Articles | Volume 21, issue 22
https://doi.org/10.5194/bg-21-5005-2024
https://doi.org/10.5194/bg-21-5005-2024
Research article
 | Highlight paper
 | 
14 Nov 2024
Research article | Highlight paper |  | 14 Nov 2024

How to measure the efficiency of bioenergy crops compared to forestation

Sabine Egerer, Stefanie Falk, Dorothea Mayer, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz

Related authors

Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025,https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Biogeochemical versus biogeophysical temperature effects of historical land-use change in CMIP6
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
Earth Syst. Dynam., 16, 803–840, https://doi.org/10.5194/esd-16-803-2025,https://doi.org/10.5194/esd-16-803-2025, 2025
Short summary
Remote carbon cycle changes are overlooked impacts of land cover and land management changes
Suqi Guo, Felix Havermann, Steven J. De Hertog, Fei Luo, Iris Manola, Thomas Raddatz, Hongmei Li, Wim Thiery, Quentin Lejeune, Carl-Friedrich Schleussner, David Wårlind, Lars Nieradzik, and Julia Pongratz
Earth Syst. Dynam., 16, 631–666, https://doi.org/10.5194/esd-16-631-2025,https://doi.org/10.5194/esd-16-631-2025, 2025
Short summary
Differences in anthropogenic greenhouse gas emissions estimates explained
William Lamb, Robbie Andrew, Matthew Jones, Zebedee Nicholls, Glen Peters, Chris Smith, Marielle Saunois, Giacomo Grassi, Julia Pongratz, Steven Smith, Francesco Tubiello, Monica Crippa, Matthew Gidden, Pierre Friedlingstein, Jan Minx, and Piers Forster
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-188,https://doi.org/10.5194/essd-2025-188, 2025
Preprint under review for ESSD
Short summary
Evaluating biogeophysical sensitivities to idealized deforestation in CMIP6 models using observational constraints
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979,https://doi.org/10.5194/egusphere-2025-979, 2025
Short summary

Related subject area

Biogeochemistry: Land
Seasonality and synchrony of photosynthesis in African forests inferred from spaceborne chlorophyll fluorescence and vegetation indices
Russell Doughty, Michael C. Wimberly, Dan Wanyama, Helene Peiro, Nicholas Parazoo, Sean Crowell, and Moses Azong Cho
Biogeosciences, 22, 1985–2004, https://doi.org/10.5194/bg-22-1985-2025,https://doi.org/10.5194/bg-22-1985-2025, 2025
Short summary
Altitudinal distribution of soil organic and inorganic carbon in a dry alpine rangeland of northern Qinghai-Tibetan Plateau
Qinglin Liu, Ailin Zhang, Xiangyi Li, Jinfei Yin, Yuxue Zhang, Osbert Jianxin Sun, and Yong Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1269,https://doi.org/10.5194/egusphere-2025-1269, 2025
Short summary
Precipitation–fire functional interactions control biomass stocks and carbon exchanges across the world's largest savanna
Mathew Williams, David T. Milodowski, T. Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
Biogeosciences, 22, 1597–1614, https://doi.org/10.5194/bg-22-1597-2025,https://doi.org/10.5194/bg-22-1597-2025, 2025
Short summary
Nitrogen concentrations in boreal and temperate tree tissues vary with tree age/size, growth rate, and climate
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
Biogeosciences, 22, 1475–1493, https://doi.org/10.5194/bg-22-1475-2025,https://doi.org/10.5194/bg-22-1475-2025, 2025
Short summary
Burn severity and vegetation type control phosphorus concentration, molecular composition, and mobilization
Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg
EGUsphere, https://doi.org/10.5194/egusphere-2025-21,https://doi.org/10.5194/egusphere-2025-21, 2025
Short summary

Cited articles

Anderegg, W. R., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., Cullenward, D., Field, C. B., Freeman, J., Goetz, S. J., Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., Pacala, S., and Randerson, J. T.: Climate-driven risks to the climate mitigation potential of forests, Science, 368, eaaz7005, https://doi.org/10.1126/science.aaz7005, 2020. a
Anderegg, W. R., Chegwidden, O. S., Badgley, G., Trugman, A. T., Cullenward, D., Abatzoglou, J. T., Hicke, J. A., Freeman, J., and Hamman, J. J.: Future climate risks from stress, insects and fire across US forests, Ecol. Lett., 25, 1510–1520, https://doi.org/10.1111/ele.14018, 2022. a, b
Awty-Carroll, D., Magenau, E., Al Hassan, M., Martani, E., Kontek, M., van der Pluijm, P., Ashman, C., de Maupeou, E., McCalmont, J., Petrie, G. J., Davey, C., van der Cruijsen, K., Jurišić, V., Amaducci, S., Lamy, I., Shepherd, A., Kam, J., Hoogendam, A., Croci, M., Dolstra, O., Ferrarini, A., Lewandowski, I., Trindade, L. M., Kiesel, A., and Clifton-Brown, J.: Yield performance of 14 novel inter- and intra-species Miscanthus hybrids across Europe, GCB Bioenergy, 15, 399–423, https://doi.org/10.1111/gcbb.13026, 2023. a, b
Azar, C., Johansson, D. J., and Mattsson, N.: Meeting global temperature targets – The role of bioenergy with carbon capture and storage, Environ. Res. Lett., 8, 034004, https://doi.org/10.1088/1748-9326/8/3/034004, 2013. a
Babin, A., Vaneeckhaute, C., and Iliuta, M. C.: Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review, Biomass Bioenerg., 146, 105968, https://doi.org/10.1016/j.biombioe.2021.105968, 2021. a, b
Download
Co-editor-in-chief
The use of carbon dioxide removal (CDR) techniques is essential to achieving the objectives of the Paris agreements. In order to achieve this, it is necessary to introduce negative emission technologies as soon as possible. Among these technologies, CDRs, and more particularly CDRs applied to land surfaces, seem to be good candidates. However, until now, the methodologies used to estimate the efficiency of CDRs have taken very little account of certain parameters such as the turnover time of biomass products. This article proposes an innovative methodology for this purpose and applies it to estimate the storage potential of various CDRs. Results suggest, for example, that afforestation/reforestation (AR) appears to be more effective in China, while bioenergy with carbon capture and storage (BECCS) is more effective in South America and Africa. Nevertheless, the authors also highlight the importance of considering the evolution of the efficiency of fossil fuel substitution (FFS) techniques in parallel to refine the estimate of the potential of CDRs, thus stressing the complexity of such a task.
Short summary
Using a state-of-the-art land model, we find that bioenergy plants can store carbon more efficiently than forests over long periods in the soil, in geological reservoirs, or by substituting fossil-fuel-based energy. Planting forests is more suitable for reaching climate targets by 2050. The carbon removal potential depends also on local environmental conditions. These considerations have important implications for climate policy, spatial planning, nature conservation, and agriculture.
Share
Altmetrics
Final-revised paper
Preprint