Articles | Volume 21, issue 23
https://doi.org/10.5194/bg-21-5393-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-5393-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cropland expansion drives vegetation greenness decline in Southeast Asia
Department of Geography, National University of Singapore, Singapore 117570, Singapore
Department of Geography, National University of Singapore, Singapore 117570, Singapore
Centre for Nature-based Climate Solutions, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
Yuheng Yang
Department of Geography, National University of Singapore, Singapore 117570, Singapore
Luri Nurlaila Syahid
Department of Geography, National University of Singapore, Singapore 117570, Singapore
Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
Janice Ser Huay Lee
Asian School of the Environment, Nanyang Technological University, Singapore 639798, Singapore
Earth Observatory of Singapore, Nanyang Technological University, Singapore 637459, Singapore
Related authors
No articles found.
Jianning Ren, Zhaoyang Luo, Xiangzhong Luo, Stefano Galelli, Athanasios Paschalis, Valeriy Ivanov, Shanti Shwarup Mahto, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2025-4570, https://doi.org/10.5194/egusphere-2025-4570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Southeast Asia’s water and carbon fluxes remain poorly understood due to limited field observations and modelling. Using available data and computer models, we show the region is mostly energy-limited: evapotranspiration is controlled by relative humidity, while plant productivity is driven by solar radiation. In some particular areas, such as the Tibetan Plateau, savannas, and dry deciduous forests, water availability is the main limiting factor.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Kai Wan Yuen, Adam D. Switzer, Paul P. S. Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-4, https://doi.org/10.5194/nhess-2022-4, 2022
Manuscript not accepted for further review
Short summary
Short summary
Few databases provide standardized reporting of disaster-related agricultural damage and loss. We compiled cyclone-induced rice damage data from 1970–2018 in four countries in Asia (Bangladesh, Myanmar, Philippines and Vietnam). Of the 1,046 cyclone events recorded, 13 % or 138 events were associated with rice damage. Philippines and Vietnam accounted for 128 of these events. While higher cyclone intensity tend to cause most damage, lower intensity events were more frequent.
Kai Wan Yuen, Tang Thi Hanh, Vu Duong Quynh, Adam D. Switzer, Paul Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci., 21, 1473–1493, https://doi.org/10.5194/nhess-21-1473-2021, https://doi.org/10.5194/nhess-21-1473-2021, 2021
Short summary
Short summary
We used flow diagrams to represent the ways in which anthropogenic land use and natural hazards have affected rice production in the two
mega-deltas of Vietnam. Anthropogenic developments meant to improve productivity may create negative feedbacks on rice production and quality. Natural hazards further amplify problems created by human activities. A systems-thinking approach can yield nuanced perspectives for tackling environmental challenges.
Cited articles
Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J. C., Keller, M., and Silva, J. N.: Selective Logging in the Brazilian Amazon, Science, 310, 480–482, https://doi.org/10.1126/science.1118051, 2005.
Austin, K. G., Schwantes, A., Gu, Y., and Kasibhatla, P. S.: What causes deforestation in Indonesia?, Environ. Res. Lett., 14, 24007, https://doi.org/10.1088/1748-9326/aaf6db, 2019.
Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gütter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh, C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest inventories, biomass and climate data, Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, 2021.
Carvalhais, B.: Global 1km forest age datasets, Max Planck Institute for Biogeochemistry [data set], https://doi.org/10.17871/ForestAgeBGI.2021, 2021.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the world through land-use management, Nat. Sustain., 2, 122–129, https://doi.org/10.1038/s41893-019-0220-7, 2019.
Chen, C., Riley, W. J., Prentice, I. C., and Keenan, T. F.: CO2 fertilization of terrestrial photosynthesis inferred from site to global scales, P. Natl. Acad. Sci. USA, 119, e21156271, https://doi.org/10.1073/pnas.2115627119, 2022.
Chen, J. M. and Black, T. A.: Defining leaf area index for non-flat leaves, Plant Cell Environ., 15, 421–429, https://doi.org/10.1111/j.1365-3040.1992.tb00992.x, 1992.
Chen, S., Woodcock, C., Dong, L., Tarrio, K., Mohammadi, D., and Olofsson, P.: Review of drivers of forest degradation and deforestation in Southeast Asia, Remote Sens. Appl. Soc. Environ., 33, 101129, https://doi.org/10.1016/j.rsase.2023.101129, 2024.
Chen, T., and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, ACM, Ithaca, 785–794, 2016.
Chini, L., Hurtt, G., Sahajpal, R., Frolking, S., Klein Goldewijk, K., Sitch, S., Ganzenmüller, R., Ma, L., Ott, L., Pongratz, J., and Poulter, B.: Land-use harmonization datasets for annual global carbon budgets, Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, 2021.
Cui, M., Qian, J., and Cui, L.: Developing precision agriculture through creating information processing capability in rural China, J. Rural Stud., 92, 237–252, https://doi.org/10.1016/j.jrurstud.2022.04.002, 2022.
Danylo, O., Pirker, J., Lemoine, G., Ceccherini, G., See, L., McCallum, I., Hadi, Kraxner, F., Achard, F., and Fritz, S.: A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand, Sci. Data, 8, 96, https://doi.org/10.1038/s41597-021-00867-1, 2021.
Descals, A., Wich, S., Meijaard, E., Gaveau, D. L. A., Peedell, S., and Szantoi, Z.: High-resolution global map of smallholder and industrial closed-canopy oil palm plantations, Earth Syst. Sci. Data, 13, 1211–1231, https://doi.org/10.5194/essd-13-1211-2021, 2021.
Doughty, C. E., Keany, J. M., Wiebe, B. C., Rey-Sanchez, C., Carter, K. R., Middleby, K. B., Cheesman, A. W., Goulden, M. L., Da Rocha, H. R., Miller, S. D., Malhi, Y., Fauset, S., Gloor, E., Slot, M., Oliveras Menor, I., Crous, K. Y., Goldsmith, G. R., and Fisher, J. B.: Tropical forests are approaching critical temperature thresholds, Nature, 621, 105–111, https://doi.org/10.1038/s41586-023-06391-z, 2023.
Euler, M., Schwarze, S., Siregar, H., and Qaim, M.: Oil Palm Expansion among Smallholder Farmers in Sumatra, Indonesia, J. Agric. Econ., 67, 658–676, https://doi.org/10.1111/1477-9552.12163, 2016.
Ewert, F.: Modelling Plant Responses to Elevated CO2: How Important is Leaf Area Index?, Ann. Bot., 93, 619–627, https://doi.org/10.1093/aob/mch101, 2004.
Fagan, M. E., Kim, D., Settle, W., Ferry, L., Drew, J., Carlson, H., Slaughter, J., Schaferbien, J., Tyukavina, A., Harris, N. L., Goldman, E., and Ordway, E. M.: The expansion of tree plantations across tropical biomes, Nat. Sustain., 5, 681–688, https://doi.org/10.1038/s41893-022-00904-w, 2022.
Fang, H., Baret, F., Plummer, S., and Schaepman Strub, G.: An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications, Rev. Geophys., 57, 739–799, https://doi.org/10.1029/2018RG000608, 2019.
FAOSTAT: Crops and livestock products database, Food and Agriculture Organization of the United Nations, https://www.fao.org/faostat/en/{#}data/QCL2022 (last access: 28 November 2024), 2022.
Felbab-Brown, V.: An Atlas of Trafficking in Southeast Asia: the jagged edge: Illegal logging in Southeast Asia, IB Tauris & Co. Ltd. New York, ISBN 9780857721808, 2013.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global Consequences of Land Use, Science, 309, 570–574, https://doi.org/10.1126/science.1111772, 2005.
Forbes, B. C., Fauria, M. M., and Zetterberg, P.: Russian Arctic warming and “greening” are closely tracked by tundra shrub willows, Glob. Change Biol., 16, 1542–1554, https://doi.org/10.1111/j.1365-2486.2009.02047.x, 2010.
Galán-Acedo, C., Spaan, D., Bicca-Marques, J. C., de Azevedo, R. B., Villalobos, F., and Rosete-Vergés, F.: Regional deforestation drives the impact of forest cover and matrix quality on primate species richness, Biol. Conserv., 263, 109338, https://doi.org/10.1016/j.biocon.2021.109338, 2021.
Geist, H. J., and Lambin, E. F.: What Drives Tropical Deforestation, LUCC Report Series, 4, 116, 2001.
Ghini, R., Bettiol, W., and Hamada, E.: Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives, Plant Pathol., 60, 122–132, https://doi.org/10.1111/j.1365-3059.2010.02403.x, 2011.
Green, J. K., Ballantyne, A., Abramoff, R., Gentine, P., Makowski, D., and Ciais, P.: Surface temperatures reveal the patterns of vegetation water stress and their environmental drivers across the tropical Americas, Glob. Change Biol., 28, 2940–2955, https://doi.org/10.1111/gcb.16139, 2022.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V., and Lotsch, A.: Baseline map of carbon emissions from deforestation in tropical regions, Science, 336, 1573–1576, https://doi.org/10.1126/science.1217962, 2012.
Houghton, R. A. and Nassikas, A. A.: Global and regional fluxes of carbon from land use and land cover change 1850–2015, Global Biogeochem. Cy., 31, 456–472, https://doi.org/10.1002/2016GB005546, 2017.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Ito, A. and Hajima, T.: Biogeophysical and biogeochemical impacts of land-use change simulated by MIROC-ES2L, Prog. Earth Planet. Sci., 7, 54, https://doi.org/10.1186/s40645-020-00372-w, 2020.
Koh, L. P. and Wilcove, D. S.: Is oil palm agriculture really destroying tropical biodiversity?, Conserv. Lett., 1, 60–64, https://doi.org/10.1111/j.1755-263X.2008.00011.x, 2008.
Kuttippurath, J. and Kashyap, R.: Greening of India: Forests or Croplands?, Appl. Geogr., 161, 103115, https://doi.org/10.1016/j.apgeog.2023.103115, 2023.
Lan, X.: Atmospheric CO2 trends, NOAA Global Monitoring Laboratory and Scripps Institution of Oceanography, https://gml.noaa.gov/ccgg/trends/ (last access: 2 December 2024), 2024.
Liu, R., Liu, Y., and Chen, J.: GLOBMAP global Leaf Area Index since 1981 (Version 3.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4700264, 2021.
Liu, X., Zheng, J., Yu, L., Hao, P., Chen, B., Xin, Q., Fu, H., and Gong, P.: Annual dynamic dataset of global cropping intensity from 2001 to 2019, Sci. Data, 8, 283, https://doi.org/10.1038/s41597-021-01065-9, 2021.
Liu, Y., Liu, R., and Chen, J. M.: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data, J. Geophys. Res.-Biogeo., 117, G04003, https://doi.org/10.1029/2012JG002084, 2012.
Lundberg, M. and Lee, S.: A Unified Approach to Interpreting Model Predictions, Adv. Neur. In., Long Beach, California, USA, Curran Associates Inc., 4768–4777, ISBN: 9781510860964, 2017.
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.: From local explanations to global understanding with explainable AI for trees, Nat. Mach. Intell., 2, 56–67, https://doi.org/10.1038/s42256-019-0138-9, 2020.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Mao, F., Li, X., Zhou, G., Huang, Z., Xu, Y., Chen, Q., Yan, M., Sun, J., Xu, C., and Du, H.: Land use and cover in subtropical East Asia and Southeast Asia from 1700 to 2018, Glob. Planet. Change, 226, 104157, https://doi.org/10.1016/j.gloplacha.2023.104157, 2023.
Meir, P., Wood, T. E., Galbraith, D. R., Brando, P. M., Da Costa, A. C. L., Rowland, L., and Ferreira, L. V.: Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments, Bioscience, 65, 882–892, https://doi.org/10.1093/biosci/biv107, 2015.
Meng, Y., Yang, N., Qian, Z., and Zhang, G.: What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values, J. Theor. Appl. Electron. Commer. Res., 16, 466–490, https://doi.org/10.3390/jtaer16030029, 2021.
Miettinen, J., Shi, C., and Liew, S. C.: Deforestation rates in insular Southeast Asia between 2000 and 2010, Glob. Change Biol., 17, 2261–2270, https://doi.org/10.1111/j.1365-2486.2011.02398.x, 2011.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Numata, I., Elmore, A. J., Cochrane, M. A., Wang, C., Zhao, J., and Zhang, X.: Deforestation, plantation-related land cover dynamics and oil palm age-structure change during 1990–2020 in Riau Province, Indonesia, Environ. Res. Lett., 17, 94024, https://doi.org/10.1088/1748-9326/ac8a61, 2022.
Panda, D., Mishra, S. S., and Behera, P. K.: Drought Tolerance in Rice: Focus on Recent Mechanisms and Approaches, Rice Sci., 28, 119–132, https://doi.org/10.1016/j.rsci.2021.01.002, 2021.
Park, T., Gumma, M. K., Wang, W., Panjala, P., Dubey, S. K., and Nemani, R. R.: Greening of human-dominated ecosystems in India, Commun. Earth Environ., 4, 419, https://doi.org/10.1038/s43247-023-01078-9, 2023.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830 2011.
Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tømmervik, H., Nemani, R. R., and Myneni, R. B.: Characteristics, drivers and feedbacks of global greening, Nat. Rev. Earth Environ., 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2020a.
Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tømmervik, H., Nemani, R. R., and Myneni, R. B.: Characteristics, drivers and feedbacks of global greening, Nat.e Rev. Earth Environ., 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2020b.
Pocock, M. J. O., Evans, D. M., and Memmott, J.: The impact of farm management on species-specific leaf area index (LAI): Farm-scale data and predictive models, Agr. Ecosyst. Environ., 135, 279–287, https://doi.org/10.1016/j.agee.2009.10.006, 2010.
Potapov, P., Turubanova, S., Hansen, M. C., Tyukavina, A., Zalles, V., Khan, A., Song, X., Pickens, A., Shen, Q., and Cortez, J.: Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century, Nat. Food, 3, 19–28, https://doi.org/10.1038/s43016-021-00429-z, 2022.
Propastin, P. A.: Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia, Remote Sens. Environ., 113, 2234–2242, https://doi.org/10.1016/j.rse.2009.06.007, 2009.
Querino, C. A. S., Beneditti, C. A., Machado, N. G., Da Silva, M. J. G., Da Silva Querino, J. K. A., Dos Santos Neto, L. A., and Biudes, M. S.: Spatiotemporal NDVI, LAI, albedo, and surface temperature dynamics in the southwest of the Brazilian Amazon forest, J. Appl. Remote Sens., 10, 26007, https://doi.org/10.1117/1.JRS.10.026007, 2016.
Rusli, N. and Majid, M. R.: Monitoring and mapping leaf area index of rubber and oil palm in small watershed area, IOP C. Ser. Earth Env., 18, 12035–12036, https://doi.org/10.1088/1755-1315/18/1/012036, 2014.
Satriawan, T. W., Luo, X., Tian, J., Ichii, K., Juneng, L., and Kondo, M.: Strong Green-Up of Tropical Asia During the 2015/16 El Niño, Geophys. Res. Lett., 51, e2023GL106955, https://doi.org/10.1029/2023GL106955, 2024.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ., 222, 183–194, https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Sulla-Menashe, D. and Friedl, M. A.: User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product, Usgs: Reston, Va, Usa, 1, 18, 2018.
Takeshima, H. J. P. K.: Overview of the agricultural modernization in Southeast Asia, Intl. Food Policy Res. Inst., 1819, 2019.
Vernimmen, R. R. E., Bruijnzeel, L. A., Romdoni, A., and Proctor, J.: Rainfall interception in three contrasting lowland rain forest types in Central Kalimantan, Indonesia, J. Hydrol., 340, 217–232, https://doi.org/10.1016/j.jhydrol.2007.04.009, 2007.
Vijay, V., Pimm, S. L., Jenkins, C. N., Smith, S. J., and Anand, M.: The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss, PLoS One, 11, e0159668, https://doi.org/10.1371/journal.pone.0159668, 2016.
Wagner, M., Wentz, E. A., and Stuhlmacher, M.: Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach, J. Land Use Sci., 17, 26–46, https://doi.org/10.1080/1747423X.2021.2020918, 2022.
Wang, J. A. and Friedl, M. A.: The role of land cover change in Arctic-Boreal greening and browning trends, Environ. Res. Lett., 14, 125007, https://doi.org/10.1088/1748-9326/ab5429, 2019.
Wang, L., Zhao, Z., Zhang, K., and Tian, C.: Reclamation and Utilization of Saline Soils in Arid Northwestern China: A Promising Halophyte Drip-Irrigation System, Environ. Sci. Technol., 47, 5518–5519, https://doi.org/10.1021/es4017415, 2013.
Wang, X., Blanken, P. D., Kasemsap, P., Petchprayoon, P., Thaler, P., Nouvellon, Y., Gay, F., Chidthaisong, A., Sanwangsri, M., Chayawat, C., Chantuma, P., Sathornkich, J., Kaewthongrach, R., Satakhun, D., and Phattaralerphong, J.: Carbon and Water Cycling in Two Rubber Plantations and a Natural Forest in Mainland Southeast Asia, J. Geophys. Res.-Biogeo., 127, e2022JG006840, https://doi.org/10.1029/2022JG006840, 2022.
Wang, Y., Hollingsworth, P. M., Zhai, D., West, C. D., Green, J. M. H., Chen, H., Hurni, K., Su, Y., Warren-Thomas, E., Xu, J., and Ahrends, A.: High-resolution maps show that rubber causes substantial deforestation, Nature, 623, 340–346, https://doi.org/10.1038/s41586-023-06642-z, 2023.
Watson, D. J.: Comparative Physiological Studies on the Growth of Field Crops, I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties and between Years, Ann. Bot., 11, 41–76 1947.
Wicke, B., Sikkema, R., Dornburg, V., and Faaij, A.: Exploring land use changes and the role of palm oil production in Indonesia and Malaysia, Land Use Policy, 28, 193–206, https://doi.org/10.1016/j.landusepol.2010.06.001, 2011.
Wu, T., Qu, C., Li, Y., Li, X., Zhou, G., Liu, S., Chu, G., Meng, Z., Lie, Z., and Liu, J.: Warming effects on leaf nutrients and plant growth in tropical forests, Plant Ecol., 220, 663–674, https://doi.org/10.1007/s11258-019-00943-y, 2019.
Xu, Y., Ciais, P., Yu, L., Li, W., Chen, X., Zhang, H., Yue, C., Kanniah, K., Cracknell, A. P., and Gong, P.: Oil palm modelling in the global land surface model ORCHIDEE-MICT, Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021, 2021.
Xu, Y., Yu, L., Ciais, P., Li, W., Santoro, M., Yang, H., and Gong, P.: Recent expansion of oil palm plantations into carbon-rich forests, Nat. Sustain., 5, 574–577, https://doi.org/10.1038/s41893-022-00872-1, 2022.
Xu, Y., Yu, L., Li, W., Ciais, P., Cheng, Y., and Gong, P.: Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016, Earth Syst. Sci. Data, 12, 847–867, https://doi.org/10.5194/essd-12-847-2020, 2020.
Yan, F., Song, K., Liu, Y., Chen, S., and Chen, J.: Predictions and mechanism analyses of the fatigue strength of steel based on machine learning, J. Mater. Sci., 55, 15334–15349, https://doi.org/10.1007/s10853-020-05091-7, 2020.
Yang, C., Chen, M., and Yuan, Q.: The application of XGBoost and SHAP to examining the factors in freight truck-related crashes: An exploratory analysis, Accident Anal. Prev., 158, 106153, https://doi.org/10.1016/j.aap.2021.106153, 2021.
Yang, Y., Xiao, X., Li, M., Dong, Z., and Zhao, R.: A new framework for assessing carbon fluxes in alpine rivers, Catena, 246, 108423, https://doi.org/10.1016/j.catena.2024.108423, 2024.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J., Qin, Z., Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor pressure deficit reduces global vegetation growth, Sci. Adv., 5, eaax1396, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zeng, Z., Estes, L., Ziegler, A. D., Chen, A., Searchinger, T., Hua, F., Guan, K., Jintrawet, A., and F. Wood, E.: Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century, Nat. Geosci., 11, 556–562, https://doi.org/10.1038/s41561-018-0166-9, 2018.
Zhang, A., Liu, Y., Wang, F., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Liu, G., Luo, L., and Yu, X.: Molecular Breeding of Water-Saving and Drought-Resistant Rice for Blast and Bacterial Blight Resistance, Plants, 11, 2641, https://doi.org/10.3390/plants11192641, 2022.
Zhao, H., Chang, J., Havlík, P., van Dijk, M., Valin, H., Janssens, C., Ma, L., Bai, Z., Herrero, M., Smith, P., and Obersteiner, M.: China's future food demand and its implications for trade and environment, Nat. Sustain., 4, 1042–1051, https://doi.org/10.1038/s41893-021-00784-6, 2021.
Zhao, J., Elmore, A. J., Lee, J. S. H., Numata, I., Zhang, X., and Cochrane, M. A.: Replanting and yield increase strategies for alleviating the potential decline in palm oil production in Indonesia, Agric. Syst., 210, 103714, https://doi.org/10.1016/j.agsy.2023.103714, 2023.
Zhao, R.: Code for Paper “cropland Expansion Drives Vegetation Greenness Decline in Southeast Asia”, Zenodo [code], https://doi.org/10.5281/zenodo.14259860, 2024.
Zhao, R., Zhang, W., Duan, Z., Chen, S., and Shi, Z.: An improved estimate of soil carbon pool and carbon fluxes in the Qinghai-Tibetan grasslands using data assimilation with an ecosystem biogeochemical model, Geoderma, 430, 116283, https://doi.org/10.1016/j.geoderma.2022.116283, 2023.
Zhong, L., Ma, Y., Xue, Y., and Piao, S.: Climate Change Trends and Impacts on Vegetation Greening Over the Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 7540–7552, https://doi.org/10.1029/2019JD030481, 2019.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016.
Short summary
Southeast Asia has been a global hot spot of land-use change over the past 50 years. Meanwhile, it also hosts some of the most carbon-dense and diverse ecosystems in the world. Here, we explore the impact of land-use change, along with other environmental factors, on the ecosystem in Southeast Asia. We find that elevated CO2 imposed a positive impact on vegetation greenness, but the positive impact was largely offset by intensive land-use changes in the region, particularly cropland expansion.
Southeast Asia has been a global hot spot of land-use change over the past 50 years. Meanwhile,...
Altmetrics
Final-revised paper
Preprint