchalski
U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, USA
John Iiames
U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
Chelcy F. Miniat
U.S. Department of Agriculture, Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, NC, USA
now at: U.S. Department of Agriculture, Forest Service, Albuquerque, NM, USA
Related authors
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021, https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Short summary
Human-made reservoirs impact the carbon cycle. In particular, the breakdown of organic matter in reservoir sediments can result in large emissions of greenhouse gases (especially methane) to the atmosphere. This study takes an intensive look at the patterns in greenhouse gas emissions from a single reservoir in Ohio (United States) and the role of water temperature, precipitation, and algal blooms in emissions. We saw a "spring burst" of elevated emissions that challenged our assumptions.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Xi Chen, Mingjie Xie, Michael D. Hays, Eric Edgerton, Donna Schwede, and John T. Walker
Atmos. Chem. Phys., 18, 6829–6846, https://doi.org/10.5194/acp-18-6829-2018, https://doi.org/10.5194/acp-18-6829-2018, 2018
Xi Chen, John T. Walker, and Chris Geron
Atmos. Meas. Tech., 10, 3893–3908, https://doi.org/10.5194/amt-10-3893-2017, https://doi.org/10.5194/amt-10-3893-2017, 2017
Short summary
Short summary
The MARGA instrument is a powerful research tool for investigating atmospheric chemistry and the exchange of gases and particles between the atmosphere and biosphere. Our study examines the operating characteristics of the instrument with a focus on the software used to calculate air concentrations. We show that more accurate measurements may be obtained by calibrating the instrument with a range of standards in addition to the single internal standard used in online concentration calculations.
Ian C. Rumsey and John T. Walker
Atmos. Meas. Tech., 9, 2581–2592, https://doi.org/10.5194/amt-9-2581-2016, https://doi.org/10.5194/amt-9-2581-2016, 2016
Short summary
Short summary
The performance of the MARGA (Monitor of AeRosols and GAses in ambient air) instrument in measuring speciated nitrogen and sulfur fluxes is evaluated for the first time. The results demonstrate that the MARGA instrument can be used to make accurate measurements of speciated nitrogen and sulfur deposition. These measurements are urgently needed to evaluate chemical transport models and develop risk assessments and mitigation strategies to protect ecosystems from nutrient and acidic deposition.
F. Yu, G. Luo, S. C. Pryor, P. R. Pillai, S. H. Lee, J. Ortega, J. J. Schwab, A. G. Hallar, W. R. Leaitch, V. P. Aneja, J. N. Smith, J. T. Walker, O. Hogrefe, and K. L. Demerjian
Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, https://doi.org/10.5194/acp-15-13993-2015, 2015
Short summary
Short summary
The role of low-volatility organics in new particle formation (NPF) in the atmosphere is assessed. An empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics significantly overpredicts NPF in the summer.
Two different schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America.
B. B. Almand-Hunter, J. T. Walker, N. P. Masson, L. Hafford, and M. P. Hannigan
Atmos. Meas. Tech., 8, 267–280, https://doi.org/10.5194/amt-8-267-2015, https://doi.org/10.5194/amt-8-267-2015, 2015
I. C. Rumsey, K. A. Cowen, J. T. Walker, T. J. Kelly, E. A. Hanft, K. Mishoe, C. Rogers, R. Proost, G. M. Beachley, G. Lear, T. Frelink, and R. P. Otjes
Atmos. Chem. Phys., 14, 5639–5658, https://doi.org/10.5194/acp-14-5639-2014, https://doi.org/10.5194/acp-14-5639-2014, 2014
J. O. Bash, E. J. Cooter, R. L. Dennis, J. T. Walker, and J. E. Pleim
Biogeosciences, 10, 1635–1645, https://doi.org/10.5194/bg-10-1635-2013, https://doi.org/10.5194/bg-10-1635-2013, 2013
J. T. Walker, M. R. Jones, J. O. Bash, L. Myles, T. Meyers, D. Schwede, J. Herrick, E. Nemitz, and W. Robarge
Biogeosciences, 10, 981–998, https://doi.org/10.5194/bg-10-981-2013, https://doi.org/10.5194/bg-10-981-2013, 2013
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024, https://doi.org/10.5194/essd-16-4417-2024, 2024
Short summary
Short summary
GHOST (Globally Harmonised Observations in Space and Time) represents one of the biggest collections of harmonised measurements of atmospheric composition at the surface. In total, 7 275 148 646 measurements from 1970 to 2023, from 227 different components, and from 38 reporting networks are compiled, parsed, and standardised. Components processed include gaseous species, total and speciated particulate matter, and aerosol optical properties.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz-Ozdemir, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Iannis Koutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark Shephard, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2226, https://doi.org/10.5194/egusphere-2024-2226, 2024
Short summary
Short summary
The large range of sulphur and nitrogen deposition estimates from air-quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulphur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by droplets, rain, snow, etc., aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, and gas deposition via plant cuticles and soil.
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023, https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary
Short summary
We investigated the impact of societal restriction measures during the COVID-19 pandemic on surface ozone at 41 high-elevation sites worldwide. Negative ozone anomalies were observed for spring and summer 2020 for all of the regions considered. In 2021, negative anomalies continued for Europe and partially for the eastern US, while western US sites showed positive anomalies due to wildfires. IASI satellite data and the Carbon Monitor supported emission reductions as a cause of the anomalies.
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023, https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Short summary
Ammonia (NH3) is a key precursor for fine particulate matter (PM2.5) and a primary form of reactive nitrogen, yet it has sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the US, demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the US, including the NH3 hotspots and urban areas.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Christian Hogrefe, Jesse O. Bash, Jonathan E. Pleim, Donna B. Schwede, Robert C. Gilliam, Kristen M. Foley, K. Wyat Appel, and Rohit Mathur
Atmos. Chem. Phys., 23, 8119–8147, https://doi.org/10.5194/acp-23-8119-2023, https://doi.org/10.5194/acp-23-8119-2023, 2023
Short summary
Short summary
Under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in the widely used CMAQ model. The results illustrate how these tools can provide insights into similarities and differences between the two CMAQ dry deposition options that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys., 23, 5043–5099, https://doi.org/10.5194/acp-23-5043-2023, https://doi.org/10.5194/acp-23-5043-2023, 2023
Short summary
Short summary
Chemical mechanisms describe how emissions from vehicles, vegetation, and other sources are chemically transformed in the atmosphere to secondary products including criteria and hazardous air pollutants. The Community Regional Atmospheric Chemistry Multiphase Mechanism integrates gas-phase radical chemistry with pathways to fine-particle mass. New species were implemented, resulting in a bottom-up representation of organic aerosol, which is required for accurate source attribution of pollutants.
Sarah E. Benish, Jesse O. Bash, Kristen M. Foley, K. Wyat Appel, Christian Hogrefe, Robert Gilliam, and George Pouliot
Atmos. Chem. Phys., 22, 12749–12767, https://doi.org/10.5194/acp-22-12749-2022, https://doi.org/10.5194/acp-22-12749-2022, 2022
Short summary
Short summary
We assess Community Multiscale Air Quality (CMAQ) model simulations of nitrogen and sulfur deposition over US climate regions to evaluate the model ability to reproduce long-term deposition trends and total deposition budgets. A measurement–model fusion technique is found to improve estimates of wet deposition. Emission controls set by the Clean Air Act successfully decreased oxidized nitrogen deposition across the US; we find increasing amounts of reduced nitrogen to the total nitrogen budget.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021, https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Short summary
Human-made reservoirs impact the carbon cycle. In particular, the breakdown of organic matter in reservoir sediments can result in large emissions of greenhouse gases (especially methane) to the atmosphere. This study takes an intensive look at the patterns in greenhouse gas emissions from a single reservoir in Ohio (United States) and the role of water temperature, precipitation, and algal blooms in emissions. We saw a "spring burst" of elevated emissions that challenged our assumptions.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech., 14, 4355–4374, https://doi.org/10.5194/amt-14-4355-2021, https://doi.org/10.5194/amt-14-4355-2021, 2021
Short summary
Short summary
Infrared spectrometry can be applied in routine monitoring of atmospheric particles to give comprehensive characterization of the organic material by bond rather than species. Using this technique, the concentrations of particle organic material were found to decrease 2011–2016 in the southeastern US, driven by a decline in highly aged material, concurrent with declining anthropogenic emissions. However, an increase was observed in the fraction of more moderately aged organic matter.
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021, https://doi.org/10.5194/gmd-14-3407-2021, 2021
Short summary
Short summary
The algorithms for applying air pollution emission rates in the Community Multiscale Air Quality (CMAQ) model have been improved to better support users and developers. The new features accommodate emissions perturbation studies that are typical in atmospheric research and output a wealth of metadata for each model run so assumptions can be verified and documented. The new approach dramatically enhances the transparency and functionality of this critical aspect of atmospheric modeling.
K. Wyat Appel, Jesse O. Bash, Kathleen M. Fahey, Kristen M. Foley, Robert C. Gilliam, Christian Hogrefe, William T. Hutzell, Daiwen Kang, Rohit Mathur, Benjamin N. Murphy, Sergey L. Napelenok, Christopher G. Nolte, Jonathan E. Pleim, George A. Pouliot, Havala O. T. Pye, Limei Ran, Shawn J. Roselle, Golam Sarwar, Donna B. Schwede, Fahim I. Sidi, Tanya L. Spero, and David C. Wong
Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, https://doi.org/10.5194/gmd-14-2867-2021, 2021
Short summary
Short summary
This paper details the scientific updates in the recently released CMAQ version 5.3 (and v5.3.1) and also includes operational and diagnostic evaluations of CMAQv5.3.1 against observations and the previous version of the CMAQ (v5.2.1). This work was done to improve the underlying science in CMAQ. This article is used to inform the CMAQ modeling community of the updates to the modeling system and the expected change in model performance from these updates (versus the previous model version).
Qian Shu, Benjamin Murphy, Jonathan E. Pleim, Donna Schwede, Barron H. Henderson, Havala O.T. Pye, Keith Wyat Appel, Tanvir R. Khan, and Judith A. Perlinger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-129, https://doi.org/10.5194/gmd-2021-129, 2021
Preprint withdrawn
Short summary
Short summary
We have bridged the gap between dry deposition measurement and modeling by rigorous use of box and regional transport models and field measurements, but more efforts are needed. This study highlights that deviation among deposition schemes is most pronounced for small and large particles. This study better links model predictions to available real-world observations and incrementally reduces uncertainties in the magnitude of loss processes important for the lifecycle of air pollutants.
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
Mingjie Xie, Zhenzhen Zhao, Amara L. Holder, Michael D. Hays, Xi Chen, Guofeng Shen, James J. Jetter, Wyatt M. Champion, and Qin'geng Wang
Atmos. Chem. Phys., 20, 14077–14090, https://doi.org/10.5194/acp-20-14077-2020, https://doi.org/10.5194/acp-20-14077-2020, 2020
Short summary
Short summary
This study investigated the composition, structures, and light absorption of N-containing aromatic compounds (NACs) in PM2.5 emitted from burning red oak and charcoal in a variety of cookstoves. The results suggest that the identified NACs might have substantial fractions remaining in the gas phase. In comparison to other sources, cookstove emissions from red oak or charcoal fuels did not exhibit unique NAC structural features but had distinct NAC composition.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Shunliu Zhao, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell, Jaroslav Resler, Huizhong Shen, Armistead G. Russell, Athanasios Nenes, Amanda J. Pappin, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Charles O. Stanier, and Tianfeng Chai
Geosci. Model Dev., 13, 2925–2944, https://doi.org/10.5194/gmd-13-2925-2020, https://doi.org/10.5194/gmd-13-2925-2020, 2020
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Carley D. Fredrickson, Martin Esparza-Sanchez, Charlotte Burki, Matteo Reggente, Stephanie L. Shaw, Eric S. Edgerton, and Ann M. Dillner
Atmos. Meas. Tech., 12, 5391–5415, https://doi.org/10.5194/amt-12-5391-2019, https://doi.org/10.5194/amt-12-5391-2019, 2019
Short summary
Short summary
Organic species are abundant in atmospheric particle-phase (aerosol) pollution and originate from a variety of biogenic and anthropogenic sources. Infrared spectrometry of filter-based atmospheric particle samples can afford a direct measurement of the particulate organic matter concentration and a characterization of its composition. This work discusses recent method improvements and compositions measured in samples from the SouthEastern Aerosol Research and Characterization (SEARCH) network.
Mingjie Xie, Xi Chen, Michael D. Hays, and Amara L. Holder
Atmos. Chem. Phys., 19, 2899–2915, https://doi.org/10.5194/acp-19-2899-2019, https://doi.org/10.5194/acp-19-2899-2019, 2019
Short summary
Short summary
We did a comprehensive work on understanding the composition and structural information of N-containing aromatic compounds (NACs) and their contributions to organic matter and bulk extract absorption of biomass burning (BB) aerosols. Some NACs with methoxy and cyanate groups specific to the BB were identified. The general implication is that the formation of NACs during BB might depend largely on burn conditions and is less impacted by fuel types and/or ambient conditions.
Quazi Z. Rasool, Jesse O. Bash, and Daniel S. Cohan
Geosci. Model Dev., 12, 849–878, https://doi.org/10.5194/gmd-12-849-2019, https://doi.org/10.5194/gmd-12-849-2019, 2019
Short summary
Short summary
Soils have been overlooked as a source of reactive nitrogen (N) emissions that are pronounced in the summer ozone season (growing season) and increasingly important as fertilizer use grows, while fossil fuel combustion sources of N decline. Mechanistic process models of soil N emissions are used in Earth science and soil biogeochemical modeling on a site scale. This work mechanistically models soil N emissions for the first time on a regional scale to better understand their air quality impacts.
Shino Toma, Steve Bertman, Christopher Groff, Fulizi Xiong, Paul B. Shepson, Paul Romer, Kaitlin Duffey, Paul Wooldridge, Ronald Cohen, Karsten Baumann, Eric Edgerton, Abigail R. Koss, Joost de Gouw, Allen Goldstein, Weiwei Hu, and Jose L. Jimenez
Atmos. Chem. Phys., 19, 1867–1880, https://doi.org/10.5194/acp-19-1867-2019, https://doi.org/10.5194/acp-19-1867-2019, 2019
Short summary
Short summary
Acyl peroxy nitrates (APN) were measured near the ground in Alabama using GC in summer 2013 to study biosphere–atmosphere interactions. APN were lower than measured in the SE USA over the past 2 decades. Historical data showed APN in 2013 was limited by NOx and production was dominated by biogenic precursors more than in the past. Isoprene-derived MPAN correlated with isoprene hydroxynitrates as NOx-dependent products. MPAN varied with aerosol growth, but not with N-containing particles.
Yuqiang Zhang, J. Jason West, Rohit Mathur, Jia Xing, Christian Hogrefe, Shawn J. Roselle, Jesse O. Bash, Jonathan E. Pleim, Chuen-Meei Gan, and David C. Wong
Atmos. Chem. Phys., 18, 15003–15016, https://doi.org/10.5194/acp-18-15003-2018, https://doi.org/10.5194/acp-18-15003-2018, 2018
Short summary
Short summary
Here we use a fine-resolution (36 km) self-consistent 21-year air quality simulation from 1990 to 2010, a health impact function, and annual county-level population and baseline mortality rate estimates to estimate annual mortality burdens from PM2.5 and O3 in the US, and also the contributions to the trends. We found that the PM2.5-related mortality burden has steadily decreased by 53 %, while the O3-related mortality burden has increased by 13 %, with larger inter-annual variabilities.
Yuqiang Zhang, Rohit Mathur, Jesse O. Bash, Christian Hogrefe, Jia Xing, and Shawn J. Roselle
Atmos. Chem. Phys., 18, 9091–9106, https://doi.org/10.5194/acp-18-9091-2018, https://doi.org/10.5194/acp-18-9091-2018, 2018
Short summary
Short summary
For this study, we evaluated the WRF–CMAQ coupled model's ability to simulate the long-term trends of wet deposition of nitrogen and sulfur from 1990 to 2010 by comparing the model results with long-term observation datasets in the US. The model generally underestimates the wet deposition of both nitrogen and sulfur but captured well the decreasing trends for the deposition. Then we estimated the deposition budget in the US, including wet deposition and dry deposition from model simulations.
Xi Chen, Mingjie Xie, Michael D. Hays, Eric Edgerton, Donna Schwede, and John T. Walker
Atmos. Chem. Phys., 18, 6829–6846, https://doi.org/10.5194/acp-18-6829-2018, https://doi.org/10.5194/acp-18-6829-2018, 2018
Paul S. Romer, Kaitlin C. Duffey, Paul J. Wooldridge, Eric Edgerton, Karsten Baumann, Philip A. Feiner, David O. Miller, William H. Brune, Abigail R. Koss, Joost A. de Gouw, Pawel K. Misztal, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 18, 2601–2614, https://doi.org/10.5194/acp-18-2601-2018, https://doi.org/10.5194/acp-18-2601-2018, 2018
Short summary
Short summary
Observations of increased ozone on hotter days are widely reported, but the mechanisms driving this relationship remain uncertain. We use measurements from the rural southeastern United States to study how temperature affects ozone production. We find that changing NOx emissions, most likely from soil microbes, can be a major driver of increased ozone with temperature in the continental background. These findings suggest that ozone will increase with temperature under a wide range of conditions.
Xi Chen, John T. Walker, and Chris Geron
Atmos. Meas. Tech., 10, 3893–3908, https://doi.org/10.5194/amt-10-3893-2017, https://doi.org/10.5194/amt-10-3893-2017, 2017
Short summary
Short summary
The MARGA instrument is a powerful research tool for investigating atmospheric chemistry and the exchange of gases and particles between the atmosphere and biosphere. Our study examines the operating characteristics of the instrument with a focus on the software used to calculate air concentrations. We show that more accurate measurements may be obtained by calibrating the instrument with a range of standards in addition to the single internal standard used in online concentration calculations.
Yi Li, Tammy M. Thompson, Martin Van Damme, Xi Chen, Katherine B. Benedict, Yixing Shao, Derek Day, Alexandra Boris, Amy P. Sullivan, Jay Ham, Simon Whitburn, Lieven Clarisse, Pierre-François Coheur, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 17, 6197–6213, https://doi.org/10.5194/acp-17-6197-2017, https://doi.org/10.5194/acp-17-6197-2017, 2017
K. Wyat Appel, Sergey L. Napelenok, Kristen M. Foley, Havala O. T. Pye, Christian Hogrefe, Deborah J. Luecken, Jesse O. Bash, Shawn J. Roselle, Jonathan E. Pleim, Hosein Foroutan, William T. Hutzell, George A. Pouliot, Golam Sarwar, Kathleen M. Fahey, Brett Gantt, Robert C. Gilliam, Nicholas K. Heath, Daiwen Kang, Rohit Mathur, Donna B. Schwede, Tanya L. Spero, David C. Wong, and Jeffrey O. Young
Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, https://doi.org/10.5194/gmd-10-1703-2017, 2017
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system. The CMAQ model is used extensively throughout the world to simulate air pollutants for many purposes, including regulatory and air quality forecasting applications. This work describes the scientific updates made to the latest version of the CMAQ modeling system (CMAQv5.1) and presents an evaluation of the new model against observations and results from the previous model version.
Jiaoyan Huang, Matthieu B. Miller, Eric Edgerton, and Mae Sexauer Gustin
Atmos. Chem. Phys., 17, 1689–1698, https://doi.org/10.5194/acp-17-1689-2017, https://doi.org/10.5194/acp-17-1689-2017, 2017
Short summary
Short summary
The highest mercury (Hg) wet deposition in USA occurs along the Gulf of Mexico. Gaseous oxidized Hg (GOM) is a major contributor due to high water solubility and reactivity. Concentration and dry deposition of GOM were determined for OLF, Florida. Results indicated at least 5 GOM compounds in this area including HgBr2, HgO, and Hg–nitrogen and –sulfur forms. GOM chemistry indicates reactions with local mobile source pollutants and long-range transport from outside of the USA.
Quazi Z. Rasool, Rui Zhang, Benjamin Lash, Daniel S. Cohan, Ellen J. Cooter, Jesse O. Bash, and Lok N. Lamsal
Geosci. Model Dev., 9, 3177–3197, https://doi.org/10.5194/gmd-9-3177-2016, https://doi.org/10.5194/gmd-9-3177-2016, 2016
Short summary
Short summary
This study updates the representation of soil NO emissions in a regional air quality model. The implementation enhances the representation of biome types and dynamic fertilizer use. Previous modeling of soil NO in CMAQ had tended to under-estimate emissions and misrepresent their response to soil conditions and meteorology. We evaluate results against satellite observations of NO2, and quantify the impacts of the new parameterization on simulations of ozone and particulate matter.
J. Kaiser, K. M. Skog, K. Baumann, S. B. Bertman, S. B. Brown, W. H. Brune, J. D. Crounse, J. A. de Gouw, E. S. Edgerton, P. A. Feiner, A. H. Goldstein, A. Koss, P. K. Misztal, T. B. Nguyen, K. F. Olson, J. M. St. Clair, A. P. Teng, S. Toma, P. O. Wennberg, R. J. Wild, L. Zhang, and F. N. Keutsch
Atmos. Chem. Phys., 16, 9349–9359, https://doi.org/10.5194/acp-16-9349-2016, https://doi.org/10.5194/acp-16-9349-2016, 2016
Short summary
Short summary
OH reactivity can be used to assess the amount of reactive carbon in an air mass. “Missing” reactivity is commonly found in forested environments and is attributed to either direct emissions of unmeasured volatile organic compounds or to unmeasured/underpredicted oxidation products. Using a box model and measurements from the 2013 SOAS campaign, we find only small discrepancies in measured and calculated reactivity. Our results suggest the discrepancies stem from unmeasured direct emissions.
Luping Su, Edward G. Patton, Jordi Vilà-Guerau de Arellano, Alex B. Guenther, Lisa Kaser, Bin Yuan, Fulizi Xiong, Paul B. Shepson, Li Zhang, David O. Miller, William H. Brune, Karsten Baumann, Eric Edgerton, Andrew Weinheimer, Pawel K. Misztal, Jeong-Hoo Park, Allen H. Goldstein, Kate M. Skog, Frank N. Keutsch, and John E. Mak
Atmos. Chem. Phys., 16, 7725–7741, https://doi.org/10.5194/acp-16-7725-2016, https://doi.org/10.5194/acp-16-7725-2016, 2016
Ian C. Rumsey and John T. Walker
Atmos. Meas. Tech., 9, 2581–2592, https://doi.org/10.5194/amt-9-2581-2016, https://doi.org/10.5194/amt-9-2581-2016, 2016
Short summary
Short summary
The performance of the MARGA (Monitor of AeRosols and GAses in ambient air) instrument in measuring speciated nitrogen and sulfur fluxes is evaluated for the first time. The results demonstrate that the MARGA instrument can be used to make accurate measurements of speciated nitrogen and sulfur deposition. These measurements are urgently needed to evaluate chemical transport models and develop risk assessments and mitigation strategies to protect ecosystems from nutrient and acidic deposition.
Jesse O. Bash, Kirk R. Baker, and Melinda R. Beaver
Geosci. Model Dev., 9, 2191–2207, https://doi.org/10.5194/gmd-9-2191-2016, https://doi.org/10.5194/gmd-9-2191-2016, 2016
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) participate in reactions that can lead to secondarily formed ozone and particulate matter impacting air quality and climate and are important inputs for atmospheric models. BVOC emissions are sensitive to the vegetation species and leaf temperature. Here, we have improved the vegetation data and modeled leaf temperature of the Biogenic Emission Inventory System model. Updated algorithms improved model evaluation against observations in California.
Sri Hapsari Budisulistiorini, Karsten Baumann, Eric S. Edgerton, Solomon T. Bairai, Stephen Mueller, Stephanie L. Shaw, Eladio M. Knipping, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 5171–5189, https://doi.org/10.5194/acp-16-5171-2016, https://doi.org/10.5194/acp-16-5171-2016, 2016
Short summary
Short summary
A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor, collocated with established air-monitoring network measurements, to identify sources of organic aerosol (OA). Further, high-volume filter samples were collected for measurements of OA tracers by offline mass spectrometry tools.
Weruka Rattanavaraha, Kevin Chu, Sri Hapsari Budisulistiorini, Matthieu Riva, Ying-Hsuan Lin, Eric S. Edgerton, Karsten Baumann, Stephanie L. Shaw, Hongyu Guo, Laura King, Rodney J. Weber, Miranda E. Neff, Elizabeth A. Stone, John H. Offenberg, Zhenfa Zhang, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 4897–4914, https://doi.org/10.5194/acp-16-4897-2016, https://doi.org/10.5194/acp-16-4897-2016, 2016
Short summary
Short summary
The mechanisms by which specific anthropogenic pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected from Birmingham, AL, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Isoprene SOA tracers were measured from these samples and compared to gas and aerosol data collected from the SEARCH network.
Sean Coburn, Barbara Dix, Eric Edgerton, Christopher D. Holmes, Douglas Kinnison, Qing Liang, Arnout ter Schure, Siyuan Wang, and Rainer Volkamer
Atmos. Chem. Phys., 16, 3743–3760, https://doi.org/10.5194/acp-16-3743-2016, https://doi.org/10.5194/acp-16-3743-2016, 2016
Short summary
Short summary
Here we present a day of case study measurements of the vertical distribution of bromine monoxide over the coastal region of the Gulf of Mexico. These measurements are used to assess the contribution of bromine radicals to the oxidation of elemental mercury in the troposphere. We find that the measured levels of bromine in the troposphere are sufficient to quickly oxidize mercury, which has significant implications for our understanding of atmospheric mercury processes.
C. L. Blanchard, G. M. Hidy, S. Shaw, K. Baumann, and E. S. Edgerton
Atmos. Chem. Phys., 16, 215–238, https://doi.org/10.5194/acp-16-215-2016, https://doi.org/10.5194/acp-16-215-2016, 2016
Short summary
Short summary
Fifteen years of gas and particle measurements at eight monitoring sites comprising the Southeastern Aerosol Research and Characterization (SEARCH) network offer insights into the sources of organic aerosol in the southeastern United States. Between 1999 and 2013, mean organic aerosol concentrations declined due to decreasing particle emissions from motor vehicles and to less secondary organic aerosol with declining emissions of sulfur dioxide, nitrogen oxides, and volatile organic compounds.
F. Yu, G. Luo, S. C. Pryor, P. R. Pillai, S. H. Lee, J. Ortega, J. J. Schwab, A. G. Hallar, W. R. Leaitch, V. P. Aneja, J. N. Smith, J. T. Walker, O. Hogrefe, and K. L. Demerjian
Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, https://doi.org/10.5194/acp-15-13993-2015, 2015
Short summary
Short summary
The role of low-volatility organics in new particle formation (NPF) in the atmosphere is assessed. An empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics significantly overpredicts NPF in the summer.
Two different schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
B. R. Ayres, H. M. Allen, D. C. Draper, S. S. Brown, R. J. Wild, J. L. Jimenez, D. A. Day, P. Campuzano-Jost, W. Hu, J. de Gouw, A. Koss, R. C. Cohen, K. C. Duffey, P. Romer, K. Baumann, E. Edgerton, S. Takahama, J. A. Thornton, B. H. Lee, F. D. Lopez-Hilfiker, C. Mohr, P. O. Wennberg, T. B. Nguyen, A. Teng, A. H. Goldstein, K. Olson, and J. L. Fry
Atmos. Chem. Phys., 15, 13377–13392, https://doi.org/10.5194/acp-15-13377-2015, https://doi.org/10.5194/acp-15-13377-2015, 2015
Short summary
Short summary
This paper reports atmospheric gas- and aerosol-phase field measurements from the southeastern United States in summer 2013 to demonstrate that the oxidation of biogenic volatile organic compounds by nitrate radical produces a substantial amount of secondary organic aerosol in this region. This process, driven largely by monoterpenes, results in a comparable aerosol nitrate production rate to inorganic nitrate formation by heterogeneous uptake of HNO3 onto dust particles.
L. Zhu, D. Henze, J. Bash, G.-R. Jeong, K. Cady-Pereira, M. Shephard, M. Luo, F. Paulot, and S. Capps
Atmos. Chem. Phys., 15, 12823–12843, https://doi.org/10.5194/acp-15-12823-2015, https://doi.org/10.5194/acp-15-12823-2015, 2015
Short summary
Short summary
We implement new diurnal variation scheme for ammonia livestock emissions and bidirectional exchange scheme and its adjoint in the GEOS-Chem global chemical transport model. Updated diurnal variability improves modeled-to-hourly in situ measurements comparison. The ammonium soil pool in the bidirectional exchange model largely extends the ammonia lifetime in the atmosphere. Large model biases remain as livestock emissions are still underestimated.
B. Gantt, J. T. Kelly, and J. O. Bash
Geosci. Model Dev., 8, 3733–3746, https://doi.org/10.5194/gmd-8-3733-2015, https://doi.org/10.5194/gmd-8-3733-2015, 2015
F. Xiong, K. M. McAvey, K. A. Pratt, C. J. Groff, M. A. Hostetler, M. A. Lipton, T. K. Starn, J. V. Seeley, S. B. Bertman, A. P. Teng, J. D. Crounse, T. B. Nguyen, P. O. Wennberg, P. K. Misztal, A. H. Goldstein, A. B. Guenther, A. R. Koss, K. F. Olson, J. A. de Gouw, K. Baumann, E. S. Edgerton, P. A. Feiner, L. Zhang, D. O. Miller, W. H. Brune, and P. B. Shepson
Atmos. Chem. Phys., 15, 11257–11272, https://doi.org/10.5194/acp-15-11257-2015, https://doi.org/10.5194/acp-15-11257-2015, 2015
Short summary
Short summary
Hydroxynitrates from isoprene oxidation were quantified both in the laboratory and through field studies. The yield of hydroxynitrates 9(+4/-3)% derived from chamber experiments was applied in a zero-dimensional model to simulate the production and loss of isoprene hydroxynitrates in an ambient environment during the 2013 Southern Oxidant and Aerosol Study (SOAS). NOx was determined to be the limiting factor for the formation of isoprene hydroxynitrates during SOAS.
H. M. Allen, D. C. Draper, B. R. Ayres, A. Ault, A. Bondy, S. Takahama, R. L. Modini, K. Baumann, E. Edgerton, C. Knote, A. Laskin, B. Wang, and J. L. Fry
Atmos. Chem. Phys., 15, 10669–10685, https://doi.org/10.5194/acp-15-10669-2015, https://doi.org/10.5194/acp-15-10669-2015, 2015
Short summary
Short summary
We report ion chromatographic measurements of gas- and aerosol-phase inorganic species at the SOAS 2013 field study. Our particular focus is on inorganic nitrate aerosol formation via HNO3 uptake onto coarse-mode dust and sea salt particles, which we find to be the dominant source of episodic inorganic nitrate at this site, due to the high acidity of the particles preventing formation of NH4NO3. We calculate a production rate of inorganic nitrate aerosol.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
X. Fu, S. X. Wang, L. M. Ran, J. E. Pleim, E. Cooter, J. O. Bash, V. Benson, and J. M. Hao
Atmos. Chem. Phys., 15, 6637–6649, https://doi.org/10.5194/acp-15-6637-2015, https://doi.org/10.5194/acp-15-6637-2015, 2015
Short summary
Short summary
In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using the bi-directional CMAQ model coupled to an agro-ecosystem model. Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.
J. Huang, M. B. Miller, E. Edgerton, and M. S. Gustin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-12069-2015, https://doi.org/10.5194/acpd-15-12069-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Gaseous oxidized Hg (GOM) is a major contributor to Hg in wet and dry deposition. Recent work has indicated that the concentrations of GOM as measured are too low by 3-to-12 times; and that compounds vary across space and time. Data collected in Florida indicate five potential GOM compounds, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. Sources include local combustion (cars and power plants), the marine boundary layer, and long range transport from Asia.
T. Fang, V. Verma, H. Guo, L. E. King, E. S. Edgerton, and R. J. Weber
Atmos. Meas. Tech., 8, 471–482, https://doi.org/10.5194/amt-8-471-2015, https://doi.org/10.5194/amt-8-471-2015, 2015
Short summary
Short summary
This work summarizes a newly developed semi-automated system for quantifying the oxidative potential of aerosol aqueous extracts using the dithiothreitol (DTT) assay. 500 sample analyses indicate that DTT activity in the southeast US is likely not dominated by a unique local source, and sources change with season. The unique large data set generated with the technique described in this paper allows new studies on DTT sources and investigating linkages between reactive oxygen species and health.
B. B. Almand-Hunter, J. T. Walker, N. P. Masson, L. Hafford, and M. P. Hannigan
Atmos. Meas. Tech., 8, 267–280, https://doi.org/10.5194/amt-8-267-2015, https://doi.org/10.5194/amt-8-267-2015, 2015
V. Verma, T. Fang, H. Guo, L. King, J. T. Bates, R. E. Peltier, E. Edgerton, A. G. Russell, and R. J. Weber
Atmos. Chem. Phys., 14, 12915–12930, https://doi.org/10.5194/acp-14-12915-2014, https://doi.org/10.5194/acp-14-12915-2014, 2014
Short summary
Short summary
The major emission sources of the reactive oxygen species (ROS) associated with ambient particulate matter in the southeastern United States were identified. The study shows biomass burning and secondary aerosol formation as the major sources contributing to the ROS-generating capability of ambient particles. The ubiquitous nature of these two sources suggests widespread population exposures to the toxic aerosol components.
Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein, and S.-H. Lee
Atmos. Chem. Phys., 14, 12181–12194, https://doi.org/10.5194/acp-14-12181-2014, https://doi.org/10.5194/acp-14-12181-2014, 2014
Short summary
Short summary
Amiens play important roles in atmospheric secondary aerosol formation and human health, but the fast response measurements of amines are lacking. Here we show measurements in a southeastern US forest and a moderately polluted midwestern site. Our results show that gas to particle conversion is an important process that controls ambient amine concentrations and that biomass burning is an important source of amines.
G. M. Hidy, C. L. Blanchard, K. Baumann, E. Edgerton, S. Tanenbaum, S. Shaw, E. Knipping, I. Tombach, J. Jansen, and J. Walters
Atmos. Chem. Phys., 14, 11893–11914, https://doi.org/10.5194/acp-14-11893-2014, https://doi.org/10.5194/acp-14-11893-2014, 2014
Short summary
Short summary
This paper reviews aerometric measurements from Centreville, Alabama. The measurements show annual trends with air pollution emissions from 1999 to 2013. They provide a context for observations from 1 June to 15 July 2013 supporting the Southern Oxidant and Aerosol Study. An important goal of this experiment was to advance knowledge of aerosols produced in the atmosphere from precursors. The observations were in moist and warm conditions with the lowest gas and particle concentrations recorded.
S. H. Budisulistiorini, M. R. Canagaratna, P. L. Croteau, K. Baumann, E. S. Edgerton, M. S. Kollman, N. L. Ng, V. Verma, S. L. Shaw, E. M. Knipping, D. R. Worsnop, J. T. Jayne, R.J. Weber, and J. D. Surratt
Atmos. Meas. Tech., 7, 1929–1941, https://doi.org/10.5194/amt-7-1929-2014, https://doi.org/10.5194/amt-7-1929-2014, 2014
I. C. Rumsey, K. A. Cowen, J. T. Walker, T. J. Kelly, E. A. Hanft, K. Mishoe, C. Rogers, R. Proost, G. M. Beachley, G. Lear, T. Frelink, and R. P. Otjes
Atmos. Chem. Phys., 14, 5639–5658, https://doi.org/10.5194/acp-14-5639-2014, https://doi.org/10.5194/acp-14-5639-2014, 2014
J. Liu, M. Bergin, H. Guo, L. King, N. Kotra, E. Edgerton, and R. J. Weber
Atmos. Chem. Phys., 13, 12389–12404, https://doi.org/10.5194/acp-13-12389-2013, https://doi.org/10.5194/acp-13-12389-2013, 2013
Y.-H. Lin, E. M. Knipping, E. S. Edgerton, S. L. Shaw, and J. D. Surratt
Atmos. Chem. Phys., 13, 8457–8470, https://doi.org/10.5194/acp-13-8457-2013, https://doi.org/10.5194/acp-13-8457-2013, 2013
J. O. Bash, E. J. Cooter, R. L. Dennis, J. T. Walker, and J. E. Pleim
Biogeosciences, 10, 1635–1645, https://doi.org/10.5194/bg-10-1635-2013, https://doi.org/10.5194/bg-10-1635-2013, 2013
J. T. Walker, M. R. Jones, J. O. Bash, L. Myles, T. Meyers, D. Schwede, J. Herrick, E. Nemitz, and W. Robarge
Biogeosciences, 10, 981–998, https://doi.org/10.5194/bg-10-981-2013, https://doi.org/10.5194/bg-10-981-2013, 2013
Related subject area
Biogeochemistry: Air - Land Exchange
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
An elucidatory model of oxygen’s partial pressure inside substomatal cavities
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024, https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere. This can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may overestimate the quantity available for exchange by a factor of 5–20, suggesting that ammonia emissions from soil may be overestimated.
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024, https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Short summary
A small fraction of particles found at great heights in the atmosphere can freeze cloud droplets at temperatures of ≥ −10 °C and thus influence cloud properties. We provide a novel type of evidence that plant canopies are a major source of such biological ice-nucleating particles in the air above the Alps, potentially affecting mixed-phase cloud development.
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024, https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Short summary
Anticorrelation in uptake of atmospheric CO2 following pulse emission or abrupt cessation of emissions is examined in two key model intercomparison studies. In both studies net transfer coefficients from the atmosphere to the world ocean and the terrestrial biosphere are anticorrelated across models, reducing inter-model diversity in decrease of atmospheric CO2 following the perturbation, increasing uncertainties of global warming potentials and consequences of prospective emission reductions.
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1966, https://doi.org/10.5194/egusphere-2024-1966, 2024
Short summary
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched, but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges, requiring non-diffusive transport. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
EGUsphere, https://doi.org/10.5194/egusphere-2024-752, https://doi.org/10.5194/egusphere-2024-752, 2024
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets, and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecules (INMs) and aggregates of varying size that can nucleate ice at temperatures of up to -5.4 °C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate stronger than previously thought.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022, https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Cited articles
Altieri, K. E., Hastings, M. G., Peters, A. J., and Sigman, D. M.: Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry, Atmos. Chem. Phys., 12, 3557–3571, https://doi.org/10.5194/acp-12-3557-2012, 2012.
Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Composition of
dissolved organic nitrogen in continental precipitation investigated by
Ultra-High Resolution FT-ICR Mass Spectrometry, Environ. Sci. Technol., 43,
6950–6955, https://doi.org/10.1021/es9007849, 2018.
Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.
Asman, W. A. H.: Parameterization of below-cloud scavenging of highly
soluble gases under convective conditions, Atmos. Environ., 29, 1359–1368,
https://doi.org/10.1016/1352-2310(95)00065-7,1995.
Bash, J. O., Walker, J. T., Katul, G. G., Jones, M. R., Nemitz, E., and
Robarge, W. P.: Estimation of in-canopy ammonia sources and sinks in a
fertilized Zea mays field, Environ. Sci. Technol., 44, 1683–1689,
https://doi.org/10.1021/es9037269, 2010.
Beem, K. B., Raja, S., Schwandner, F. M., Taylor, C., Lee, T., Sullivan, A.
P., Carrico, C. M., McMeeking, G. R., Day, D., Levin, E., Hand, J.,
Kreidenweis, S. M., Malm, W. C., and Collett Jr., J. L.: Deposition of
reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur
(RoMANS) Study, Environ. Pollut., 158, 862–872,
10.1016/j.envpol.2009.09.023, 2010.
Benedict, K. B.: Observations of atmospheric reactive nitrogen species and
nitrogen deposition in the Rocky Mountains (Thesis), Colorado State
University, Libraries, http://hdl.handle.net/10217/71545 (last access: 1 July 2020), 2012.
Benedict, K. B., Day, D., Schwandner, F. M., Kreidenweis, S. M., Schichtel,
B., Malm, W. C., and Collett, J. L.: Observations of atmospheric reactive
nitrogen species in Rocky Mountain National Park and across northern
Colorado, Atmos. Environ., 64, 66–76,
https://doi.org/10.1016/j.atmosenv.2012.08.066, 2013.
Blanchard, C. L. and Hidy, G. M.: Effects of SO2 and NOx emission
reductions on PM2.5 mass concentrations in the Southeastern United States,
J. Air Waste Manage., 55, 265–272,
https://doi.org/10.1080/10473289.2005.10464624, 2005.
Bobbink, R., Hornung M., and Roelofs, J. M.: The effects of air-borne
nitrogen pollutants on species diversity in natural and semi-natural
European vegetation, J. Ecol., 86, 717–738, 1998.
Boonstra, R., Krebs, C. J., and Cowcill, K.: Responses of key understory plants
in the boreal forests of western North America to natural versus
anthropogenic nitrogen levels, Forest Ecol. Manag., 401, 45–54,
https://doi.org/10.1016/j.foreco.2017.06.065, 2017.
Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N.,
Ellis, T., Gerdol, R., Hajek, M., Iacumin, P., Kutnar, L., Tahvanainen, T.,
and Toberman, H.: Atmospheric nitrogen deposition promotes carbon loss from
peat bogs, P. Natl. Acad. Sci. USA, 103, 19386–19389,
https://doi.org/10.1073/pnas.0606629104, 2006.
Browne, E. C. and Cohen, R. C.: Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions, Atmos. Chem. Phys., 12, 11917–11932, https://doi.org/10.5194/acp-12-11917-2012, 2012.
Browne, E. C., Min, K.-E., Wooldridge, P. J., Apel, E., Blake, D. R., Brune, W. H., Cantrell, C. A., Cubison, M. J., Diskin, G. S., Jimenez, J. L., Weinheimer, A. J., Wennberg, P. O., Wisthaler, A., and Cohen, R. C.: Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmos. Chem. Phys., 13, 4543–4562, https://doi.org/10.5194/acp-13-4543-2013, 2013.
Bash, J. and Wu, Z.: STAGE bidirectional air-surface exchange model (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.7667344, 2023.
Butler, T., Vermeylen, F., Lehmann, C. M., Likens, G. E., and Puchalski, M.:
Increasing ammonia concentration trends in large regions of the USA derived
from the NADP/AMoN network, Atmos. Environ., 146, 132–140,
https://doi.org/10.1016/j.atmosenv.2016.06.033, 2016.
Bytnerowicz, A., Sanz, M. J., Arbaugh, M. J., Padgett, P. E., Jones, D. P.,
and Davila, A.: Passive sampler for monitoring ambient nitric acid
(HNO3) and nitrous acid (HNO2) concentrations, Atmos. Environ.,
39, 2655–2660, https://doi.org/10.1016/j.atmosenv.2005.01.018, 2005.
Caldwell, P., Muldoon, C., Ford Miniat, C., Cohen, E., Krieger, S., Sun,
G., McNulty, S., and Bolstad, P. V.: Quantifying the role of National Forest
System lands in providing surface drinking water supply for the Southern
United States, Gen. Tech. Rep. SRS-197, Asheville, NC, U.S. Department of
Agriculture Forest Service, Southern Research Station, 135 pp.,
https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs197/gtr_srs197.pdf (last access: 1 July 2020), 2014.
Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic
nitrogen in the atmosphere-Where does it come from? A review of sources and
methods, Atmos. Res., 102, 30–48,
https://doi.org/10.1016/j.atmosres.2011.07.009, 2011.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, X., Walker, J. T., and Geron, C.: Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and field-based evaluation, Atmos. Meas. Tech., 10, 3893–3908, https://doi.org/10.5194/amt-10-3893-2017, 2017.
Chen, X., Xie, M., Hays, M. D., Edgerton, E., Schwede, D., and Walker, J. T.: Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains, Atmos. Chem. Phys., 18, 6829–6846, https://doi.org/10.5194/acp-18-6829-2018, 2018.
Clark, C. M., Phelan, J., Doraiswamy, P., Buckley, J., Cajka, J. C., Dennis,
R. L., Lynch, J., Nolte, C. G., and Spero, T. L.: Atmospheric deposition and
exceedances of critical loads from 1800–2025 for the conterminous United
States, Ecol. Appl., 28, 978–1002, https://doi.org/10.1002/eap.1703, 2018.
Cowan, N., Nemitz, E., Walker, J. T., Fowler, D., Finnigan, J. J., Webster,
H. N., Levy, P., Twigg, M., Tang, S. Y., Bachiller-Jareno, N., Trembath, P.,
Kinnersley, R. P., and Braban, S. F.: Review of methods for assessing
deposition of reactive nitrogen pollutants across complex terrain with focus
on the UK (Critical Review), Environ. Sci.: Atmos., 2, 829–851, https://doi.org/10.1039/D2EA00012A, 2022.
Coweeta Hydrologic Laboratory: Procedures for chemical analysis, https://www.srs.fs.usda.gov/coweeta/tools-and-data/wetlab-cookbook_revised-2016-01-08.pdf (last access: 1 July 2020), 2016.
David, M., Loubet, B., Cellier, P., Mattsson, M., Schjoerring, J. K., Nemitz, E., Roche, R., Riedo, M., and Sutton, M. A.: Ammonia sources and sinks in an intensively managed grassland canopy, Biogeosciences, 6, 1903–1915, https://doi.org/10.5194/bg-6-1903-2009, 2009.
Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. D., and Cohen, R.
C.: A thermal dissociation laser-induced fluorescence instrument for in situ
detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3, J.
Geophys. Res.-Atmos., 107, 4046–4059, https://doi.org/10.1029/2001JD000779,
2002.
Day, D. A., Dillon, M. B., Wooldridge, P. J., Thornton, J. A., Rosen, R. S.,
Wood, E. C., and Cohen, R. C.: On alkyl nitrates, O3, and the “missing
NOy”, J. Geophys. Res.-Atmos., 108, 4501, https://doi.org/10.1029/2003JD003685, 2003.
Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T.,
Lamarque, J.-F., and Rasch, P. J.: Impact of anthropogenic atmospheric
nitrogen and sulfur deposition on ocean acidification and the inorganic
carbon system, P. Natl. Acad. Sci. USA, 104, 14580–14585,
https://doi.org/10.1073/pnas.0702218104, 2007.
Ellis, R. A., Jacob, D. J., Sulprizio, M. P., Zhang, L., Holmes, C. D., Schichtel, B. A., Blett, T., Porter, E., Pardo, L. H., and Lynch, J. A.: Present and future nitrogen deposition to national parks in the United States: critical load exceedances, Atmos. Chem. Phys., 13, 9083–9095, https://doi.org/10.5194/acp-13-9083-2013, 2013.
EPA ScienceHub: Data Catalog, EPA ScienceHub [data set], https://catalog.data.gov/dataset/epa-sciencehub, last access: 6 February 2023.
Fahey, K. M., Carlton, A. G., Pye, H. O. T., Baek, J., Hutzell, W. T., Stanier, C. O., Baker, K. R., Appel, K. W., Jaoui, M., and Offenberg, J. H.: A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1, Geosci. Model Dev., 10, 1587–1605, https://doi.org/10.5194/gmd-10-1587-2017, 2017.
Farmer, D. K. and Cohen, R. C.: Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy, Atmos. Chem. Phys., 8, 3899–3917, https://doi.org/10.5194/acp-8-3899-2008, 2008.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network, Atmos. Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z.,
Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.:.
Transformation of the nitrogen cycle: recent trends, questions and potential
solutions, Science, 320, 889–892, https://doi.org/10.1126/science.1136674,
2008.
Giorgi, F.: A particle dry deposition parameterization scheme for use in
tracer transport models, J. Geophys. Res.-Atmos., 91, 9794–9806,
https://doi.org/10.1029/JD091iD09p09794, 1986.
Hansen, K., Sørensen, L. L., Hertel, O., Geels, C., Skjøth, C. A., Jensen, B., and Boegh, E.: Ammonia emissions from deciduous forest after leaf fall, Biogeosciences, 10, 4577–4589, https://doi.org/10.5194/bg-10-4577-2013, 2013.
Hansen, K., Personne, E., Skjoth, C. A., Loubet, B., Ibrom, A., Jensen, R.,
Sorenson, L. L., and Beogh, E.: Investigating sources of measured
forest-atmospheric ammonia fluxes using tow-layer bi-directional modelling,
Agr. Forest Meteorol., 237–238, 80–94,
https://doi.org/10.1016/j.agrformet.2017.02.008, 2017.
Harman, I. N. and Finnigan, J. J.: A simple unified theory for flow in the
canopy and roughness sublayer, Bound.-Lay. Meteorol., 123, 339–363,
https://doi.org/10.1007/s10546-006-9145-6, 2007.
Hicks, B. B.: On estimating dry deposition rates in complex terrain, J.
Appl. Meteorol. Clim., 47, 1651–1658,
https://doi.org/10.1175/2006JAMC1412.1, 2008.
Hill, P. W., Raven, J. A., and Sutton, M. A.: Leaf age-related differences
in apoplastic NH concentration, pH and the NH3 compensation
point for a wild perennial, J. Exp. Bot., 53, 277–286,
https://doi.org/10.1093/jexbot/53.367.277, 2002.
Holland, E. A., Dentener, F. J., Braswell, B. H., and Sulzman, J. M.:
Contemporary and pre-industrial global reactive nitrogen budgets,
Biogeochemistry, 46, 7–43, https://doi.org/10.1023/A:1006148011944, 1999.
Husted, S. and Schjoerring, J. K.: Apoplastic pH and ammonium concentration
in leaves of Brassica napus L, Plant Physiol., 109, 1453–1460,
https://doi.org/10.1104/pp.109.4.1453, 1995.
Jickells, T., Baker, A. R., Cape, J. N., Cornell, S. E., and Nemitz, E.: The
cycling of organic nitrogen through the atmosphere, Philos. T. R. Soc. B,
368, 20130115, https://doi.org/10.1098/rstb.2013.0115, 2013.
Keene, W. C., Montag, J. A., Maben, J. R., Southwell, M., Leonard, J.,
Church, T. M., Moody, J. L., and Galloway, J. N.: Organic nitrogen in
precipitation over Eastern North America, Atmos. Environ., 36, 4529–4540,
2002.
Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Jimenez, J. L., Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A., Butler, C. F., Wagner, N. L., Gordon, T. D., Welti, A., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Teng, A. P., Millet, D. B., Schwarz, J. P., Markovic, M. Z., and Perring, A. E.: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411–10433, https://doi.org/10.5194/acp-15-10411-2015, 2015.
Knoepp, J. D., Vose, J. M., and Swank, W. T.: Nitrogen deposition and cycling
across an elevation and vegetation gradient in southern Appalachian forests,
Int. J. Environ. Stud., 65, 389–408,
https://doi.org/10.1080/00207230701862348, 2008.
Knoepp, J. D., See, C. R., Vose, J. M., Miniat, C. F., and Clark, J. S.:
Total C and N pools and fluxes vary with time, soil temperature, and
moisture along an elevation, precipitation, and vegetation gradient in
southern Appalachian forests, Ecosystems, 21,
https://doi.org/10.1007/s10021-018-0244-2, 1623–1638, 2018.
LaCount, M. D., Haeuber, R. A., Macy, T. R., and Murray, B. A.: Reducing
power sector emissions under the 1990 Clean Air Act Amendments: A
retrospective on 30 years of program development and implementation, Atmos.
Environ., 245, 118012, https://doi.org/10.1016/j.atmosenv.2020.118012, 2021.
Laseter, S. H., Ford, C. R., Vose, J. M., and Swift, L. W. Jr.: Long-term
temperature and precipitation trends at the Coweeta Hydrologic Laboratory,
Otto, North Carolina, USA, Hydrol. Res., 43, 890–901,
https://doi.org/10.2166/nh.2012.067, 2012.
Lavery, T. F., Rogers, C. M., Baumgardner, R., and Mishoe, K. P.:
Intercomparison of Clean Air Status and Trends Network nitrate and nitric
acid measurements with data from other monitoring programs, J. Air Waste
Manage., 59, 214–226, https://doi.org/10.3155/1047-3289.59.2.214, 2009.
Lee, H.-M., Paulot, F., Henze, D. K., Travis, K., Jacob, D. J., Pardo, L. H., and Schichtel, B. A.: Sources of nitrogen deposition in Federal Class I areas in the US, Atmos. Chem. Phys., 16, 525–540, https://doi.org/10.5194/acp-16-525-2016, 2016.
Lehner, M., and Rotach, M. W.: Current challenges in understanding and
predicting transport and exchange in the atmosphere over mountainous
terrain, Atmosphere, 9, 276, https://doi.org/10.3390/atmos9070276, 2018.
Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann,
C. M. B., Puchalski, M. A., Gay, D. A., and Collett, J. L.: Increasing
importance of deposition of reduced nitrogen in the United States, P. Natl.
Acad. Sci. USA, 113, 5874–5879, https://doi.org/10.1073/pnas.1525736113,
2016.
Lin, M., Walker, J., Geron, C., and Khlystov, A.: Organic nitrogen in PM2.5 aerosol at a forest site in the Southeast US, Atmos. Chem. Phys., 10, 2145–2157, https://doi.org/10.5194/acp-10-2145-2010, 2010.
Lohse, K. A., Hope, D., Sponseller, R., Allen, J. O., and Grimm, N. B.:
Atmospheric deposition of carbon and nutrients across an arid metropolitan
area, Sci. Total Environ., 402, 95–105,
https://doi.org/10.1016/j.scitotenv.2008.04.044, 2008.
Lynch, J. A., Phelan, J., Pardo L. H., McDonnell, T. C., and Clark, C. M.:
Detailed Documentation of the National Critical Load Database (NCLD) for
U.S. Critical Loads of Sulfur and Nitrogen, version 3.0. National
Atmospheric Deposition Program, Illinois State Water Survey, Champaign, IL,
https://nadp.slh.wisc.edu/filelib/claddb/DB_Version/Documentation/NCLD_Documentation_v3.2.pdf (last access: 10 September 2019), 2017.
Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y.-A., Zhang, J., Wong, I., Hayden, K., Li, S.-M., Kirk, J., Scott, K., Moran, M. D., Robichaud, A., Cathcart, H., Baratzedah, P., Pabla, B., Cheung, P., Zheng, Q., and Jeffries, D. S.: Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan, Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, 2018.
Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359–10386, https://doi.org/10.5194/acp-10-10359-2010, 2010.
Mattsson, M. and Schjoerring, J. K.: Dynamic and steady-state responses of
inorganic nitrogen pools and NH3 exchange in leaves of Lolium perenne
and Bromus erectus to changes in root nitrogen supply, Plant Physiol., 128,
742–750, https://doi.org/10.1104/pp.010602, 2002.
Mattsson, M., Herrmann, B., Jones, S., Neftel, A., Sutton, M. A., and Schjoerring, J. K.: Contribution of different grass species to plant-atmosphere ammonia exchange in intensively managed grassland, Biogeosciences, 6, 59–66, https://doi.org/10.5194/bg-6-59-2009, 2009.
McDonnell, T. C., Reinds, G. J., Sullivan, T. J., Clark, C. M., Bonten, L.
T. C., Mol-Dijkstra, J. P., Wamelink, G. W. W., and Dovciak, M.: Feasibility
of coupled empirical and dynamic modeling to assess climate change and air
pollution impacts on temperate forest vegetation of the eastern United
States, Environ. Pollut., 234, 902–914,
https://doi.org/10.1016/j.envpol.2017.12.002, 2018.
McNulty, S. G., Cohen, E. C., Myers, J. A. M., Sullivan, T. J., and Li, H.:
Estimates of critical acid loads and exceedances for forest soils across the
conterminous United States, Environ. Pollut., 149, 281–292,
https://doi.org/10.1016/j.envpol.2007.05.025, 2007.
NPS: National Park Service, Clean Air Status and Trends Network, hourly
trace gas data, https://www.epa.gov/castnet, last access: 6 November 2020.
Meyers, T. P., Hall, M. E., Lindberg, S. E., and Kim, K.: Use of the
modified Bowen-ratio technique to measure fluxes of trace gases, Atmos.
Environ., 30, 3321–3329, https://doi.org/10.1016/1352-2310(96)00082-9,
1996.
Neff, J. C., Holland, E. A., Dentener, F. J., Mcdowell, W. H., and Russell,
K. M.: The origin, composition and rates of organic nitrogen deposition: A
missing piece of the nitrogen cycle?, Biogeochemistry, 57/58, 99–136,
https://doi.org/10.1023/A:1015791622742, 2002a.
Neff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J., and
Bowman, W.: Variable effects of nitrogen additions on the stability and
turnover of soil carbon, Nature, 419, 915–917,
https://doi.org/10.1038/nature01136, 2002b.
Nemitz, E., Sutton, M., Gut, A., San Jose, R., Husted, S., and Schjoerring,
J.: Sources and sinks of ammonia within an oilseed rape canopy, Agr. Forest
Meteorol., 105, 385–404, https://doi.org/10.1016/S0168-1923(00)00205-7,
2000a.
Nemitz, E., Sutton, M. A., Schjoerring, J. K., Husted, S., and Wyers, G. P.:
Resistance modelling of ammonia exchange over oilseed rape, Agr. Forest
Meteorol., 10, 405–425, https://doi.org/10.1016/S0168-1923(00)00206-9,
2000b.
Nemitz, E., Milford, C., and Sutton, M. A.: A two-layer canopy compensation
point model for describing bi-directional biosphere-atmosphere exchange of
ammonia, Q. J. Roy. Meteor. Soc., 127, 815–833,
https://doi.org/10.1002/qj.49712757306, 2001.
Nemitz, E., Sutton, M. A., Wyers, G. P., and Jongejan, P. A. C.: Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl, Atmos. Chem. Phys., 4, 989–1005, https://doi.org/10.5194/acp-4-989-2004, 2004a.
Nemitz, E., Sutton, M. A., Wyers, G. P., Otjes, R. P., Mennen, M. G., van Putten, E. M., and Gallagher, M. W.: Gas-particle interactions above a Dutch heathland: II. Concentrations and surface exchange fluxes of atmospheric particles, Atmos. Chem. Phys., 4, 1007–1024, https://doi.org/10.5194/acp-4-1007-2004, 2004b.
Nilsson, J. and Grennfelt, P.: Critical levels for sulphur and nitrogen, Miljørapport, Nordic Council of Ministers, Copenhagen, Denmark, 418 pp.,
1988.
Nouaime, G., Bertman, S. B., Seaver, C., Elyea, D., Huang, H., Shepson, P.
B., Starn, T. K., Riemer, D. D., Zika, R. G., and Olszyna, K.: Sequential
oxidation products from tropospheric isoprene chemistry: MACR and MPAN at a
NOx-rich forest environment in the southeastern United States, J. Geophys.
Res.-Atmos., 103, 22463–22471, 1998.
Novick, K. A., Walker, J. T., Chan, W. S., Sobek, C., and Vose, J.: Eddy
covariance measurements with a new fast-response, closed-path analyzer:
spectral characteristics and cross-system comparisons, Agr. Forest
Meteorol., 181, 17–32, https://doi.org/10.1016/j.agrformet.2013.06.020,
2013.
Novick, K., Brantley, S., Ford Miniat, C., Walker, J. T., and Vose, J.:
Inferring the contribution of advection to total ecosystem scalar fluxes
over a tall forest in complex terrain, Agr. Forest Meteorol., 185, 1–13,
https://doi.org/10.1016/j.agrformet.2013.10.010, 2014.
Novick, K. A., Oishi, A. C., and Miniat, C. F.: Cold air drainage flows
subsidize montane valley ecosystem productivity, Glob. Change Biol., 22,
4041–4027, https://doi.org/10.1111/gcb.13320, 2016.
Oishi, A. C., Miniat, C. F., Novick, K. A., Brantley, S. T., Vose, J. M.,
and Walker, J. T.: Warmer temperatures reduce net carbon uptake, but not
water use in a mature southern Appalachian forest, Agr. Forest Meteorol.,
252, 269–282, https://doi.org/10.1016/j.agrformet.2018.01.011, 2018.
Ollinger, S. V., Aber, J. D., Reich, P. B., and Freuder, R. J.: Interactive
effects of nitrogen deposition, tropospheric ozone, elevated CO2 and
land use history on the carbon dynamics of northern hardwood forests, Glob.
Change Biol., 8, 545–562, https://doi.org/10.1046/j.1365-2486.2002.00482.x,
2002.
Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T.,
Allen, E. B., Baron, J. S., Bobbink, R., Bowman, W. D., Clark, C. M.,
Emmett, B., Gilliam, F. S., Greaver, T. L., Hall, S. J., Lilleskov, E. A.,
Liu, L., Lynch, J. A., Nadelhoffer, K. J., Perakis, S. S., Robin-Abbott, M.
J., Stoddard, J. L., Weathers, K. C., and Dennis, R. L.: Effects of nitrogen
deposition and empirical nitrogen critical loads for ecoregions of the
United States, Ecol. Appl., 21, 3049–3082,
https://doi.org/10.1890/10-2341.1, 2011.
Pardo, L. H., Duarte, N., Van Miegroet, H., Fisher, L. S., and Robin-Abbott,
M. J.: Critical loads of sulfur and nitrogen and modeled effects of
deposition reduction for forested ecosystems of Great Smoky Mountains
National Park, Gen. Tech. Rep. NRS-180, Newtown Square, PA, U.S. Department
of Agriculture, Forest Service, Northern Research Station, 26 pp.,
https://doi.org/10.2737/NRS-GTR-180, 2018.
Paulot, F. and Jacob, D. J.: Hidden cost of U.S. agricultural exports:
particulate matter from ammonia emissions, Environ. Sci. Technol., 48,
903–908, https://doi.org/10.1021/es4034793, 2014.
Paulot, F., Henze, D. K., and Wennberg, P. O.: Impact of the isoprene photochemical cascade on tropical ozone, Atmos. Chem. Phys., 12, 1307–1325, https://doi.org/10.5194/acp-12-1307-2012, 2012.
Pearson, J., Woodall, J., Clough, E. C. M., Nielsen, K. H., and Schjoerring, J.
K.: Production and consumption of NH3 in trees, in: Trace gas exchange in forest ecosystems, edited by: Gasche, R., Papen,
H., and Rennenberg, H., Kluwer
Academic, the Netherlands, 53–77, 2002.
Personne, E., Tardy, F., Genermont, S., Decuq, C., Gueudet, J.-C., Mascher,
N., Durand, B., Masson, S., Lauransot, M., Flechard, C., Burkhardt, J., and
Loubet, B.: Investigating sources and sinks for ammonia exchanges between
the atmosphere and a wheat canopy following slurry application with trailing
hose, Agr. Forest Meteorol., 207, 11–23,
https://doi.org/10.1016/j.agrformet.2015.03.002, 2015.
Pleim, J. and Ran, L.: Surface flux modeling for air quality applications,
Atmosphere, 2, 271–302, https://doi.org/10.3390/atmos2030271, 2011.
Pleim, J. E. and Xiu, A.: Development and testing of a surface flux and
planetary boundary layer model for application in mesoscale models, J. Appl.
Meteorol., 34, 16–32, https://doi.org/10.1175/1520-0450-34.1.16, 1995.
Poorter, H., Niinemets, Ü, Poorter, L., Wright, I. J., and Villar, R.:
Causes and consequences of variation in leaf mass per area (LMA): a
meta-analysis, New Phytol., 182, 565–588,
https://doi.org/10.1111/j.1469-8137.2009.02830.x, 2009.
Nanus, L., McMurray, J. A., Clow, D. W., Saros, J. E., Blett, T., and
Gurdak, J. J.: Spatial variation of atmospheric nitrogen deposition and
critical loads for aquatic ecosystems in the Greater Yellowstone Area,
Environ. Pollut., 223, 644–656,
https://doi.org/10.1016/j.envpol.2017.01.077, 2017.
Root, H. T., Geiser, L. H., Jovan, S., and Neitlich, P.: Epiphytic
macrolichen indication of air quality and climate in interior forested
mountains of the Pacific Northwest, USA, Ecol. Indic., 53, 95–105,
https://doi.org/10.1016/j.ecolind.2015.01.029, 2015.
Rumsey, I. C. and Walker, J. T.: Application of an online ion-chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur, Atmos. Meas. Tech., 9, 2581–2592, https://doi.org/10.5194/amt-9-2581-2016, 2016.
Samy, S., Robinson, J., Rumsey, I. C., Walker, J. T., and Hays, M. D.:
Speciation and trends of organic nitrogen in southeastern U.S. fine
particulate matter (PM2.5), J. Geophys. Res.-Atmos., 118, 1996–2006,
https://doi.org/10.1029/2012JD017868, 2013.
Schneider S., Geßler A., Weber, P., von Sengbusch, D., Hanemann, U.,
and Rennenberg, H.: Soluble N compounds in trees exposed to high loads of N: a
comparison of spruce (Picea abis) and beech (Fagus sylvatica) grown under field conditions, New
Phytol., 134, 103–114, https://doi.org/10.1111/j.1469-8137.1996.tb01150.x,
1996.
Schwede, D. B. and Lear, G. G.: A novel hybrid approach for estimating
total deposition in the United States, Atmos. Environ., 92, 207–220,
https://doi.org/10.1016/j.atmosenv.2014.04.008, 2014.
Scudlark, J. R., Russell, K. M., Galloway, J. N., Church, T. M., and Keene,
W. C.: Organic nitrogen in precipitation at the mid-Atlantic US coast –
Methods evaluation and preliminary measurements, Atmos. Environ., 32,
1719–1728, https://doi.org/10.1016/S1352-2310(97)00458-5, 1998.
Shu, Q., Murphy, B., Schwede, D., Henderson, B. H., Pye, H. O. T., Appel, K. W., Khan, T. R., and Perlinger, J. A.: Improving the particle dry deposition scheme in the CMAQ photochemical modeling system, Atmos. Environ., 289, 119343, https://doi.org/10.1016/j.atmosenv.2022.119343, 2022.
Shuttleworth, W. J. and Wallace, J. S.: Evaporation from sparse crops – an
energy combination theory, Q. J. Roy. Meteor. Soc., 11, 839–855,
https://doi.org/10.1002/qj.49711146910, 1985.
Sickles II, J. E. and Shadwick, D. S.: Air quality and atmospheric deposition in the eastern US: 20 years of change, Atmos. Chem. Phys., 15, 173–197, https://doi.org/10.5194/acp-15-173-2015, 2015.
Simkin, S. M., Allen, E. B., Bowman, W. D., Clark, C. M., Belnap, J.,
Brooks, M. L., Cade, B. S., Collins, S. L., Geiser, L. H., Gilliam, F. S.,
Jovan, S. E., Pardo, L. H., Schulz, B. K., Stevens, C. J., Suding, K. N.,
Throop, H. L., and Waller, D. M.: Conditional vulnerability of plant
diversity to atmospheric nitrogen deposition across the United States, P.
Natl. Acad. Sci. USA, 113, 4086–4091,
https://doi.org/10.1073/pnas.1515241113, 2016.
Slinn, W. G. N.: Predictions for particle deposition to vegetative surfaces,
Atmos. Environ., 16, 1785–1794,
https://doi.org/10.1016/0004-6981(82)90271-2, 1982.
Sutton, M. A., Asman, W. A. H., Ellermann, T., Van Jaarsveld, J. A., Acker,
K., Aneja, V., Duyzer, J., Horvath, L., Paramonov, S., Mitosinkova, M.,
Tang, Y. S., Achermann, B., Gauger, T., Bartniki, J., Neftel, A., and
Erisman, J. W.: Establishing the link between ammonia emission control and
measurements of reduced nitrogen concentrations and deposition, Environ.
Monit. Assess., 82, 149–185, https://doi.org/10.1023/A:1021834132138, 2003.
Sutton, M. A., Nemitz, E., Milford, C., Campbell, C., Erisman, J. W., Hensen, A., Cellier, P., David, M., Loubet, B., Personne, E., Schjoerring, J. K., Mattsson, M., Dorsey, J. R., Gallagher, M. W., Horvath, L., Weidinger, T., Meszaros, R., Dämmgen, U., Neftel, A., Herrmann, B., Lehman, B. E., Flechard, C., and Burkhardt, J.: Dynamics of ammonia exchange with cut grassland: synthesis of results and conclusions of the GRAMINAE Integrated Experiment, Biogeosciences, 6, 2907–2934, https://doi.org/10.5194/bg-6-2907-2009, 2009.
Tang, Y. S., Cape, J. N., and Sutton, M. A.: Development and types of
passive samplers for monitoring atmospheric NO2 and NH3
concentrations, Sci. World J., 1, 513–529,
https://doi.org/10.1100/tsw.2001.82, 2001.
Toma, S., Bertman, S., Groff, C., Xiong, F., Shepson, P. B., Romer, P., Duffey, K., Wooldridge, P., Cohen, R., Baumann, K., Edgerton, E., Koss, A. R., de Gouw, J., Goldstein, A., Hu, W., and Jimenez, J. L.: Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013, Atmos. Chem. Phys., 19, 1867–1880, https://doi.org/10.5194/acp-19-1867-2019, 2019.
Trainer, M., Parrish, D. D., Buhr, M. P., Norton, R. B., Fehsenfeld, F. C.,
Anlauf, K. G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M.,
Tanner, R. L., Newman, L., Bowersox, V. C., Meagher, J. F., Olszyna, K. J.,
Rodgers, M. O., Wang, T., Berresheim, H., Demerjian, K. L., and
Roychowdhury, U. K.: Correlation of ozone with NOy in photochemically aged
air, J. Geophys. Res.-Atmos., 98, 2917–2925,
https://doi.org/10.1029/92JD01910, 1993.
U.S. EPA.: U.S. Environmental Protection Agency, 2014, Data from the 2014
National Emissions Inventory, Version 2, https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data (last access: 1 October 2018),
2014.
U.S. EPA.: U.S. Environmental Protection Agency Critical Loads Mapper Tool, https://www.epa.gov/air-research/critical-loads-mapper-tool, last access: 10 September 2019.
van Houtven, G., Phelan, J., Clark, C., Sabo, R. D., Buckley, J., Thomas, R.
Q., Horn, K., and LeDuc, S. D.: Nitrogen deposition and climate change
effects on tree species composition and ecosystem services for a forest
cohort, Ecol. Monogr., 89, e01345, https://doi.org/10.1002/ecm.1345, 2019.
Walker, J. T., Dombek, T. L., Green, L. A., Gartman, N., and Lehmann, C. M.
B.: Stability of organic nitrogen in NADP wet deposition samples, Atmos.
Environ., 60, 573–582, https://doi.org/10.1016/j.atmosenv.2012.06.059, 2012.
Walker, J. T., Bell, M. D., Schwede, D., Cole, A., Beachley, G., Lear, G.,
and Wu, Z.: Aspects of uncertainty in total reactive nitrogen deposition
estimates for North American critical load applications, Sci. Total
Environ., 690, 1005–1018, https://doi.org/10.1016/j.scitotenv.2019.06.337,
2019a.
Walker, J. T., Beachley, G., Amos, H. M., Baron, J. S., Bash, J.,
Baumgardner, R., Bell, M. D., Benedict, K. B., Chen, X., Clow, D. W., Cole,
A., Coughlin, J. G., Cruz, K., Daly, R. W., Decina, S. M., Elliott, E. M.,
Fenn, M. E., Ganzeveld, L., Gebhart, K., Isil, S. S., Kerschner, B. M.,
Larson, R. S., Lavery, T., Lear, G. G., Macy, T., Mast, M. A., Mishoe, K.,
Morris, K. H., Padgett, P. E., Pouyat, R. V., Puchalski, M., Pye, H., Rea,
A. W., Rhodes, M. F., Rogers, C. M., Saylor, R., Scheffe, R., Schichtel, B.
A., Schwede, D. B., Sexstone, G. A., Sive, B. C., Sosa, R., Templer, P. H.,
Thompson, T., Tong, D., Wetherbee, G. A., Whitlow, T. H., Wu, Z., Yu, Z.,
and Zhang, L.: Toward the improvement of total nitrogen deposition budgets
in the United States, Sci. Total Environ., 691, 1328–1352,
https://doi.org/10.1016/j.scitotenv.2019.07.058, 2019b.
Walker, J. T., Beachley, G., Zhang, L., Benedict, K. B., Sive, B. C., and
Schwede, D. B.: A review of measurements of air-surface exchange of reactive
nitrogen in natural ecosystems across North America, Sci. Total Environ.,
698, 133975, https://doi.org/10.1016/j.scitotenv.2019.133975, 2020.
Wang, L., Xu, Y., and Schjoerring, J. K.: Seasonal variation in ammonia
compensation point and nitrogen pools in beech leaves (Fagus sylvatica), Plant
Soil, 343, 51–66, https://doi.org/10.1007/s11104-010-0693-7, 2011.
Weathers, K. C., Simkin, S. M., Lovett, G. M., and Lindberg, S. E.:
Empirical modeling of atmospheric deposition in mountainous landscapes,
Ecol. Appl., 16, 1590–1607, 2006.
Wentworth, G. R., Murphy, J. G., Benedict, K. B., Bangs, E. J., and Collett Jr., J. L.: The role of dew as a night-time reservoir and morning source for atmospheric ammonia, Atmos. Chem. Phys., 16, 7435–7449, https://doi.org/10.5194/acp-16-7435-2016, 2016.
Whitall, D. R. and Paerl, H. W.: Spatiotemporal variability of wet
atmospheric nitrogen deposition to the Neuse River Estuary, North Carolina,
J. Environ. Qual., 30, 1508–1515, https://doi.org/10.2134/jeq2001.3051508x,
2001.
Williams, E. J., Baumann, K., Roberts, J. M., Bertman, S. B., Norton, R. B.,
Fehsenfeld, F. C., Springston, S. R., Nunnermacker, L. G., Newman, L.,
Olszyna, K, Meagher, J., Hartsell, B., Edgerton, E., Perason, J. R., and
Rodgers, M. O.: Intercomparison of ground-based NOy measurements techniques,
J. Geophys. Res.-Atmos., 103, 22261–22280,
https://doi.org/10.1029/98JD00074, 1998.
Wolfe, G. M., Thornton, J. A., Yatavelli, R. L. N., McKay, M., Goldstein, A.
H., LaFranchi, B., Min, K.-E., and Cohen, R. C.: Eddy covariance fluxes of
acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest,
Atmos. Chem. Phys., 9, 615–634, https://doi.org/10.5194/acp-9-615-2009,
2009.
Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.-M., and Wei, C.: Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010, Atmos. Chem. Phys., 13, 7531–7549, https://doi.org/10.5194/acp-13-7531-2013, 2013.
Yao, X. and Zhang, L.: Causes of large increases in atmospheric ammonia in
the last ecade across North America, ACS Omega, 4, 22133–22142,
https://doi.org/10.1021/acsomega.9b03284, 2019.
Yi, C.: Momentum transfer within canopies, J. Appl. Climat., 47, 262–275,
https://doi.org/10.1175/2007JAMC1667.1, 2008.
Yu, F., Nair, A. A., and Luo, G.: Long-term trend of gaseous ammonia over
the United States: Modeling and comparison with observations, J. Geophys.
Res.-Atmos., 123, 8315–8325, https://doi.org/10.1029/2018JD028412,
2018.
Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M. D., and Iqbal, S.: Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites, Atmos. Chem. Phys., 8, 7133–7151, https://doi.org/10.5194/acp-8-7133-2008, 2008.
Zhang, R., Thompson, T. M., Barna, M. G., Hand, J. L., McMurray, J. A., Bell, M. D., Malm, W. C., and Schichtel, B. A.: Source regions contributing to excess reactive nitrogen deposition in the Greater Yellowstone Area (GYA) of the United States, Atmos. Chem. Phys., 18, 12991–13011, https://doi.org/10.5194/acp-18-12991-2018, 2018.
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess...
Altmetrics
Final-revised paper
Preprint