Articles | Volume 21, issue 15
https://doi.org/10.5194/bg-21-3523-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3523-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reefal ostracod assemblages from the Zanzibar Archipelago (Tanzania)
Bonn Institute for Organismic Biologie, Paläontologie, Universität Bonn, Bonn, Germany
Bonn Institute for Organismic Biologie, Paläontologie, Universität Bonn, Bonn, Germany
Moriaki Yasuhara
School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China
State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
Chih-Lin Wei
Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
Related authors
No articles found.
Jialu Huang, Moriaki Yasuhara, He Wang, Pedro Julião Jimenez, Jiying Li, and Minhan Dai
Biogeosciences, 22, 4763–4777, https://doi.org/10.5194/bg-22-4763-2025, https://doi.org/10.5194/bg-22-4763-2025, 2025
Short summary
Short summary
We investigated the abundance, diversity, composition, and distribution of ostracods (a meiobenthic group) and their interactions with eutrophication and pollution through high-resolution sampling of surface sediment in Deep Bay, a small semi-enclosed riverine bay adjacent to two of the world’s most populated cities: Hong Kong and Shenzhen. The results support the idea that ostracods are a useful bioindicator of coastal benthic ecosystems shaped by distinct environmental problems.
Moriaki Yasuhara and Yuanyuan Hong
J. Micropalaeontol., 43, 519–527, https://doi.org/10.5194/jm-43-519-2024, https://doi.org/10.5194/jm-43-519-2024, 2024
Short summary
Short summary
We revisited a 19th-century taxonomic study on Hong Kong marine ostracods (the first study on Chinese marine ostracods) to compare it with a 21st-century survey. We found substantial differences in species, likely related to differences in pollution and climate between the 19th and 21st centuries. This discovery highlights the importance of historical ecology. Early natural historians documented "natural baseline" ecosystems before the substantial human presence with industrialization.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024, https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of low-oxygen stress for marine animals including their use, research needs, and application to confront the challenges of ocean oxygen loss.
Anna E. Weinmann, Olga Koukousioura, Maria V. Triantaphyllou, and Martin R. Langer
Web Ecol., 23, 71–86, https://doi.org/10.5194/we-23-71-2023, https://doi.org/10.5194/we-23-71-2023, 2023
Short summary
Short summary
This study analyzes the diversity of benthic foraminifera at the range expansion front of the invasive species Amphistegina lobifera in Corfu (central Mediterranean). The species has been suggested to impact local diversity and community structures, and our results confirm these effects as soon as A. lobifera exceeds a specific abundance threshold (> 20 %). Nevertheless, we found that the study area reveals an overall high biodiversity that can be attributed to its unique location.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Cited articles
Babinot, J.-F. and Degaugue-Michalski, F.: Lagoonal to reefal ostracod assemblages from Holocene and Recent deposits, Chesterfield Islands and northern New Caledonia (southwestern Pacific), Micropaleontology, 42, 351–362, https://doi.org/10.2307/1485957, 1996.
Bravo, H., Cannicci, S., Huyghe, F., Leermakers, M., Sheikh, M. A., and Kochzius, M.: Ecological health of coral reefs in Zanzibar, Reg. Stud. Mar. Sci., 48, 102014, https://doi.org/10.1016/j.rsma.2021.102014, 2021.
Carvalho, S., Cunha, M. R., Pereira, F., Pousão-Ferreira, P., Santos, M., and Gaspar, M.: The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast, Helgoland Mar. Res., 66, 489–501, https://doi.org/10.1007/s10152-011-0285-9, 2012.
Chao, A. and Ricotta, C.: Quantifying evenness and linking it to diversity, beta diversity, and similarity, Ecology, 100, e02852, https://doi.org/10.1002/ecy.2852, 2019.
Chao, A., Chiu, C.-H., and Jost, L.: Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers, Annu. Rev. Ecol. Evol. S., 45, 297–324, https://doi.org/10.1146/annurev-ecolsys-120213-091540, 2014a.
Chao, A., Gotelli, N. J., Hsieh, T., Sander, E. L., Ma, K., Colwell, R. K., and Ellison, A. M.: Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies, Ecol. Monogr., 84, 45–67, https://doi.org/10.1890/13-0133.1, 2014b.
Chao, A., Kubota, Y., Zelený, D., Chiu, C. H., Li, C. F., Kusumoto, B., Yasuhara, M., Thorn, S., Wei, C. L., and Costello, M. J.: Quantifying sample completeness and comparing diversities among assemblages, Ecol. Res., 35, 292–314, https://doi.org/10.1111/1440-1703.12102, 2020.
Costello, M. J., Tsai, P., Wong, P. S., Cheung, A. K. L., Basher, Z., and Chaudhary, C.: Marine biogeographic realms and species endemicity, Nat. Commun., 8, 1–10, https://doi.org/10.1038/s41467-017-01121-2, 2017.
Fox, R. and Bellwood, D.: Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs, Coral Reefs, 32, 13–23, https://doi.org/10.1007/s00338-012-0945-5, 2013.
Frenzel, P. and Boomer, I.: The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change, Palaeogeogr. Palaeocl., 225, 68–92, https://doi.org/10.1016/j.palaeo.2004.02.051, 2005.
Gavrilets, S. and Losos, J. B.: Adaptive radiation: contrasting theory with data, Science, 323, 732–737, https://doi.org/10.1126/science.1157966, 2009.
Glenn-Sullivan, E. C. and Evans, I.: The effects of time-averaging and taphonomy on the identification of reefal sub-environments using larger foraminifera: Apo Reef, Mindoro, Philippines, Palaios, 16, 399–408, https://doi.org/10.1669/0883-1351(2001)016%3C0399:TEOTAA%3E2.0.CO;2, 2001.
Grimsditch, G. D., Tamelander, J., Mwaura, J., Zavagli, M., Takata, Y., and Gomez, T.: Coral reef resilience assessment of the Pemba channel conservation area, Tanzania, IUCN, ISBN: 978-2-8317-1181-2, 2009.
Hartmann, G.: Zur Kenntnis des Eulitorals der afrikanischen Westküste zwischen Angola und Kap der Guten Hoffnung und der afrikanischen Ostküste von Südafrika und Mocambique unter besonderer Berücksichtigung der Polychaeten und Ostracoden, Mitteil. Hamburg. Zoolog. Mus. Inst., 69, 229–521, 1974.
Hill, M. O.: Diversity and evenness: a unifying notation and its consequences, Ecology, 54, 427–432, https://doi.org/10.2307/1934352, 1973.
Hong, Y., Yasuhara, M., Iwatani, H., Harnik, P. G., Chao, A., Cybulski, J. D., Liu, Y., Ruan, Y., Li, X., and Wei, C.-L.: Benthic ostracod diversity and biogeography in an urbanized seascape, Mar. Micropaleontol., 174, 102067, https://doi.org/10.1016/j.marmicro.2021.102067, 2022.
Hsieh, T., Ma, K., and Chao, A.: iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers), Methods Ecol. Evol., 7, 1451–1456, https://doi.org/10.1111/2041-210X.12613, 2016.
Jellinek, T.: Zur Ökologie und Systematik rezenter Ostracoden aus dem Bereich des kenianischen Barriere-riffs, Senckenb. Lethaea, 73, 83–335, 1993.
Kamiya, T.: Morphological and ethological adaptations of Ostracoda to microhabitats in Zostera beds, Dev. Palaeontol. Stratigr., 11, 303–318, https://doi.org/10.1016/S0920-5446(08)70191-2, 1988.
Keyser, D.: Ecology and zoogeography of recent brackish-water ostracoda (Crustacea) from south-west Florida, in: Aspects of ecology and zoogeography of recent and fossil Ostracoda, W. Junk, The Hague, 207–222, ISBN: 9061935814, 1977.
Keyser, D. and Mohammed, M.: Taxonomy of recent shallow marine Ostracods from Al-Hudeida City-Yemen, Mar. Micropaleontol., 164, 101974, https://doi.org/10.1016/j.marmicro.2021.101974, 2021.
Knowlton, N.: Iconic coral reef degraded despite substantial protection, P. Natl. Acad. Sci. USA, 109, 17734–17735, https://doi.org/10.1073/pnas.1215836109, 2012.
Knowlton, N. and Jackson, J. B. C.: Shifting baselines, local impacts, and global change on coral reefs, PLoS Biol., 6, e54, https://doi.org/10.1371/journal.pbio.0060054, 2008.
Kohn, A. J., Ormond, R., Gage, J., and Angel, M.: Why are coral reef communities so diverse, in: Marine biodiversity: Patterns and processes, Cambridge University Press, 201–215, ISBN: 0521552222, 1997.
Kruskal, J. B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 1–27, https://doi.org/10.1007/BF02289565, 1964.
Langer, M. and Lipps, J.: Foraminiferal distribution and diversity, Madang reef and lagoon, Papua New Guinea, Coral Reefs, 22, 143–154, https://doi.org/10.1007/s00338-003-0298-1, 2003.
Larsen, J., Maar, M., Rasmussen, M. L., Hansen, L. B., Hamad, I. Y., and Stæhr, P. A. U.: High-resolution hydrodynamics of coral reefs and tracing of pollutants from hotel areas along the west coast of Unguja Island, Zanzibar, Mar. Pollut. Bull., 191, 114968, https://doi.org/10.1016/j.marpolbul.2023.114968, 2023.
Leray, M. and Knowlton, N.: DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity, P. Natl. Acad. Sci. USA, 112, 2076–2081, https://doi.org/10.1073/pnas.1424997112, 2015.
Maddocks, R. F.: Revision of Recent Bairdiidae (Ostracoda), in: Bulletin of the United States National Museum, United States National Museum, https://doi.org/10.5479/si.03629236.295.1, 1969.
Maddocks, R. F.: New and poorly known species of Neonesidea (Bairdiidae, Ostracoda, Crustacea) from French Frigate Shoals, the Hawaiian Islands, Zootaxa, 3608, 457–510, https://doi.org/10.11646/zootaxa.3608.6.3, 2013.
Mamo, B. L., Cybulski, J. D., Hong, Y., Harnik, P. G., Chao, A., Tsujimoto, A., Wei, C.-L., Baker, D. M., and Yasuhara, M.: Modern biogeography of benthic foraminifera in an urbanized tropical marine ecosystem, Geological Society, London, Special Publications, 529, SP529-2022-2175, https://doi.org/10.1144/SP529-2022-175, 2023.
Morley, M. S. and Hayward, B. W.: Intertidal and shallow-water ostracoda of the Waitemata Harbour, New Zealand, Records of the Auckland Museum, 17–32, https://www.jstor.org/stable/42905892 (last access: 31 July 2024), 2007.
Mostafawi, N., Colin, J.-P., and Babinot, J.-F.: An account on the taxonomy of ostracodes from recent reefal flat deposits in Bali, Indonesia, Revue de Micropaleontologie, 48, 123–140, https://doi.org/10.1016/j.revmic.2004.12.001, 2005.
Munef, M. A., Al-Wosabi, M. A., Keyser, D., and Al-Kadasi, W. M.: Distribution and taxonomy of shallow marine Ostracods from northern Socotra Island (Indian Ocean)-Yemen, Revue de Micropaléontologie, 55, 149–170, https://doi.org/10.1016/j.revmic.2012.06.004, 2012.
Narayan, G. R., Herrán, N., Reymond, C. E., Shaghude, Y. W., and Westphal, H.: Local Persistence of Large Benthic Foraminifera (LBF) under Increasing Urban Development: A Case Study from Zanzibar (Unguja), East Africa, J. Earth Sci., 33, 1434–1450, https://doi.org/10.1007/s12583-022-1702-5, 2022.
Nogueira, A. A. E. and Ramos, M. I. F.: The genus Perissocytheridea Stephenson, 1938 (Crustacea: Ostracoda) and evidence of brackish water facies along the Oligo-Miocene, Pirabas Formation, eastern Amazonia, Brazil, J. S. Am. Earth Sci., 65, 101–121, https://doi.org/10.1016/j.jsames.2015.11.007, 2016.
Obura, D.: The diversity and biogeography of Western Indian Ocean reef-building corals, PLoS one, 7, e45013, https://doi.org/10.1371/journal.pone.0045013, 2012.
Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P., O'Hara, R., Simpson, G., and Solymos, P.: Vegan community ecology package version 2.5 – 7 November 2020, R Project for Statistical Computing [code], Vienna, Austria, https://doi.org/10.32614/CRAN.package.vegan, 2020.
Plaisance, L., Caley, M. J., Brainard, R. E., and Knowlton, N.: The diversity of coral reefs: what are we missing?, PloS one, 6, e25026, https://doi.org/10.1371/journal.pone.0025026, 2011.
Roth, F., Saalmann, F., Thomson, T., Coker, D. J., Villalobos, R., Jones, B., Wild, C., and Carvalho, S.: Coral reef degradation affects the potential for reef recovery after disturbance, Mar. Environ. Res., 142, 48–58, https://doi.org/10.1016/j.marenvres.2018.09.022, 2018.
Souza, M. C. S., Massei, K., Vianna, P. C. G., Santos, C. A. G., Mishra, M., and da Silva, R. M.: Assessment of macrobenthos diversity and a zoning proposal for Seixas coral reefs (northeastern Brazil), Mar. Pollut. Bull., 195, 115443, https://doi.org/10.1016/j.marpolbul.2023.115443, 2023.
Tabuki, R.: Preliminary report on ostracode fauna from Sekisei-sho area, Yaeyama Islands, Bulletin of College of Education, 31, 323–335, https://cir.nii.ac.jp/crid/1572824499572084608, 1987.
Tabuki, R.: The Ostracoda of the Sekisei-sho area, Ryukyu Islands, Japan: a preliminary report on the ostracods from coral reefs in the Ryukyu Islands, Ostracoda and Global Events, 365, 365–373, https://cir.nii.ac.jp/crid/1573668924502213632, 1990.
Thissen, J. and Langer, M.: Spatial Patterns and Structural Composition of Foraminiferal Assemblages from the Zanzibar Archipelago (Tanzania), Palaeontogr. Abt. A, 308, 1–67, https://doi.org/10.1127/pala/308/2017/1, 2017.
Tian, S. Y., Yasuhara, M., Robinson, M. M., and Huang, H.-H. M.: Ostracod eye size: A taxonomy-free indicator of the Paleocene-Eocene Thermal Maximum sea level, Mar. Micropaleontol., 174, 101994, https://doi.org/10.1016/j.marmicro.2021.101994, 2022.
Titterton, R. and Whatley, R.: Recent Bairdiinae (Crustacea, Ostracoda) from the Solomon Islands, J. Micropalaeontol., 7, 111–142, https://doi.org/10.1144/jm.7.2.111, 1988.
Ussi, A., Mohammed, M., Muhando, C., and Yahya, S.: Ecological impact of thermal stress in reefs of Zanzibar following the 2016 elevated higher sea surface temperatures, in: Climate Change and Coastal Resources in Tanzania, Springer Climate, Springer Cham, 93–115, https://doi.org/10.1007/978-3-030-04897-6, 2019.
Weissleader, L. S., Gilinsky, N. L., Ross, R. M., and Cronin, T. M.: Biogeography of marine podocopid ostracodes in Micronesia, J. Biogeogr., 16, 103–114, https://doi.org/10.2307/2845084, 1989.
Whatley, R. C. and Watson, K.: A preliminary account of the distribution of Ostracoda in recent reef and reef associated environments in the Pulau Seribu or Thousand Island Group, Java Sea, Dev. Palaeontol. Stratigr., 11, 399–411, https://doi.org/10.1016/S0920-5446(08)70197-3, 1988.
Wickham, H.: reshape2: flexibly reshape data: a reboot of the reshape package, R package version [code], 1, https://doi.org/10.32614/CRAN.package.reshape2, 2020.
Yasuhara, M., Tittensor, D. P., Hillebrand, H., and Worm, B.: Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model, Biol. Rev., 92, 199–215, https://doi.org/10.1111/brv.12223, 2017.
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
Through the first large-scale study of meiobenthic ostracods from the diverse and productive...
Altmetrics
Final-revised paper
Preprint