Articles | Volume 21, issue 23
https://doi.org/10.5194/bg-21-5457-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-5457-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methods to characterize type, relevance, and interactions of organic matter and microorganisms in fluids along the flow path of a geothermal facility
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute for Geosciences, Applied Geology, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany
Danaé Bregnard
Laboratory of Microbiology, Institute of Biology, University of Neuchâtel Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
Andrea Vieth-Hillebrand
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Stefanie Poetz
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Florian Eichinger
Hydroisotop GmbH, Woelkestraße 9, 85301 Schweitenkirchen, Germany
Guillaume Cailleau
Laboratory of Microbiology, Institute of Biology, University of Neuchâtel Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
Pilar Junier
Laboratory of Microbiology, Institute of Biology, University of Neuchâtel Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
Simona Regenspurg
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Related authors
No articles found.
Camille Rieder, Eric P. Verrecchia, Saskia Bindschedler, Guillaume Cailleau, Aviram Rozin, Munisamy Anbarashan, Shubhendu Dasgupta, Thomas Junier, Nicolas Roeschli, Pascal Vittoz, and Mike C. Rowley
EGUsphere, https://doi.org/10.5194/egusphere-2025-3388, https://doi.org/10.5194/egusphere-2025-3388, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The oxalate-carbonate pathway, where trees and microbes store inorganic carbon as minerals was studied on four tree species of the threatened tropical dry evergreen forest Indian forest. We used high-throughput sequencing of a gene to detect oxalate-degrading microbes. For all tree species, produced oxalate led to carbonate formation in soils and on wood. This carbon may be leached into water, suggesting a hidden source of inorganic carbon with implications for climate and conservation.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Christoph Otten, Beate Dassler, Sebastian Teitz, Joy Iannotta, Florian Eichinger, Andrea Seibt, Dietmar Kuhn, and Hilke Würdemann
Adv. Geosci., 54, 217–227, https://doi.org/10.5194/adgeo-54-217-2021, https://doi.org/10.5194/adgeo-54-217-2021, 2021
Short summary
Short summary
Mineral precipitation in filters and heat exchangers can impede geothermal plant operation and cause expensive losses of efficiency. To prevent scaling a biodegradable inhibitor has been applied in a geothermal plant. Water monitoring revealed no significant chemical changes, but an adaption of the microbial community as well as a higher abundance of Bacteria after heat extraction. Laboratory experiments under anaerobic conditions showed that the inhibitor can be almost completely metabolized.
Martin Zimmer, Bettina Strauch, Axel Zirkler, Samuel Niedermann, and Andrea Vieth-Hillebrand
Adv. Geosci., 54, 15–21, https://doi.org/10.5194/adgeo-54-15-2020, https://doi.org/10.5194/adgeo-54-15-2020, 2020
Short summary
Short summary
In order to better understand both the fixation and migration of gases in evaporites, investigations were performed in five horizontal boreholes drilled in an underground potash seam.
According to the He-isotopes, a small contribution of mantle gas can be found in the geogenic salt gas. We assume that CO2 and CH4 are related to volcanic activity, where they isotopically equilibrated at temperatures of 513 °C to 519 °C about 15 to 16 Ma ago.
Cited articles
Achour-Rokbani, A., Cordi, A., Poupin, P., Bauda, P., and Billard, P.: Characterization of the ars Gene Cluster from Extremely Arsenic-Resistant Microbacteriu sp. Strain A33, Appl. Environ. Microbiol., 76, 948–955, https://doi.org/10.1128/AEM.01738-09, 2010. a
Adelskov, J. and Patel, B. K. C.: Draft Genome Sequence of Microbacterium sp. TNHR37B Isolated from a Heated Aquifer Bore Well of the Great Artesian Basin, Australia, Genome Announcements, 5, e00251-17, https://doi.org/10.1128/genomeA.00251-17, 2017. a
Alawi, M., Lerm, S., Vetter, A., Wolfgramm, M., Seibt, A., and Würdemann, H.: Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy, Grundwasser, 16, 105–112, https://doi.org/10.1007/s00767-011-0164-y, 2011. a, b, c
Alt-Epping, P., Waber, H., Diamond, L., and Eichinger, L.: Reactive transport modeling of the geothermal system at Bad Blumau, Austria: Implications of the combined extraction of heat and CO2, Geothermics, 45, 18–30, https://doi.org/10.1016/j.geothermics.2012.08.002, 2013. a, b, c, d
Amin, O., Fardeau, M.-L., Valette, O., Hirschler-Réa, A., Barbe, V., Médigue, C., Vacherie, B., Ollivier, B., Bertin, P. N., and Dolla, A.: Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum hydrothermale Lam5T, Genome Announcements, 1, e00114-12, https://doi.org/10.1128/genomeA.00114-12, 2013. a
Bae, E., Yeo, I. J., Jeong, B., Shin, Y., Shin, K.-H., and Kim, S.: Study of Double Bond Equivalents and the Numbers of Carbon and Oxygen Atom Distribution of Dissolved Organic Matter with Negative-Mode FT-ICR MS, Anal. Chem., 83, 4193–4199, https://doi.org/10.1021/ac200464q, 2011. a
Bhandari, V. and Gupta, R. S.: The Phylum Thermotogae, in: The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, edited by Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer Berlin Heidelberg, Berlin, Heidelberg, 989–1015, ISBN 978-3-642-38954-2, https://doi.org/10.1007/978-3-642-38954-2_118, 2014. a
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R., and Caporaso, J. G.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 37, 852–857, https://doi.org/10.1038/s41587-019-0209-9, 2019. a
Brehme, M., Nowak, K., Abel, M., Siklosi, I., Willems, C., and Huenges, E.: Injection Triggered Occlusion of Flow Pathways in a Sedimentary Aquifer in Hungary, World Geothermal Congress (WGC), 21–26 May 2020, Reykjavik, Iceland, https://researchportal.hw.ac.uk/en/publications/injection-triggered-occlusion-of-flow-pathways-in-a-sedimentary-a (last access: 1 December 2024), 2020. a
Burté, L., Cravotta, C. A. I., Bethencourt, L., Farasin, J., Pédrot, M., Dufresne, A., Gérard, M.-F., Baranger, C., Le Borgne, T., and Aquilina, L.: Kinetic Study on Clogging of a Geothermal Pumping Well Triggered by Mixing-Induced Biogeochemical Reactions, Environ. Sci. Technol., 53, 5848–5857, https://doi.org/10.1021/acs.est.9b00453, 2019. a, b
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Method., 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016. a
Cano, R. J. and Borucki, M. K.: Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber, Science, 268, 1060–1064, https://doi.org/10.1126/science.7538699, 1995. a
Carothers, W. W. and Kharaka, Y. K.: Aliphatic Acid Anions in Oil-Field Waters–Implications for Origin of Natural Gas1, AAPG Bull., 62, 2441–2453, https://doi.org/10.1306/C1EA5521-16C9-11D7-8645000102C1865D, 1978. a, b, c
Chen, H., Li, D. H., Jiang, A. J., Li, X. G., Wu, S. J., Chen, J. W., Qu, M. J., Qi, X. Q., Dai, J., Zhao, R., Zhang, W.-J., Liu, S. S., and Wu, L.-F.: Metagenomic analysis reveals wide distribution of phototrophic bacteria in hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge, Mar. Life Sci. Technol., 4, 255–267, https://doi.org/10.1007/s42995-021-00121-y, 2022. a
D'Andrilli, J., Dittmar, T., Koch, B. P., Purcell, J. M., Marshall, A. G., and Cooper, W. T.: Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization, Rapid Commun. Mass Sp., 24, 643–650, https://doi.org/10.1002/rcm.4421, 2010. a
Daumas, S., Cord-Ruwisch, R., and Garcia, J. L.: Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water, Antonie van Leeuwenhoek, 54, 165–178, https://doi.org/10.1007/BF00419203, 1988. a
De Leeuw, J. W. and Largeau, C.: A Review of Macromolecular Organic Compounds That Comprise Living Organisms and Their Role in Kerogen, Coal, and Petroleum Formation, Springer US, Boston, MA, 23–72, ISBN 978-1-4615-2890-6, https://doi.org/10.1007/978-1-4615-2890-6_2, 1993. a
Demir, M. M., Baba, A., Atilla, V., and İnanlı, M.: Types of the scaling in hyper saline geothermal system in northwest Turkey, Geothermics, 50, 1–9, https://doi.org/10.1016/j.geothermics.2013.08.003, 2014. a
Dib, J., Motok, J., Zenoff, V. F., Ordoñez, O., and Farías, M. E.: Occurrence of Resistance to Antibiotics, UV-B, and Arsenic in Bacteria Isolated from Extreme Environments in High-Altitude (Above 4400 m) Andean Wetlands, Curr. Microbiol., 56, 510–517, https://doi.org/10.1007/s00284-008-9103-2, 2008. a
Dittmar, T., Koch, B., Hertkorn, N., and Kattner, G.: A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater, Limnol. Oceanogr.-Method., 6, 230–235, https://doi.org/10.4319/lom.2008.6.230, 2008. a
Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., and Langille, M. G. I.: PICRUSt2 for prediction of metagenome functions, Nat. Biotechnol., 38, 685–688, https://doi.org/10.1038/s41587-020-0548-6, 2020. a, b, c
D’Andrilli, J., Chanton, J. P., Glaser, P. H., and Cooper, W. T.: Characterization of dissolved organic matter in northern peatland soil porewaters by ultra high resolution mass spectrometry, Org. Geochem., 41, 791–799, https://doi.org/10.1016/j.orggeochem.2010.05.009, 2010. a
Farrell, A., Nesbø, C. L., Zhaxybayeva, O., and L'Haridon, S.: Pseudothermotoga, John Wiley and Sons Ltd, 1–12, ISBN 9781118960608, https://doi.org/10.1002/9781118960608.gbm01861, 2021. a
Filippidou, S., Wunderlin, T., Junier, T., Jeanneret, N., Dorador, C., Molina, V., Johnson, D. R., and Junier, P.: A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes, Front. Microbiol., 7, 1707, https://doi.org/10.3389/fmicb.2016.01707, 2016. a
Fisher, J. and Boles, J.: Water–rock interaction in Tertiary sandstones, San Joaquin basin, California, U.S.A.: Diagenetic controls on water composition, Chem. Geol., 82, 83–101, https://doi.org/10.1016/0009-2541(90)90076-J, 1990. a
Flatt, R. and Schober, I.: 7 – Superplasticizers and the rheology of concrete, in: Understanding the Rheology of Concrete, edited by Roussel, N., Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing, 144–208, ISBN 978-0-85709-028-7, https://doi.org/10.1533/9780857095282.2.144, 2012. a
Gam, Z. B. A., Daumas, S., Casalot, L., Bartoli-Joseph, M., Necib, S., Linard, Y., and Labat, M.: Thermanaeromonas burensis sp. nov., a thermophilic anaerobe isolated from a subterranean clay environment, Int. J. System. Evol. Microbiol., 66, 445–449, https://doi.org/10.1099/ijsem.0.000739, 2016. a
Gavrilov, S. N., Potapov, E. G., Prokof’eva, M. I., Klyukina, A. A., Merkel, A. Y., Maslov, A. A., and Zavarzina, D. G.: Diversity of Novel Uncultured Prokaryotes in Microbial Communities of the Yessentukskoye Underground Mineral Water Deposit, Microbiology, 91, 28–44, https://doi.org/10.1134/S0026261722010039, 2022. a, b
Goldbrunner, J.: State, possible future developments in and barriers to the exploration and exploitation of geothermal energy in Austria – country update, Proceedings World Geothermal Congress (WGC), Antalya, Turkey, 24–29 April, https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0147.pdf (last access: 1 December 2024), 2005. a
Gomez-Saez, G. V., Niggemann, J., Dittmar, T., Pohlabeln, A. M., Lang, S. Q., Noowong, A., Pichler, T., Wörmer, L., and Bühring, S. I.: Molecular evidence for abiotic sulfurization of dissolved organic matter in marine shallow hydrothermal systems, Geochim. Cosmochim. Acta, 190, 35–52, https://doi.org/10.1016/j.gca.2016.06.027, 2016. a, b, c, d, e
Hatton, R. and Hanor, J.: Dissolved volatile fatty acids in subsurface, hydropressure brines: a review of published literature on occurrence, genesis and thermodynamic properties, Technical Report for Geopressured-Geothermal Activities in Louisiana: Final Geological Report for the Period 1 November 1981 to 31 October 1982, DOE Report No. DOE/NV/10174-3, 1984. a, b
Hawkes, J. A., Hansen, C. T., Goldhammer, T., Bach, W., and Dittmar, T.: Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions, Geochim. Cosmochim. Acta, 175, 68–85, https://doi.org/10.1016/j.gca.2015.11.025, 2016. a, b, c
Henry, E. A., Devereux, R., Maki, J. S., Gilmour, C. C., Woese, C. R., Mandelco, L., Schauder, R., Remsen, C. C., and Mitchell, R.: Characterization of a new thermophilic sulfate-reducing bacterium, Arch. Microbiol., 161, 62–69, https://doi.org/10.1007/BF00248894, 1994. a
Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., and Andersson, A. F.: Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea, ISME J., 5, 1571–1579, https://doi.org/10.1038/ismej.2011.41, 2011. a
Hewlett, P. C., Justnes, H., and Edmeades, R. M.: 14 – Cement and Concrete Admixtures, in: Lea's Chemistry of Cement and Concrete, 5th Edn., edited by: Hewlett, P. C. and Liska, M., Butterworth-Heinemann, 5th Edn., 641–698, ISBN 978-0-08-100773-0, https://doi.org/10.1016/B978-0-08-100773-0.00014-9, 2019. a
Hubalek, V., Wu, X., Eiler, A., Buck, M., Heim, C., Dopson, M., Bertilsson, S., and Ionescu, D.: Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield, ISME J., 10, 2447–2458, https://doi.org/10.1038/ismej.2016.36, 2016. a
Huber, R. and Stetter, K. O.: Fervidobacterium, John Wiley and Sons Ltd, 1–5, ISBN 9781118960608, https://doi.org/10.1002/9781118960608.gbm01269, 2015. a
Huber, S. A. and Frimmel, F. H.: Size-exclusion chromatography with organic carbon detection (LC-OCD): a fast and reliable method for the characterization of hydrophilic organic matter in natural waters, Vom Wasser, 86, 277–290, 1996. a
Huber, S. A., Balz, A., Abert, M., and Pronk, W.: Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography – organic carbon detection – organic nitrogen detection (LC-OCD-OND), Water Res., 45, 879–885, https://doi.org/10.1016/j.watres.2010.09.023, 2011. a, b, c
Hubmann, B., Suttner, T., and Messner, F.: Geologic frame of Palaeozoic reefs in Austria with special emphasis on Devonian reef-architecture of the Graz Palaeozoic, Joanneum Geologie und Paläontologie, 8, 47–72, 2006. a
Inagaki, F., Motomura, Y., and Ogata, S.: Microbial silica deposition in geothermal hot waters, Appl. Microbiol. Biotechnol., 60, 605–611, https://doi.org/10.1007/s00253-002-1100-y, 2003. a
Kharaka, Y., Maest, A., Carothers, W., Law, L., Lamothe, P., and Fries, T.: Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, USA, Appl. Geochem., 2, 543–561, https://doi.org/10.1016/0883-2927(87)90008-4, 1987. a
Kharaka, Y. K., Law, L. M., Carothers, W. W., and Goerlitz, D. F.: Role of Organic Species Dissolved in Formation Waters from Sedimentary Basins in Mineral Diagenesis, in: Roles of Organic Matter in Sediment Diagenesis, ISBN electronic: 9781565761049, ISBN print: 0918985595, SEPM Soc. Sediment. Geol., 38, https://doi.org/10.2110/pec.86.38, 1985. a, b
Kharaka, Y. K., Giordano, T. H., and Lundegard, P. D.: Distribution and Origin of Organic Ligands in Subsurface Waters from Sedimentary Basins, in: Ore Genesis and Exploration: The Roles of Organic Matter, Soc. Econ. Geol., 9, 119–129, https://doi.org/10.5382/Rev.09.06, 1997. a, b, c
Kieft, T. L., Walters, C. C., Higgins, M. B., Mennito, A. S., Clewett, C. F., Heuer, V., Pullin, M. J., Hendrickson, S., van Heerden, E., Sherwood Lollar, B., Lau, M. C., and Onstott, T.: Dissolved organic matter compositions in 0.6–3.4 km deep fracture waters, Kaapvaal Craton, South Africa, Org. Geochem., 118, 116–131, https://doi.org/10.1016/j.orggeochem.2018.02.003, 2018. a, b, c, d
Kim, S., Kramer, R. W., and Hatcher, P. G.: Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram, Anal. Chem., 75, 5336–5344, https://doi.org/10.1021/ac034415p, 2003. a
King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C., and Olah, T.: Mechanistic investigation of ionization suppression in electrospray ionization, J. Am. Soc. Mass Sp., 11, 942–950, https://doi.org/10.1016/S1044-0305(00)00163-X, 2000. a
Koch, B. P. and Dittmar, T.: From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter, Rapid Commun. Mass Sp., 20, 926–932, https://doi.org/10.1002/rcm.2386, 2006. a, b
Koch, B. P., Ludwichowski, K.-U., Kattner, G., Dittmar, T., and Witt, M.: Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS, Mar. Chem., 111, 233–241, https://doi.org/10.1016/j.marchem.2008.05.008, 2008. a, b
Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S., and Lilley, M. D.: Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field, Geochim. Cosmochim. Acta, 74, 941–952, https://doi.org/10.1016/j.gca.2009.10.045, 2010. a, b
Lang, S. Q., Früh-Green, G. L., Bernasconi, S. M., Brazelton, W. J., Schrenk, M. O., and McGonigle, J. M.: Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field, Sci. Rep., 8, 755, https://doi.org/10.1038/s41598-017-19002-5, 2018. a
Leins, A., Bregnard, D., Vieth-Hillebrand, A., Junier, P., and Regenspurg, S.: Dissolved organic compounds in geothermal fluids used for energy production: a review, Geotherm. Energ., 10, 9, https://doi.org/10.1186/s40517-022-00220-8, 2022. a, b
Leins, A., Vieth-Hillebrand, A., Günther, K., and Regenspurg, S.: Dissolved organic compounds in geothermal fluids used for energy production – part II, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.4.8.2023.005, 2023. a, b
Lerm, S., Westphal, A., Miethling-Graff, R., Alawi, M., Seibt, A., Wolfgramm, M., and Würdemann, H.: Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer, Extremophiles, 17, 311–327, https://doi.org/10.1007/s00792-013-0518-8, 2013. a, b
Little, B. J. and Lee, J. S.: Microbiologically Influenced Corrosion, Chap. 27, John Wiley and Sons Ltd, ISBN 9781119019213, 387–398, https://doi.org/10.1002/9781119019213.ch27, 2015. a, b
Longnecker, K., Sievert, S. M., Sylva, S. P., Seewald, J. S., and Kujawinski, E. B.: Dissolved organic carbon compounds in deep-sea hydrothermal vent fluids from the East Pacific Rise at 9°50′ N, Org. Geochem., 125, 41–49, https://doi.org/10.1016/j.orggeochem.2018.08.004, 2018. a
Lovley, D. R. and Klug, M. J.: Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments, Geochim. Cosmochim. Acta, 50, 11–18, https://doi.org/10.1016/0016-7037(86)90043-8, 1986. a
Lovley, D. R. and Phillips, E. J. P.: Requirement for a Microbial Consortium To Completely Oxidize Glucose in Fe(III)-Reducing Sediments, Appl. Environ. Microbiol., 55, 3234–3236, https://doi.org/10.1128/aem.55.12.3234-3236.1989, 1989. a
Madirisha, M., Hack, R., and van der Meer, F.: Simulated microbial corrosion in oil, gas and non-volcanic geothermal energy installations: The role of biofilm on pipeline corrosion, Energ. Rep., 8, 2964–2975, https://doi.org/10.1016/j.egyr.2022.01.221, 2022. a
Maki, J. S.: Thermodesulfovibrio, John Wiley and Sons Ltd, 1–9, ISBN 9781118960608, https://doi.org/10.1002/9781118960608.gbm00781, 2015. a
Mandakovic, D., Cintolesi, A., Maldonado, J., Mendoza, S. N., Aïte, M., Gaete, A., Saitua, F., Allende, M., Cambiazo, V., Siegel, A., Maas, A., González, M., and Latorre, M.: Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment, Sci. Rep., 10, 1–13, https://doi.org/10.1038/s41598-020-62130-8, 2020. a
McDermott, J. M., Seewald, J. S., German, C. R., and Sylva, S. P.: Pathways for abiotic organic synthesis at submarine hydrothermal fields, P. Natl. Acad. Sci. USA, 112, 7668–7672, https://doi.org/10.1073/pnas.1506295112, 2015. a, b
McDonough, L. K., Rutlidge, H., O'Carroll, D. M., Andersen, M. S., Meredith, K., Behnke, M. I., Spencer, R. G., McKenna, A. M., Marjo, C. E., Oudone, P., and Baker, A.: Characterisation of shallow groundwater dissolved organic matter in aeolian, alluvial and fractured rock aquifers, Geochim. Cosmochim. Acta, 273, 163–176, https://doi.org/10.1016/j.gca.2020.01.022, 2020. a
McDonough, L. K., Andersen, M. S., Behnke, M. I., Rutlidge, H., Oudone, P., Meredith, K., O’Carroll, D. M., Santos, I. R., Marjo, C. E., Spencer, R. G. M., McKenna, A. M., and Baker, A.: A new conceptual framework for the transformation of groundwater dissolved organic matter, Nat. Commun., 13, 2153, https://doi.org/10.1038/s41467-022-29711-9, 2022. a
Mehetre, G. T., J. S., V., Burkul, B. B., Desai, D., B, S., Dharne, M. S., and Dastager, S. G.: Bioactivities and molecular networking-based elucidation of metabolites of potent actinobacterial strains isolated from the Unkeshwar geothermal springs in India, RSC Adv., 9, 9850–9859, https://doi.org/10.1039/C8RA09449G, 2019. a
Minor, E. C., Steinbring, C. J., Longnecker, K., and Kujawinski, E. B.: Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometry, Org. Geochem., 43, 1–11, https://doi.org/10.1016/j.orggeochem.2011.11.007, 2012. a
Mori, K. and Hanada, S.: Thermanaeromonas, John Wiley and Sons Ltd, 1–5, ISBN 9781118960608, https://doi.org/10.1002/9781118960608.gbm00750, 2015. a
Mori, K., Hanada, S., Maruyama, A., and Marumo, K.: Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from a subterranean vein in the Toyoha Mines, Int. J. Syst. Evol. Micr., 52, 1675–1680, https://doi.org/10.1099/00207713-52-5-1675, 2002. a
Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P.: Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments, Microbiol. Molecul. Biol. Rev., 64, 548–572, https://doi.org/10.1128/MMBR.64.3.548-572.2000, 2000. a
Nicholson, W. L., Fajardo-Cavazos, P., Rebeil, R., Slieman, T. A., Riesenman, P. J., Law, J. F., and Xue, Y.: Bacterial endospores and their significance in stress resistance, Antonie van Leeuwenhoek, 81, 27–32, https://doi.org/10.1023/A:1020561122764, 2002. a
Noowong, A., Gomez-Saez, G. V., Hansen, C. T., Schwarz-Schampera, U., Koschinsky, A., and Dittmar, T.: Imprint of Kairei and Pelagia deep-sea hydrothermal systems (Indian Ocean) on marine dissolved organic matter, Org. Geochem., 152, 104141, https://doi.org/10.1016/j.orggeochem.2020.104141, 2021. a, b, c, d, e, f, g
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M.-H., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C. J., and Weedon, J.: vegan: Community Ecology Package [code], https://CRAN.R-project.org/package=vegan (last access: 2 September 2022), 2022. a
Penru, Y., Simon, F. X., Guastalli, A. R., Esplugas, S., Llorens, J., and Baig, S.: Characterization of natural organic matter from Mediterranean coastal seawater, J. Water Suppl. Res. T., 62, 42–51, https://doi.org/10.2166/aqua.2013.113, 2013. a
Poratti, G. W., Yaakop, A. S., Chan, C. S., Urbieta, M. S., Chan, K.-G., Ee, R., Tan-Guan-Sheng, A., Goh, K. M., and Donati, E. R.: Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina, Genome Announcements, 4, e00870-16, https://doi.org/10.1128/genomeA.00870-16, 2016. a
Preiner, M., Igarashi, K., Muchowska, K. B., Yu, M., Varma, S. J., Kleinermanns, K., Nobu, M. K., Kamagata, Y., Tüysüz, H., Moran, J., and Martin, W. F.: A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism, Nat. Ecol. Evol., 4, 534–542, https://doi.org/10.1038/s41559-020-1125-6, 2020. a
Puente-Sánchez, F., Arce-Rodríguez, A., Oggerin, M., García-Villadangos, M., Moreno-Paz, M., Blanco, Y., Rodríguez, N., Bird, L., Lincoln, S. A., Tornos, F., Prieto-Ballesteros, O., Freeman, K. H., Pieper, D. H., Timmis, K. N., Amils, R., and Parro, V.: Viable cyanobacteria in the deep continental subsurface, P. Natl. Acad. Sci. USA, 115, 10702–10707, https://doi.org/10.1073/pnas.1808176115, 2018. a, b
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucl. Acid. Res., 41, D590–D596, https://doi.org/10.1093/nar/gks1219, 2012. a, b
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing [code], Vienna, Austria, https://www.R-project.org/ (last access: 2 September 2022), 2020. a
Rabus, R., Venceslau, S. S., Wöhlbrand, L., Voordouw, G., Wall, J. D., and Pereira, I. A. C.: Chapter Two – A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes, Adv. Microb. Physiol., 66, 55–321, https://doi.org/10.1016/bs.ampbs.2015.05.002, 2015. a
Regenspurg, S., Feldbusch, E., Norden, B., and Tichomirowa, M.: Fluid-rock interactions in a geothermal Rotliegend/Permo-Carboniferous reservoir (North German Basin), Appl. Geochem., 69, 12–27, https://doi.org/10.1016/j.apgeochem.2016.03.010, 2016. a
Reinsel, M. A., Borkowski, J. J., and Sears, J. T.: Partition coefficients for acetic, propionic, and butyric acids in a crude oil/water system, J. Chem. Eng. Data, 39, 513–516, https://doi.org/10.1021/je00015a026, 1994. a
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F.: VSEARCH: a versatile open source tool for metagenomics, PeerJ, 4, e2584, https://doi.org/10.7717/peerj.2584, 2016. a
Rossel, P. E., Bienhold, C., Boetius, A., and Dittmar, T.: Dissolved organic matter in pore water of Arctic Ocean sediments: Environmental influence on molecular composition, Org. Geochem., 97, 41–52, https://doi.org/10.1016/j.orggeochem.2016.04.003, 2016. a
Rossel, P. E., Stubbins, A., Rebling, T., Koschinsky, A., Hawkes, J. A., and Dittmar, T.: Thermally altered marine dissolved organic matter in hydrothermal fluids, Org. Geochem., 110, 73–86, https://doi.org/10.1016/j.orggeochem.2017.05.003, 2017. a, b
Schmidt, F., Elvert, M., Koch, B. P., Witt, M., and Hinrichs, K.-U.: Molecular characterization of dissolved organic matter in pore water of continental shelf sediments, Geochim. Cosmochim. Acta, 73, 3337–3358, https://doi.org/10.1016/j.gca.2009.03.008, 2009. a
Sherwood Lollar, B., Heuer, V., McDermott, J., Tille, S., Warr, O., Moran, J., Telling, J., and Hinrichs, K.-U.: A window into the abiotic carbon cycle – Acetate and formate in fracture waters in 2.7 billion year-old host rocks of the Canadian Shield, Geochim. Cosmochim. Acta, 294, 295–314, https://doi.org/10.1016/j.gca.2020.11.026, 2021. a, b, c
Sleighter, R. L. and Hatcher, P. G.: The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter, J. Mass Spectrom., 42, 559–574, https://doi.org/10.1002/jms.1221, 2007. a, b, c, d
Sleighter, R. L. and Hatcher, P. G.: Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Mar. Chem., 110, 140–152, https://doi.org/10.1016/j.marchem.2008.04.008, 2008. a, b, c
Sonne-Hansen, J. and Ahring, B. K.: Thermodesulfobacterium hveragerdense sp.nov., and Thermodesulfovibrio islandicus sp.nov., Two Thermophilic Sulfate Reducing Bacteria Isolated from a Icelandic Hot Spring, System. Appl. Microbiol., 22, 559–564, https://doi.org/10.1016/S0723-2020(99)80009-5, 1999. a
Sørensen, J., Christensen, D., and Jørgensen, B. B.: Volatile Fatty Acids and Hydrogen as Substrates for Sulfate-Reducing Bacteria in Anaerobic Marine Sediment, Appl. Environ. Microbiol., 42, 5–11, https://doi.org/10.1128/aem.42.1.5-11.1981, 1981. a
Sousa, D. Z., Visser, M., van Gelder, A. H., Boeren, S., Pieterse, M. M., Pinkse, M. W. H., Verhaert, P. D. E. M., Vogt, C., Franke, S., Kümmel, S., and Stams, A. J. M.: The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways, Nat. Commun., 9, 239, https://doi.org/10.1038/s41467-017-02518-9, 2018. a
Umezawa, K., Kojima, H., Kato, Y., and Fukui, M.: Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio, System. Appl. Microbiol., 44, 126184, https://doi.org/10.1016/j.syapm.2021.126184, 2021. a
Vetter, A.: The influence of geothermal plants on the biogeochemistry of the microbial ecosystems in aquifers, Doctoral thesis, Technische Universität Berlin, Fakultät VI – Planen Bauen Umwelt, Berlin, https://doi.org/10.14279/depositonce-3419, 2012. a, b
Ward, D. M., Castenholz, R. W., and Miller, S. R.: Cyanobacteria in Geothermal Habitats, in: Ecology of Cyanobacteria II: Their Diversity in Space and Time, edited by: Whitton, B. A., Springer Netherlands, Dordrecht, 39–63, ISBN 978-94-007-3855-3, https://doi.org/10.1007/978-94-007-3855-3_3, 2012. a
Westphal, A., Eichinger, F., Eichinger, L., and Würdemann, H.: Change in the microbial community of saline geothermal fluids amended with a scaling inhibitor: effects of heat extraction and nitrate dosage, Extremophiles, 23, 283–304, https://doi.org/10.1007/s00792-019-01080-0, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.: Welcome to the tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019. a, b
Wunderlin, T., Junier, T., Roussel-Delif, L., Jeanneret, N., and Junier, P.: Stage 0 sporulation gene A as a molecular marker to study diversity of endospore-forming Firmicutes, Environ. Microbiol. Rep., 5, 911–924, https://doi.org/10.1111/1758-2229.12094, 2013. a
Zhu, Y., Vieth-Hillebrand, A., Wilke, F. D., and Horsfield, B.: Characterization of water-soluble organic compounds released from black shales and coals, International J. Coal Geol., 150/151, 265–275, https://doi.org/10.1016/j.coal.2015.09.009, 2015. a
Zhu, Y., Vieth-Hillebrand, A., Noah, M., and Poetz, S.: Molecular characterization of extracted dissolved organic matter from New Zealand coals identified by ultrahigh resolution mass spectrometry, Int. J. Coal Geol., 203, 74–86, https://doi.org/10.1016/j.coal.2019.01.007, 2019. a, b, c
Short summary
Organic matter and microbial fluid analysis are rarely considered in the geothermal industry and research. However, they can have a significant impact on the efficiency of geothermal energy production. We found a high diversity of organic compound compositions in our samples and were able to differentiate them with respect to different sources (e.g. artificial and biogenic). Furthermore, the microbial diversity undergoes significant changes within the flow path of a geothermal power plant.
Organic matter and microbial fluid analysis are rarely considered in the geothermal industry and...
Altmetrics
Final-revised paper
Preprint