Articles | Volume 21, issue 19
https://doi.org/10.5194/bg-21-4251-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4251-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How is particulate organic carbon transported through the river-fed submarine Congo Canyon to the deep sea?
Sophie Hage
CORRESPONDING AUTHOR
Geo-Ocean, UMR6538, Univ Brest, Ifremer, CNRS, Plouzané, France
Megan L. Baker
Departments of Geography and Earth Sciences, Durham University, Durham, UK
Nathalie Babonneau
Geo-Ocean, UMR6538, Univ Brest, Ifremer, CNRS, Plouzané, France
Guillaume Soulet
Geo-Ocean, UMR6538, Univ Brest, Ifremer, CNRS, Plouzané, France
Bernard Dennielou
Geo-Ocean, UMR6538, Univ Brest, Ifremer, CNRS, Plouzané, France
Ricardo Silva Jacinto
Geo-Ocean, UMR6538, Univ Brest, Ifremer, CNRS, Plouzané, France
Robert G. Hilton
Department of Earth Sciences, University of Oxford, Oxford, UK
Valier Galy
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
François Baudin
ISTeP, UMR 7193, Sorbonne Université, CNRS, Paris, France
Christophe Rabouille
LSCE, UMR 8212, CEA-CNRS-UVSQ, IPSL and Université Paris-Saclay, Gif-sur-Yvette, France
Clément Vic
Univ Brest, CNRS, Ifremer, IRD, Laboratoire d'Oceìanographie Physique et Spatiale (LOPS), IUEM, Plouzané, France
Sefa Sahin
School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
Sanem Açikalin
School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
Peter J. Talling
Departments of Geography and Earth Sciences, Durham University, Durham, UK
Related authors
No articles found.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
SOIL, 11, 467–488, https://doi.org/10.5194/soil-11-467-2025, https://doi.org/10.5194/soil-11-467-2025, 2025
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need for careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Clément Vic, and Florent Lyard
EGUsphere, https://doi.org/10.5194/egusphere-2025-95, https://doi.org/10.5194/egusphere-2025-95, 2025
Short summary
Short summary
Temporal variability of the semidiurnal internal tide around New Caledonia is investigated using regional modeling. An important contribution to temporal variability not linked to the astronomically-forced spring-neap cycle is due to the presence of mesoscale eddies, both at the generation sites and in propagation direction. The incoherent tide has a widespread signature in sea surface height (SSH) challenging the SSH observability of mesoscale to submesoscale dynamics.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Chloé Truong, Sylvain Bernard, François Baudin, Aurore Gorlas, and François Guyot
Eur. J. Mineral., 36, 813–830, https://doi.org/10.5194/ejm-36-813-2024, https://doi.org/10.5194/ejm-36-813-2024, 2024
Short summary
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Laurent Brodeau, Aurélie Albert, Michel Tchilibou, Florent Lyard, and Clément Vic
Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023, https://doi.org/10.5194/os-19-1315-2023, 2023
Short summary
Short summary
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional modeling quantifies the coherent internal tide and shows that most energy is converted in shallow waters and on very steep slopes. The region is a challenge for observability of balanced dynamics due to strong internal-tide sea surface height (SSH) signatures at similar wavelengths. Correcting the SSH for the coherent internal tide may increase the observability of balanced motion to < 100 km.
Guillaume Soulet, Philippe Maestrati, Serge Gofas, Germain Bayon, Fabien Dewilde, Maylis Labonne, Bernard Dennielou, Franck Ferraton, and Giuseppe Siani
Geochronology, 5, 345–359, https://doi.org/10.5194/gchron-5-345-2023, https://doi.org/10.5194/gchron-5-345-2023, 2023
Short summary
Short summary
The marine reservoir age (MRA) is the difference between the 14C age of the ocean and that of the atmosphere at a given time. In geochronology, knowing the local MRA is important to derive accurate calibrated ages for 14C-dated marine material. However, MRA values for coastal West Africa are scarce. From the 14C dating of known-age bivalves from museum collections, we calculated MRA values and populated the MRA dataset for coastal West Africa over a latitudinal transect from 33°N to 15°S.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Cited articles
Anderson, R. Y.: Short term sedimentation response in lakes in western United States as measured by automated sampling, Limnol. Oceanogr., 22, 423–433, https://doi.org/10.4319/lo.1977.22.3.0423, 1977.
Ascough, P., Bompard, N., Garnett, M. H., Gulliver, P., Murray, C., Newton, J.-A., and Taylor, C.: 14C Measurement of Samples for Environmental Science Applications at the National Environmental Isotope Facility (NEIF) Radiocarbon Laboratory, SUERC, UK, Radiocarbon, https://doi.org/10.1017/RDC.2024.9, 2024.
Azpiroz-Zabala, M., Cartigny, M. J. B., Talling, P. J., Parsons, D. R., Sumner, E. J., Clare, M. A., Simmons, S. M., Cooper, C., and Pope, E. L.: Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons, Science Advances, 3, e1700200, https://doi.org/10.1126/sciadv.1700200, 2017.
Babonneau, N., Savoye, B., Cremer, M., and Klein, B.: Morphology and Architecture of the present canyon and channel system of the Zaire deep-sea fan, Mar. Petrol. Geol., 19, 445–467, 2002.
Babonneau, N., Savoye, B., Cremer, M., and Bez, M.: Sedimentary Architecture in Meanders of a Submarine Channel: Detailed Study of the Present Congo Turbidite Channel (Zaiango Project), J. Sediment. Res., 80, 852–866, https://doi.org/10.2110/jsr.2010.078, 2010.
Baker, M. L., Hage, S., Talling, P. J., Acikalin, S., Hilton, R., Sahin, S., Ruffell, S. C., Pope, E. L., Silva Jacinto, R., and Clare, M. A.: Terrestrial organic carbon temporarily stored in submarine Congo Canyon is efficiently remobilised by canyon-flushing turbidity currents, Geology, 52, 631–636, 2024.
Baudin, F., Disnar, J. R., Martinez, P., and Dennielou, B.: Distribution of the organic matter in the channel-levees systems of the Congo mud-rich deep sea fan (West Africa). Implication for deep offshore petroleum source rocks and global carbon cycle, Mar. Petrol. Geol., 27, 995–1010, https://doi.org/10.1016/j.marpetgeo.2010.02.006, 2010.
Baudin, F., Disnar, J. R., Aboussou, A., and Savignac, F.: Guidelines for Rock-Eval analysis of recent marine sediments, Org. Geochem., 86, 71–80, https://doi.org/10.1016/j.orggeochem.2015.06.009, 2015.
Baudin, F., Stetten, E., Schnyder, J., Charlier, K., Martinez, P., Dennielou, B., and Droz, L.: Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan – A Rock-Eval survey, Deep-Sea Res. Pt. II, 142, 75–90, https://doi.org/10.1016/j.dsr2.2017.01.008, 2017.
Baudin, F., Rabouille, C., and Dennielou, B.: Routing of terrestrial organic matter from the Congo River to the ultimate sink in the abyss: a mass balance approach, Geol. Belg., 23, https://doi.org/10.20341/gb.2020.004, 2020.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance, Am. J. Sci., 282, 451–473, 1982.
Bouma, A. H.: Sedimentology of Some Flysch Deposits, Elsevier, Amsterdam, 1962.
Brun, L., Pairaud, I., Jacinto, R. S., Garreau, P., and Dennielou, B.: Strong hydrodynamic processes observed in the Mediterranean Cassidaigne submarine canyon, Front. Mar. Sci., 10, 1078831, https://doi.org/10.3389/fmars.2023.1078831, 2023.
Burdige, D. J.: Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Canals, M., Puig, P., de Madron, X., Heussner, S., Palanques, A., and Fabres, J.: Flushing submarine canyons, Nature, 444, 354–357, https://doi.org/10.1038/nature05271, 2006.
Cartigny, M. J. B., Ventra, D., Postma, G., van Den Berg, J. H., and Venditti, J.: “Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from numerical experiments”, Sedimentology, 61, 712–748, 2014.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J. G., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R., Piao, S., Thornton, P., Willem, J., Friedlingstein, P., and Munhoven, G.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.015, 2013.
Clare, M. A., Lintern, D. G., Rosenberger, K., Hughes Clarke, J. E., Paull, C. K., Gwiazda, R., Cartigny, M. J. B., Talling, P. J., Perara, D., Xu, J., Parsons, D. P., Silva Jacinto, R., and Apprioual, R.: Lessons learned from the monitoring of turbidity currents and guidance for future platform designs, Geol. Soc. Spec. Publ., 500, 605–634, https://doi.org/10.1144/SP500-2019-173, 2020.
Coynel, A., Seyler, P., Etcheber, H., Meybeck, M., and Orange, D.: Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River, Global Biogeochem. Cy., 19, 17, https://doi.org/10.1029/2004GB002335, 2005.
Dennielou, B., Droz, L., Jacq, C., Babonneau, N., Bonnel, C., Picot, M., Le Saout, M., Saout, J., Bez, M., Savoye, B., Olu, K., and Rabouille, C.: Morphology, structure, composition and build-up processes of the active Congo channel-mouth lobe complex with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys, Deep-Sea Res. Pt. II, 142, 25–49, https://doi.org/10.1016/j.dsr2.2017.03.010, 2017.
French, K. L., Hein, C. J., Haghipour, N., et al.: Millennial soil retention of terrestrial organic matter deposited in the Bengal Fan, Sci. Rep., 8, 11997, https://doi.org/10.1038/s41598-018-30091-8, 2018.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol, F.: Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system, Nature, 450, 407–410, 2007.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207, 2015.
Gardner, W. D.: Field assessment of sediment traps, J. Mar. Res., 38, 41–52, 1980.
Garrett, C. and Kunze, E.: Internal tide generation in the deep ocean, Annu. Rev. Fluid Mech., 39, 57–87, 2007.
Ge, Z., Nemec, W., Vellinga, A. J., and Gawthorpe, R. L.: How is a turbidite actually deposited?, Sci. Adv., 8, eabl9124, https://doi.org/10.1126/sciadv.abl9124, 2022.
Guiastrennec-Faugas, L., Gillet, H., Jacinto, R. S., Dennielou, B., Hanquiez, V., Schmidt, S., Simplet, L., and Rousset, A.: Upstream migrating knickpoints and related sedimentary processes in a submarine canyon from a rare 20 year morphobathymetric time-lapse (Capbreton submarine canyon, Bay of Biscay, France), Mar. Geol., 423, 106143, https://doi.org/10.1016/j.margeo.2020.106143, 2020.
Hage, S.: Particulate organic carbon measurements in the Congo Submarine Canyon, SEANOE [data set], https://doi.org/10.17882/99616, 2024.
Hage, S., Galy, V. V., Cartigny, M. J. B., Acikalin, S., Clare, M. A., Gröcke, D. R., Hilton, R. G., Hunt, J. E., Lintern, D. G., McGhee, C. A., Parsons, D. R., Stacey, C. D., Sumner, E. J., and Talling, P. J.: Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits, Geology, 48, 882–887, https://doi.org/10.1130/G47320.1, 2020.
Harris, P. T. and Whiteway, T.: Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins, Mar. Geol., 285, 69–86, https://doi.org/10.1016/j.margeo.2011.05.008, 2011.
Hecky, R. E. and Hesslein, R. H.: Contributions of benthic algae to lake food webs as revealed by stable isotope analysis, J. N. Am. Benthol. Soc., 14, 631–653, 1995.
Heezen, B. C. and Ewing, W. M.: Turbidity currents and submarine slumps, and the 1929 Grand Banks [Newfoundland] earthquake, Am. J. Sci., 250, 849–873, 1952.
Heezen, B. C., Menzies, R. J., Schneider, E. D., Ewing, W. M., and Granelli, N. C. L.: Congo Submarine Canyon, Am. Assoc. Petr. Geol. B., 48, 1126–1149, https://doi.org/10.1306/BC743D7F-16BE-11D7-8645000102C1865D, 1964.
Heijnen, M. S., Mienis, F., Gates, A. R., Bett, B. J., Hall, R. A., Hunt, Kane, I. A., Pebody, C., Huevenne, V. A. I., Soutter, E. L., and Clare, M. A.: Challenging the highstand-dormant paradigm for land-detached submarine canyons, Nat. Commun., 13, 3448, https://doi.org/10.1038/s41467-022-31114-9, 2022.
Hemingway, J., Rothman, D., Grant, K., Rosengard, S., Eglinton, T., Derry, L., and Galy, V.: Mineral protection regulates long-term global preservation of natural organic carbon, Nature, 228–231, 570, https://doi.org/10.1038/s41586-019-1280-6, 2019.
Hemingway, J. D., Schefuss, E., Spencer, R. G. M., Jean Dinga, B., Eglington, T. I., McIntyre, C., and Galy, V. V.: Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age, Chem. Geol., 466, 454–465, https://doi.org/10.1016/j.chemgeo.2017.06.034, 2017.
Hilton, R. G., Galy, A., Hovius, N., Kao, S. J., Horng, M. J., and Chen, H.: Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest, Global Biogeochem. Cy., 26, GB3014, https://doi.org/10.1029/2012GB004314, 2012.
Hua, Q., Turnbull, J. C., Santos, G. M., Rakowski, A. Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S. J., Levin, I., Miller, J. B., Palmer, J. G., and Turney, C. S. M.: Atmospheric Radiocarbon for the period 1950–2019, Radiocarbon, 64, 723–745, https://doi.org/10.1017/RDC.2021.95, 2022.
Hughes Clarke, J. E.: First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics, Nat. Commun., 7, 11896, https://doi.org/10.1038/ncomms11896, 2016.
Kao, S.-J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J.-C., Hsu, S.-C., Sparkes, R., Liu, J. T., Lee, T.-Y., Yang, J.-Y. T., Galy, A., Xu, X., and Hovius, N.: Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration, Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, 2014.
Khripounoff, A., Vangriesheim, A., Babonneau, N., Crassous, P., Dennielou, B., and Savoye, B.: Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth, Mar. Geol., 193, 151–158, 2003.
Khripounoff, A., Crassous, P., Lo Bue, N., Dennielou, B., and Silva Jacinto, R.: Different types of sediment gravity flows detected in the Var submarine canyon (northwestern Mediterranean Sea), Prog. Oceanogr., 106, 138–153, 2012.
Kneller, B. and Buckee, C.: The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications, Sedimentology, 47, 62–94, 2000.
Lahaye, N., Gula, J., Thurnherr, A. M., Reverdin, G., Bouruet-Aubertot, P., and Roullet, G.: Deep currents in the rift valley of the north mid-Atlantic ridge, Frontiers in Marine Science, 6, 597, https://doi.org/10.3389/fmars.2019.00597, 2019.
Laraque, A., Le Coz, J., Moukandi N'kaya, G. D., Bissemo, G., Ayissou, L., Rouché, N., Bricquet, J.-P., Yepez, S., and Gulemvuga, G.: Courbes de tarage du fleuve Congo à Brazzaville-Kinshasa, LHB Hydroscience Journal, 108, https://doi.org/10.1080/27678490.2022.2082338, 2022.
Lee, H., Galy, V., Feng, X., Ponton, C., Galy, A., France-Lanord, C., and Feakins, S. J.: Sustained wood burial in the Bengal Fan over the last 19 My, P. Natl. Acad. Sci. USA, 116, 22518–22525, 2019.
Li, M. Z., Prescott, R. H., and Robertson, A. G.: Observation of internal tides and sediment transport processes at the head of Logan Canyon on central Scotian Slope, eastern Canada, J. Marine Syst., 193, 103–125, 2019.
Liu, J. T., Hsu, R. T., Hung, J.-J., Chang, Y.-P., Wang, Y.-H., Rendle-Buhring, R. H., Lee, C.-L., Huh, C.-A., and Yang, R. J.: From the highest to the deepest: the Gaoping River – Gaoping Submarine Canyon dispersal system, Earth Sci. Rev., 153, 274–300, https://doi.org/10.1016/j.earscirev.2015.10.012, 2016.
Maier, K. L., Rosenberg, K. J., Paull, C. K., Gwiazda, R., Gales, J., Lorenseon, T., Barry, J. P., Talling, P. J., McGann, M., Xu, J., Lundsten, E., Anderson, K., Litvin, S. Y., Parsons, D. R., Clare, M. A., Simmons, S. M., Sumner, E. J., and Cartigny, M. J. B.: Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California, Deep-Sea Res. Pt. I, 153, 103108, https://doi.org/10.1016/j.dsr.2019.103108, 2019.
Mariotti, A., Gadel, F., Giresse, P., and Kinga-Mouzeo: Carbon Isotope compositions and geochemistry of particulate matter in the Congo River (Central Africa): Application to the study of Quaternary sediments off the mouth of the river, Chem. Geol., 86, 345–357, 1991.
Masson, D. G., Huvenne, V. A. I., de Stigter, H. D., Wolff, G. A., Kiriakoulakis, K., Arzola, R. G., and Blackbird, S.: Efficient burial of carbon in a submarine canyon, Geology, 38, 831–834, https://doi.org/10.1130/G30895.1, 2010.
McArthur, A. D., Kneller, B. C., Wakefield, M. I., Souza, P. A., and Kuchle, J.: Palynofacies classification of the depositional elements of confined turbidite systems: Examples from the Gres d'Annot, SE France, Mar. Petrol. Geol., 77, 1254–1273, 2016.
Middelburg, J. J.: A simple rate model for organic-matter decomposition in marine-sediments, Geochim. Cosmochim. Ac., 53, 1577–1581, 1989.
Miramontes, E., Eggenhuisen, J. T., Silva Jacinto, R., Poneti, G., Pohl, F., Normandeau, A., Campbell, D. C., and Hernandez-Molina, J.: Channel-levee evolution in combined contour current–turbidity current flows from flume-tank experiments, Geology, 48, 353–357, https://doi.org/10.1130/G47111.1, 2020.
Mollenhauer, G., Schneider, R. R., Jennerjahn, T., Muller, P. J., and Wefer, G.: Organic carbon accumulation in the South Atlantic Ocean: its modern, mid-Holocene and last glacial distribution, Global Planet. Change, 40, 249–266, 2004.
Mook, W. G. and van der Plicht, J.:Reporting 14C activities and concentrations, Radiocarbon, 41, 227–239, 1999.
Mulder, T., Zaragosi, S., Garlan, T., Mavel, J., Cremer, M., Sottolichio, A., Sénéchal, N., and Schmidt, S.: Present deep-submarine canyons activity in the Bay of Biscay (NE Atlantic), Mar. Geol., 295–298, 113–127, 2012.
Normandeau, A., Dafoe, L. T., Li, M. Z., Campbell, D. C., and Jenner, K. A.: Sedimentary record of bottom currents and internal tides in a modern highstand submarine canyon head, Sedimentology, 71, 1061–1083, https://doi.org/10.1111/sed.13165, 2024.
Paull, C. K., Ussler III, W., Mitts, P. J., Caress, D. W., and West, G. J.: Discordant 14C stratigraphies in upper Monterey Canyon: a signal of anthropogenic disturbance, Mar. Geol., 233, 21–36, https://doi.org/10.1016/j.margeo.2006.07.008, 2006.
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D. P., Xu, J., Caress, D. W., Gwiazda, R., Lundsten, E. V., Anderson, K., Barry, J. P., Chaffey, M., O'Reilly, T., Rosenberg, K. J., Gales, J. A., Kieft, B., McGann, M., Simmons, S. M., McCann, M., Sumner, E. J., Clare, M. A., and Cartigny, M. J. B.: Powerful turbidity currents driven by dense basal layers, Nat. Commun., 9, 4114, https://doi.org/10.1038/s41467-018-06254-6, 2018.
Pope, E. L., Heijnen, M. S., Talling, P. J., Silva Jacinto, R., Gaillot, A., Baker, M. L., Hage, S., Hasenhündl, M., Heerema, C. J., McGhee, C., Ruffel, S. C., Simmons, S. M., Cartigny, M. J. B., Clare, M. A., Dennielou, B., Parsons, D. R., Peirce, C., and Urlaub, M.: Landslide-dams affect sediment and carbon fluxes in deep-sea submarine canyons, Nat. Geosci., 13, 4193, https://doi.org/10.1038/s41561-022-01017-x, 2022.
Posamentier, H. W. and Kolla, V.: Seismic geomorphology and stratigraphy of depositional elements in deep-water settings, J. Sediment. Res., 73, 367–368, 2003.
Prahl, F. G., de Lange, G. J., Scholten, S., and Cowie, G. L.: A case of post-depositional degradation of terrestrial organic matter in turbidite deposits from Madeira Abyssal Plain, Org. Geochem., 27, 141–152, 1997.
Puig, P., Palanques, A., and Martin, J.: Contemporary sediment-transport processes in submarine canyons, Annu. Rev. Mar. Sci., 6, https://doi.org/10.1146/annurev-marine-010213-135037, 2014.
Rabouille, C., Caprais, J. C., Lansard, B., Crassous, P., Dedieu, K., Reyss, J. L., and Khripounoff, A.: Organic matter budget in the Southeast Atlantic continental margin close to the Congo Canyon: In situ measurements of sediment oxygen consumption, Deep-Sea Res. Pt. II, 56, 2223–2238, https://doi.org/10.1016/j.dsr2.2009.04.005, 2009.
Rabouille, C., Baudin, F., Dennielou, B., and Olu, K.: Organic carbon transfer and ecosystem functioning in the terminal lobes of the Congo deep-sea fan: outcomes of the Congolobe project, Deep-Sea Res. Pt. II, 142, 1–6, https://doi.org/10.1016/j.dsr2.2017.07.006, 2017a.
Rabouille, C., Olu, K., Baudin, F., Khripounoff, A., Dennielou, B., Arnaud-Haond, S., Babonneau, N., Bayle, C., Beckler, J., Bessette, S., Bombled, B., Bourgeois, S., Brandily, C., Caprais, J. C., Cathalot, C., Charlier, K., Corvaisier, R., Croguennec, C., Cruaud, P., Decker, C., Droz, L., Gayet, N., Godfroy, A., Hourdez, S., Le Bruchec, J., Le Saout, J., Lesaout, M., Lesongeur, F., Martinez, P., Mejanelle, L., Michalopoulos, P., Mouchel, O., Noel, P., Pastor, L., Picot, M., Pignet, P., Pozzato, L., Pruski, A. M., Rabiller, M., Raimonet, M., Ragueneau, O., Reyss, J. L., Rodier, P., Ruesch, B., Ruffine, L., Savignac, F., Senyarich, C., Schnyder, J., Sen, A., Stetten, E., Sun, M. Y., Taillefert, M., Teixeira, S., Tisnerat-Laborde, N., Toffin, L., Tourolle, J.,Toussaint, F., Vetion, G., Jouanneau, J. M., and Bez, M.: The Congolobe project, a multidisciplinary study of Congo deep-sea fanlobe complex: Overview of methods, strategies, observations and sampling, Deep-Sea Res. Pt. II, 142, 7–24, https://doi.org/10.1016/j.dsr2.2016.05.006, 2017b.
Rabouille, C., Dennielou, B., Baudin, F., Raimonet, M., Droz, L., Khripounoff, A., Martinez, P., Mejanelle, L., Michalopoulos, P., Pastor, L., Pruski, A., Ragueneau, O., Reyss, J.-L., Ruffine, L., Schnyder, J., Stetten, E., Taillefert, M., Tourolle, J., and Olu, K.: Carbon and silica megasink in deep-sea sediments of the Congo terminal lobes, Quaternary Sci. Rev., 222, 105854, https://doi.org/10.1016/j.quascirev.2019.07.036, 2019.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6, 597–607, 2013.
Regnier, P., Resplandy, L., Najjar, R. G., and Ciais, P.: The land-to ocean loops of the global carbon cycle, Nature, 603, 401–410, https://doi.org/10.1038/s41586-021-04339-9, 2022.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: reporting and calibration of post-bomb 14C data, Radiocarbon, 46, 1299–1304, 2004.
Saller, A., Lin, R., and Dunham, J.: Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia, Am. Assoc. Petr. Geol. B., 90, 1585–1608, https://doi.org/10.1306/04110605127, 2006.
Savoye, B., Cochonat, P., Apprioual, R., Bain, O., Baltzer, A., Bellec, V., Beuzart, P., Bourillet, J., Cagna, R., Cremer, M., Crusson, A., Dennielou, B., Diebler, D., Droz, L., Ennes, J., Floch, G., Foucher, J., Guiomar, M., Harmegnies, F., Kerbrat, R., Klein, B., Khun, H., Landure, J., Lasnier, C., Le Drezen, E., Le Formal, J., Lopez, M., Loubrieu, B., Marsset, T., Migeon, S., Normand, A., Nouze, H., Ondreas, H., Pelleau, P., Saget, P., Seranne, M., Sibuet, J. C., Tofani, R., and Voisset, M.: Structure et évolution récente de l'éventail turbiditique du Zaïre: Premiers résultats scientifiques des missions d'exploration ZaïAngo 1 and 2 (marge Congo-Angola), C.R. Acad. Sci. II A, 311, 211–220, https://doi.org/10.1016/S1251-8050(00)01385-9, 2000.
Sequeiros, O. E., Naruse, H., Endo, N., Garcia, M. H., and Parker, G.: Experimental study on self-accelerating turbidity currents, J. Geophys. Res., 114, C05025, https://doi.org/10.1029/2008JC005149, 2009.
Simmons, S. M., Azpiroz-Zabala, M., Cartigny, M. J. B., Clare, M. A., Cooper, C., Parsons, D. R., Pope, E. L. Sumner, E. J., and Talling, P. J.: Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents, J. Geophys. Res.-Oceans, 125, e2019JC015904, https://doi.org/10.1029/2019JC015904, 2020.
Skinner, L. C. and Bard, E.: Radiocarbon as a dating tool and tracer in paleoceanography, Rev. Geophys., 60, e2020RG000720, https://doi.org/10.1029/2020RG000720, 2022.
Soulet, G., Skinner, L. C., Beaupré, S. R., and Galy, V.: A note on reporting of reservoir 14C disequilibria and age offsets, Radiocarbon, 58, 205–221, 2016.
Spencer, R. G. M., Hernes, P. J., Aufdenkampe, A. K., Baker, A., Gulliver, P., Stubbins, A., Aiken, G. R., Dyda, R. Y., Butler, K. D., Mwamba, V. L., Mangangu, A. M., Wabakanghanzi, J. N., and Six, J.: An initial investigation into the organic matter biogeochemistry of the Congo River, Geochim. Cosmochim. Ac., 84, 614–627, https://doi.org/10.1016/j.gca.2012.01.013, 2012.
Stetten, E., Baudin, F., Reyss, J. L., Martinez, P., Charlier, K., Schnyder, J., Rabouille, C., Dennielou, B., Coston-Guarini, J., and Pruski, A.: Organic matter characterization and distribution in sediments of the terminal lobes of the Congo deep-sea fan: evidence for the direct influence of the Congo River, Mar. Geol., 369, 182–195, https://doi.org/10.1016/j.margeo.2015.08.020, 2015.
Stuiver, M. and Polach, H. A.: Discussion: reporting of 14C data, Radiocarbon, 19, 355–363, 1977.
Sumner, E. J. and Paull, C. K.: Swept away by a turbidity current in Mendocino submarine canyon, California, Geophys. Res. Lett., 41, 7611–7618, https://doi.org/10.1002/2014GL061863, 2014.
Symons, W. O., Sumner, E. J., Paull, C. K., Cartigny, M. J. B., Xu, J. P., Maier, K. L., Lorenson, T. D., and Talling, P. J.: A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon, Geology, 45, 367–370, https://doi.org/10.1130/G38764.1, 2017.
Talling, P. J., Baker, M. L., Pope, E. L., Ruffell, S. C., Silva Jacinto, R., Heijnen, M. S., Hage, S., Simmons, S. M., Hasenhündl, M., Heerema, C. J., McGhee, C., Apprioual, R., Ferrant, A., Cartigny, M. J. B., Parsons, D. R., Clare, M. A., Tshimanga, R. M., Trigg, M. A., Cula, C. A., Faria, C. A., Gaillot, A., Bola, G., Wallance, D., Griffiths, A., Nunny, R., Urlaub, M., Peirce, C., Burnett, R., Neasham, J., and Hilton, R. J.: Longest sediment flows yet measured show how major rivers connect efficiently to deep sea, Nat. Commun., 13, 4193, https://doi.org/10.1038/s41467-022-31689-3, 2022.
Talling, P. J., Cartigny, M. J. B., Pope, E., Baker, M., Clare, M. A., Heijnen, M., Hage, S., Parsons, D. R., Simmons, S. M., Paull, C. K., Gwiazda, R., Lintern, G., Hughes Clarke, J. E., Xu, J., Silva Jacinto, R., and Maier, K. L.: Detailed monitoring reveals the nature of submarine turbidity currents, Nature Reviews Earth & Environment, 4, 642–658, https://doi.org/10.1038/s43017-023-00458-1, 2023.
Talling, P. J., Hage, S., Baker, M., Hilton, R., Bianchi, D., and Maier, K.: The global turbidity current pump and its implications for organic carbon cycling, Annu. Rev. Mar. Sci., 16, 105–133, https://doi.org/10.1146/annurev-marine-032223-103626, 2024.
Tegler, L. A., Horner, T. J., Galy, V., Bent, S. M., Wang, Y., Kim, H. H., Mete, O. Z., and Nielsen, S. G.: Distribution and drivers of organic carbon sedimentation along the continental margins, AGU Adv. 5, e2023AV001000, https://doi.org/10.1029/2023AV001000, 2024.
Treignier, C., Derenne, S., and Saliot, A.: Terrestrial and marine n-alcohol inputs and degradation processes relating to a sudden turbidity current in the Zaire canyon, Org. Geochem., 37, 1170–1184, https://doi.org/10.1016/j.orggeochem.2006.03.010, 2006.
Vallaeys, V., Lambrechts, J., Delandmeter, P., Pätsch, J., Spitzy, A., Hanert, E., and Deleersnijder, E.: Understanding the circulation in the deep, micro-tidal and strongly stratified Congo River estuary, Ocean Model., 167, 101890, https://doi.org/10.1016/j.ocemod.2021.101890, 2021.
van der Voort, T. S., Blattmann, T. M., Usman, M., Montluçon, D., Loeffler, T., Tavagna, M. L., Gruber, N., and Eglinton, T. I.: MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon): a (radio)carbon-centric database for seafloor surficial sediments, Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, 2021.
Vangriesheim, A., Khripounoff, A., and Crassous, P.: Turbidity events observed in situ along the Congo submarine channel, Deep-Sea Res. Pt. II, 56, 2208–2222, https://doi.org/10.1016/j.dsr2.2009.04.004, 2009.
Welch, P.: The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE T. Acoust. Speech., 15, 70–73, 1967.
Co-editor-in-chief
This study documents a unique and highly efficient process of particulate organic carbon (POC) transfer from a major river estuary to the deep ocean. By providing the first direct observations of Congo River-derived POC at significant depths, the study reveals how both turbidity currents and tidal forces facilitate the movement of large carbon quantities to the Congo deep-sea fan, 1,200 km from the river mouth. Given that the Congo River contributes about 7% of the total organic carbon from the world's rivers, the findings highlight a potentially underestimated component of the global carbon cycle, making this research crucial for refining carbon cycle models and understanding carbon dynamics along the land-ocean continuum.
This study documents a unique and highly efficient process of particulate organic carbon (POC)...
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting...
Altmetrics
Final-revised paper
Preprint