Articles | Volume 21, issue 21
https://doi.org/10.5194/bg-21-4837-2024
https://doi.org/10.5194/bg-21-4837-2024
Research article
 | 
06 Nov 2024
Research article |  | 06 Nov 2024

Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments

Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye

Data sets

Laboratory measurements of nitrous oxide production rates in agricultural soils from Lancaster, PA, estuarine sediments from the Scheldt Estuary Belgium/Netherlands, and estuarine soils from the Delaware River NJ under gradients of physicochemical perturbation N. B. Weston https://doi.org/10.6073/pasta/49650b321b5c977b5e8baa92d991254b

Download
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Altmetrics
Final-revised paper
Preprint