Articles | Volume 21, issue 21
https://doi.org/10.5194/bg-21-4837-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4837-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Nathaniel B. Weston
CORRESPONDING AUTHOR
Department of Geography and the Environment, Villanova University, Villanova, PA 19085, USA
Cynthia Troy
Department of Geography and the Environment, Villanova University, Villanova, PA 19085, USA
Patrick J. Kearns
Department of Marine and Environmental Sciences, Northeastern University, Marine Science Center, Nahant, MA 01908, USA
current address: Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
Jennifer L. Bowen
Department of Marine and Environmental Sciences, Northeastern University, Marine Science Center, Nahant, MA 01908, USA
William Porubsky
Algenol Biofuels, Fort Myers, FL 33912, USA
Christelle Hyacinthe
Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
Christof Meile
Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
Philippe Van Cappellen
Department of Earth and Environmental Sciences, Water Institute, University of Waterloo, Waterloo, ON, Canada
Samantha B. Joye
Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
Related authors
No articles found.
Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen
SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025, https://doi.org/10.5194/soil-11-309-2025, 2025
Short summary
Short summary
To investigate how added nutrient nitrogen (N) and phosphorus (P) affect subarctic peatlands, we sampled peat soils from bog and fen type peatlands in the Northwest Territories, Canada, and measured CO2 and CH4 production rates by means of laboratory incubations. Our short-term experiments show that changes in nutrient concentrations in soil water can significantly affect microbial carbon cycling, suggesting the necessity of additional considerations of wildfire and permafrost thaw impacts on peatland carbon storage.
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025, https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Short summary
We studied the effect of addition of carbonate minerals on coastal sediments. We carried out laboratory experiments to quantify the dissolution kinetics and integrated these observations into a numerical model that describes biogeochemical cycling in surficial sediments. Using the model, we demonstrate the buffering effect of the mineral additions and their duration. We quantify the effect under different environmental conditions and assess the potential for increased atmospheric CO2 uptake.
Robert E. Danczak, Amy E. Goldman, Mikayla A. Borton, Rosalie K. Chu, Jason G. Toyoda, Vanessa A. Garayburu-Caruso, Emily B. Graham, Joseph W. Morad, Lupita Renteria, Jacqueline R. Hager, Shai Arnon, Scott Brooks, Edo Bar-Zeev, Michael Jones, Nikki Jones, Jorg Lewandowski, Christof Meile, Birgit M. Muller, John Schalles, Hanna Schulz, Adam Ward, and James C. Stegen
EGUsphere, https://doi.org/10.1101/2024.01.10.575030, https://doi.org/10.1101/2024.01.10.575030, 2025
Preprint archived
Short summary
Short summary
As dissolved organic matter (DOM) is transported from land to the ocean through rivers, it interacts with the environment and some is converted to CO2. We used high-resolution carbon analysis to show that DOM from seven rivers exhibited ecological patterns particular to the corresponding river. These results indicate that local processes play an outsized role in shaping DOM. By understanding these interactions across environments, we can predict DOM across spatial scales or under perturbations.
Heewon Jung, Hyun-Seob Song, and Christof Meile
Geosci. Model Dev., 16, 1683–1696, https://doi.org/10.5194/gmd-16-1683-2023, https://doi.org/10.5194/gmd-16-1683-2023, 2023
Short summary
Short summary
Microbial activity responsible for many chemical transformations depends on environmental conditions. These can vary locally, e.g., between poorly connected pores in porous media. We present a modeling framework that resolves such small spatial scales explicitly, accounts for feedback between transport and biogeochemical conditions, and can integrate state-of-the-art representations of microbes in a computationally efficient way, making it broadly applicable in science and engineering use cases.
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Baggs, E. M., Smales, C. L., and Bateman, E. J.: Changing pH shifts the microbial sourceas well as the magnitude of N2O emission from soil, Biol. Fertil. Soil., 46, 793–805, https://doi.org/10.1007/s00374-010-0484-6, 2010.
Bahram, M., Espenberg, M., Pärn, J., Lehtovirta-Morley, L., Anslan, S., Kasak, K., Koljalg, U., Liira, J., Maddison, M., Moora, M., Niinemets, Ü., Öpik, M., Pärtel, M., Soosaar, K., Zobel, M., Hildebrand, F., Tedersoo, L., and Mander, Ü.: Structure and function of the soil microbiome underlying N2O emissions from global wetlands, Nat. Commun., 13, 1430, https://doi.org/10.1038/s41467-022-29161-3, 2022.
Balderston, W. L., Sherr, B., and Payne, W. J.: Blockage by acetylene of nitrous-oxide reduction in Pseudomonas perfectomarinus, Appl. Environ. Microbiol., 31, 504–508, https://doi.org/10.1128/aem.31.4.504-508.1976, 1976.
Bao, Q. L., Ju, X. T., Gao, B., Qu, Z., Christie, P., and Lu, Y. H.: Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil, Soil Sci. Soc. Am. J., 76, 130–141, https://doi.org/10.2136/sssaj2011.0152, 2012.
Barnard, R., Leadley, P. W., and Hungate, B. A.: Global change, nitrification, and denitrification: A review, Global Biogeochem. Cy., 19, GB1007, https://doi.org/10.1029/2004gb002282, 2005.
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., and Thomas, S. M.: Nitrous oxide emission from denitrification in stream and river networks, P. Natl. Acad. Sci. USA, 108, 214–219, https://doi.org/10.1073/pnas.1011464108, 2011.
Bender, E. A., Case, T. J., and Gilpin, M. E.: Perturbation experiments in community ecology – theory and practice, Ecology, 65, 1–13, https://doi.org/10.2307/1939452, 1984.
Betlach, M. R. and Tiedje, J. M.: Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification, Appl. Environ. Microbiol., 42, 1074–1084, 1981.
Billings, S. A. and Tiemann, L. K.: Warming-induced enhancement of soil N2O efflux linked to distinct response times of genes driving N2O production and consumption, Biogeochemistry, 119, 371–386, https://doi.org/10.1007/s10533-014-9973-2, 2014.
Bowen, J. L., Ward, B. B., Morrison, H. G., Hobbie, J. E., Valiela, I., Deegan, L. A., and Sogin, M. L.: Microbial community composition in sediments resists perturbation by nutrient enrichment, Isme J., 5, 1540–1548, https://doi.org/10.1038/ismej.2011.22, 2011.
Braker, G., Fesefeldt, A., and Witzel, K. P.: Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples, Appl. Environ. Microbiol., 64, 3769–3775, 1998.
Brown, J. R., Blankinship, J. C., Niboyet, A., van Groenigen, K. J., Dijkstra, P., Le Roux, X., Leadley, P. W., and Hungate, B. A.: Effects of multiple global change treatments on soil N2O fluxes, Biogeochemistry, 109, 85–100, https://doi.org/10.1007/s10533-011-9655-2, 2012.
Burgin, A. J. and Groffman, P. M.: Soil O2 controls denitrification rates and N2O yield in a riparian wetland, J. Geophys. Res.-Biogeo., 117, G01010, https://doi.org/10.1029/2011jg001799, 2012.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Cavigelli, M. A. and Robertson, G. P.: Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem, Soil Biol. Biochem., 33, 297–310, https://doi.org/10.1016/s0038-0717(00)00141-3, 2001.
Chen, Z., Yang, S. Q., Zhang, A. P., Jing, X., Song, W. M., Mi, Z. R., Zhang, Q. W., Wang, W. Y., and Yang, Z. L.: Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China, J. Integr. Agr., 17, 231–246, https://doi.org/10.1016/s2095-3119(17)61738-6, 2018.
Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO), Microbiol. Rev., 60, 609–640, https://doi.org/10.1128/mmbr.60.4.609-640.1996, 1996.
Davidson, E. A., Swank, W. T., and Perry, T. O.: Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soil, Appl. Environ. Microbiol., 52, 1280–1286, https://doi.org/10.1128/aem.52.6.1280-1286.1986, 1986.
Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Couplings between changes in the climate system and biogeochemistry, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 499–507, 2007.
Elder, J. W. and Lal, R.: Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio, Soil Till. Res., 98, 45–55, https://doi.org/10.1016/j.still.2007.10.003, 2008.
Firestone, M. K., Firestone, R. B., and Tiedje, J. M.: Nitrous oxide from soil denitrification: Factors controlling its biological production, Science, 208, 749–751, https://doi.org/10.1126/science.208.4445.749, 1980.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., and Myhre, G.: Changes in atmospheric constituents and in radiative forcing, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic-matter in pelagic sediments of the eastern Equatorial Atlantic – suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vorosmarty, C. J.: Nitrogen cycles: Past, present, and future, Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Gerringa, L. J. A., Hummel, H., and Moerdijk-Poortvliet, T. C. W.: Relations between free copper and salinity, dissolved and particulate organic carbon in the Oosterschelde and Westerschelde, Netherlands, J. Sea Res., 40, 193–203, https://doi.org/10.1016/S1385-1101(98)00021-5, 1998.
Giblin, A. E., Weston, N. B., Banta, G. T., Tucker, J., and Hopkinson, C. S.: The effects of salinity on nitrogen losses from an oligohaline estuarine sediment, Estuar. Coast., 33, 1054–1068, https://doi.org/10.1007/s12237-010-9280-7, 2010.
Goodroad, L. L. and Keeney, D. R.: Nitrous oxide emissions from soils during thawing, Can. J. Soil Sci., 64, 187–194, https://doi.org/10.4141/cjss84-020, 1984.
Grabb, K. C., Buchwald, C., Hansel, C. M., and Wankel, S. D.: A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide, Geochim. Cosmochim. Ac., 196, 388–402, https://doi.org/10.1016/j.gca.2016.10.026, 2017.
Graf, D. R. H., Jones, C. M., and Hallin, S.: Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions, Plos One, 9, e114118, https://doi.org/10.1371/journal.pone.0114118, 2014.
Griffiths, B. S. and Philippot, L.: Insights into the resistance and resilience of the soil microbial community, Fems Microbiol. Rev., 37, 112–129, https://doi.org/10.1111/j.1574-6976.2012.00343.x, 2013.
Groffman, P. M., Holland, E., Myrold, D. D., Robertson, G. P., and Zou, X.: Denitrification, in: Standard Soil Methods for Long Term Ecological Research, edited by: Robertson, G. P., Bledsoe, C. S., Coleman, D. C., and Sollins, P., Oxford University Press, New York, NY, 272–288, 1999.
Groffman, P. M., Altabet, M. A., Bohlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., and Voytek, M. A.: Methods for measuring denitrification: Diverse approaches to a difficult problem, Ecol. Appl., 16, 2091–2122, https://doi.org/10.1890/1051-0761(2006)016[2091:mfmdda]2.0.co;2, 2006.
Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C., and Vidon, P.: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models, Biogeochemistry, 93, 49–77, https://doi.org/10.1007/s10533-008-9277-5, 2009.
Harrison-Kirk, T., Beare, M. H., Meenken, E. D., and Condron, L. M.: Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions, Soil Biol. Biochem., 57, 43–55, https://doi.org/10.1016/j.soilbio.2012.10.008, 2013.
Hedlund, B. P., McDonald, A. I., Lam, J., Dodsworth, J. A., Brown, J. R., and Hungate, B. A.: Potential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in ∼ 80 °C hot springs in the US Great Basin, Geobiology, 9, 471–480, https://doi.org/10.1111/j.1472-4669.2011.00295.x, 2011.
Henault, C., Grossel, A., Mary, B., Roussel, M., and Leonard, J.: Nitrous oxide emission by agricultural soils: A review of spatial and temporal variability for mitigation, Pedosphere, 22, 426–433, 2012.
Henry, S., Bru, D., Stres, B., Hallet, S., and Philippot, L.: Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils, Appl. Environ. Microbiol., 72, 5181–5189, https://doi.org/10.1128/aem.00231-06, 2006.
Hou, H. J., Peng, S. Z., Xu, J. Z., Yang, S. H., and Mao, Z.: Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China, Chemosphere, 89, 884–892, https://doi.org/10.1016/j.chemosphere.2012.04.066, 2012.
Hu, H. W., Chen, D., and He, J. Z.: Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates, Fems Microbiol. Rev., 39, 729–749, https://doi.org/10.1093/femsre/fuv021, 2015.
Huang, X. D., Grace, P., Mengersen, K., and Weier, K.: Spatio-temporal variation in soil derived nitrous oxide emissions under sugarcane, Sci. Total Environ., 409, 4572–4578, https://doi.org/10.1016/j.scitotenv.2011.07.044, 2011.
Hynes, R. K. and Knowles, R.: Inhibition by acetylene of ammonia oxidation in Nitrosomonas-europaea, Fems Microbiol. Lett., 4, 319–321, https://doi.org/10.1111/j.1574-6968.1978.tb02889.x, 1978.
Kearns, P. J., Angell, J. H., Feinman, S. G., and Bowen, J. L.: Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments, Estuar. Coast. Shelf Sci., 154, 39–47, https://doi.org/10.1016/j.ecss.2014.12.014, 2015.
Kearns, P. J., Angell, J. H., Howard, E. M., Deegan, L. A., Stanley, R. H. R., and Bowen, J. L.: Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments, Nat. Commun., 7, 12881, https://doi.org/10.1038/ncomms12881, 2016.
Knowles, R.: Denitrification, Microbiol. Rev., 46, 43–70, 1982.
Larsen, K. S., Andresen, L. C., Beier, C., Jonasson, S., Albert, K. R., Ambus, P., Arndal, M. F., Carter, M. S., Christensen, S., Holmstrup, M., Ibrom, A., Kongstad, J., van der Linden, L., Maraldo, K., Michelsen, A., Mikkelsen, T. N., Pilegaard, K., Prieme, A., Ro-Poulsen, H., Schmidt, I. K., Selsted, M. B., and Stevnbak, K.: Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments, Glob. Change Biol., 17, 1884–1899, https://doi.org/10.1111/j.1365-2486.2010.02351.x, 2011.
Li, Y., Fu, X. Q., Liu, X. L., Shen, J. L., Luo, Q., Xiao, R. L., Li, Y. Y., Tong, C. L., and Wu, J. S.: Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical central China, Geoderma, 193, 1–12, https://doi.org/10.1016/j.geoderma.2012.10.008, 2013.
Liu, B. B., Morkved, P. T., Frostegard, A., and Bakken, L. R.: Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH, Fems Microbiol. Ecol., 72, 407–417, https://doi.org/10.1111/j.1574-6941.2010.00856.x, 2010.
Liu, B. B., Frostegård, Å., and Bakken, L. R.: Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ, Mbio, 5, 3, https://doi.org/10.1128/mBio.01383-14, 2014.
Liu, B. B., Zhang, X., Bakken, L. R., Snipen, L., and Frostegård, Å.: Rapid succession of actively transcribing denitrifier populations in agricultural soil during an anoxic spell, Front. Microbiol., 9, 3208, https://doi.org/10.3389/fmicb.2018.03208, 2019.
Maeda, K., Spor, A., Edel-Hermann, V., Heraud, C., Breuil, M. C., Bizouard, F., Toyoda, S., Yoshida, N., Steinberg, C., and Philippot, L.: N2O production, a widespread trait in fungi, Sci. Rep., 5, 9697, https://doi.org/10.1038/srep09697, 2015.
Magalhaes, C., Costa, J., Teixeira, C., and Bordalo, A. A.: Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal, Mar. Chem., 107, 332–341, https://doi.org/10.1016/j.marchem.2007.02.005, 2007.
Magalhaes, C. M., Machado, A., Matos, P., and Bordalo, A. A.: Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary, Fems Microbiol. Ecol., 77, 274–284, https://doi.org/10.1111/j.1574-6941.2011.01107.x, 2011.
Mathieu, O., Hénault, C., Lévêque, J., Baujard, E., Milloux, M. J., and Andreux, F.: Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers, Environ. Pollut., 144, 933–940, https://doi.org/10.1016/j.envpol.2006.02.005, 2006.
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., and Pinay, G.: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems, Ecosystems, 6, 301–312, https://doi.org/10.1007/s10021-003-0161-9, 2003.
Mettel, C., Kim, Y., Shrestha, P. M., and Liesack, W.: Extraction of mRNA from Soil, Appl. Environ. Microbiol., 76, 5995–6000, https://doi.org/10.1128/aem.03047-09, 2010.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiol. Ecol., 86, 357–362, https://doi.org/10.1111/j.1574-6968.1992.tb04828.x 1992.
Nixon, S. W.: Eutrophication and the macroscope, Hydrobiologia, 629, 5–19, https://doi.org/10.1007/s10750-009-9759-z, 2009.
Payne, W. J.: Reduction of nitrogenous oxides by microorganisms, Bacteriol. Rev., 37, 409–452, https://doi.org/10.1128/mmbr.37.4.409-452.1973, 1973.
Philippot, L., Andert, J., Jones, C. M., Bru, D., and Hallin, S.: Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil, Glob. Change Biol., 17, 1497–1504, https://doi.org/10.1111/j.1365-2486.2010.02334.x, 2011.
Philippot, L., Cregut, M., Chèneby, D., Bressan, M., Dequiet, S., Martin-Laurent, F., Ranjard, L., and Lemanceau, P.: Effect of primary mild stresses on resilience and resistance of the nitrate reducer community to a subsequent severe stress, Fems Microbiol. Lett., 285, 51–57, https://doi.org/10.1111/j.1574-6968.2008.01210.x, 2008.
Porubsky, W. P., Weston, N. B., and Joye, S. B.: Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments, Estuar. Coast. Shelf Sci., 83, 392–402, https://doi.org/10.1016/j.ecss.2009.04.012, 2009.
Raut, N., Dorsch, P., Sitaula, B. K., and Bakken, L. R.: Soil acidification by intensified crop production in South Asia results in higher N2O (N2+N2O) product ratios of denitrification, Soil Biol. Biochem., 55, 104–112, https://doi.org/10.1016/j.soilbio.2012.06.011, 2012.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Robinson, T. C., Latta, D. E., Notini, L., Schilling, K. E., and Scherer, M. M.: Abiotic reduction of nitrite by Fe(II): a comparison of rates and N2O production, Environ. Sci., 23, 1531–1541, 2021.
Roco, C. A., Bergaust, L. L., Bakken, L. R., Yavitt, J. B., and Shapleigh, J. P.: Modularity of nitrogen-oxide reducing soil bacteria: Linking phenotype to genotype, Environ. Microbiol., 19, 2507–2519, https://doi.org/10.1111/1462-2920.13250, 2017.
Rosamond, M. S., Thuss, S. J., and Schiff, S. L.: Dependence of riverine nitrous oxide emissions on dissolved oxygen levels, Nat. Geosci., 5, 715–718, https://doi.org/10.1038/ngeo1556, 2012.
Ruyters, S., Mertens, J., T'Seyen, I., Springael, D., and Smolders, E.: Dynamics of the nitrous oxide reducing community during adaptation to Zn stress in soil, Soil Biol. Biochem., 42, 1581–1587, https://doi.org/10.1016/j.soilbio.2010.05.036, 2010.
Sanford, R. A., Wagner, D. D., Wu, Q. Z., Chee-Sanford, J. C., Thomas, S. H., Cruz-Garcia, C., Rodriguez, G., Massol-Deya, A., Krishnani, K. K., Ritalahti, K. M., Nissen, S., Konstantinidis, K. T., and Loffler, F. E.: Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils, P. Natl. Acad. Sci. USA, 109, 19709–19714, https://doi.org/10.1073/pnas.1211238109, 2012.
Seitzinger, S. P.: Denitrification in fresh-water and coastal marine ecosystems – ecological and geochemical significance, Limnol. Oceanogr., 33, 702–724, 1988.
Steudler, P. A., Melillo, J. M., Bowden, R. D., Castro, M. S., and Lugo, A. E.: The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest, Biotropica, 23, 356–363, https://doi.org/10.2307/2388252, 1991.
Teh, Y. A., Silver, W. L., Sonnentag, O., Detto, M., Kelly, M., and Baldocchi, D. D.: Large greenhouse gas emissions from a temperate peatland pasture, Ecosystems, 14, 311–325, https://doi.org/10.1007/s10021-011-9411-4, 2011.
Teixeira, C., Magalhaes, C., Joye, S. B., and Bordalo, A. A.: The role of salinity in shaping dissolved inorganic nitrogen and N2O dynamics in estuarine sediment-water interface, Mar. Pollut. Bull., 66, 225–229, https://doi.org/10.1016/j.marpolbul.2012.11.004, 2013.
Tian, H. Q., Xu, R. T., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N. Q., Pan, S. F., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J. F., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B. J., Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J. J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y. Z.: A comprehensive quantification of global nitrous oxide sources and sinks, Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
van Damme, S., Struyf, E., Maris, T., Ysebaert, T., Dehairs, F., Tackx, M., Heip, C., and Meire, P.: Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): Results of an integrated monitoring approach, Hydrobiologia, 540, 29–45, https://doi.org/10.1007/s10750-004-7102-2, 2005.
van den Heuvel, R. N., Bakker, S. E., Jetten, M. S. M., and Hefting, M. M.: Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem, Geobiology, 9, 294–300, https://doi.org/10.1111/j.1472-4669.2011.00276.x, 2011.
Vilain, G., Garnier, J., Decuq, C., and Lugnot, M.: Nitrous oxide production from soil experiments: denitrification prevails over nitrification, Nutr. Cycl. Agroecosyst., 98, 169–186, https://doi.org/10.1007/s10705-014-9604-2, 2014.
Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea – how can it occur, Biogeochemistry, 13, 87–115, 1991.
Wang, H., Yan, Z. F., Ju, X. T., Song, X. T., Zhang, J. B., Li, S. L., and Xia, Z. B.: Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis, Front. Microbiol., 13, 1110151, https://doi.org/10.3389/fmicb.2022.1110151, 2023.
Wang, L. F., Cai, Z. C., Yang, L. F., and Meng, L.: Effects of disturbance and glucose addition on nitrous oxide and carbon dioxide emissions from a paddy soil, Soil Till. Res., 82, 185–194, https://doi.org/10.1016/j.still.2004.06.001, 2005.
Weitzman, J. N., Groffman, P. M., Adler, P. R., Dell, C. J., Johnson, F. E., Lerch, R. N., and Strickland, T. C.: Drivers of hot spots and hot moments of denitrification in agricultural systems, J. Geophys. Res.-Biogeo., 126, e2020JG006234, https://doi.org/10.1029/2020jg006234, 2021.
Weslien, P., Klemedtsson, A. K., Borjesson, G., and Klemedtsson, L.: Strong pH influence on N2O and CH4 fluxes from forested organic soils, Europ. J. Soil Sci., 60, 311–320, https://doi.org/10.1111/j.1365-2389.2009.01123.x, 2009.
Weston, N.: Laboratory measurements of nitrous oxide production rates in agricultural soils from Lancaster, PA, estuarine sediments from the Scheldt Estuary Belgium/Netherlands, and estuarine soils from the Delaware River NJ under gradients of physicochemical perturbation ver 1, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/49650b321b5c977b5e8baa92d991254b, 2024.
Wuebbles, D. J.: Nitrous oxide: No laughing matter, Science, 326, 56–57, https://doi.org/10.1126/science.1179571, 2009.
Xu, J. Z., Wei, Q., Yang, S. H., Gao, X. L., and Lv, Y. P.: Influence of watering methods on the short-term pulse emissions of nitrous oxide from disturbed horticultural soil, Commun. Soil Sci. Plant Anal., 46, 2688–2706, https://doi.org/10.1080/00103624.2015.1089269, 2015.
Yang, Z., Deng, Y., Zhong, L., Xiao, R., and Su, X. X.: Responses of soil bacterial and fungal denitrification and associated N2O emissions to organochloride pesticide, Sci. Total Environ., 905, 167321, https://doi.org/10.1016/j.scitotenv.2023.167321, 2023.
Yoon, S., Nissen, S., Park, D., Sanford, R. A., and Löffler, F. E.: Nitrous oxide reduction kinetics distinguish bacteria harboring Clade I Nosz from those harboring Clade II NosZ, Appl. Environ. Microbiol., 82, 3793–3800, https://doi.org/10.1128/aem.00409-16, 2016.
Yoshinari, T. and Knowles, R.: Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Commun., 69, 705–710, https://doi.org/10.1016/0006-291x(76)90932-3, 1976.
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from...
Altmetrics
Final-revised paper
Preprint