Articles | Volume 22, issue 4
https://doi.org/10.5194/bg-22-1095-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1095-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring macroevolutionary links in multi-species planktonic foraminiferal Mg∕Ca and δ18O from 15 Ma to recent
Flavia Boscolo-Galazzo
CORRESPONDING AUTHOR
Bremen University, MARUM, Center for Marine Environmental Sciences, Bremen, Germany
David Evans
School of Ocean and Earth Science, University of Southampton, Southampton, UK
Elaine M. Mawbey
Department of Earth Sciences, University College London, London, UK
William R. Gray
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Université Paris-Saclay, Gif-sur-Yvette, France
Paul N. Pearson
Department of Earth Sciences, University College London, London, UK
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
Bridget S. Wade
Department of Earth Sciences, University College London, London, UK
Related authors
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Alessio Fabbrini, Paul N. Pearson, Anieke Brombacher, Francesco Iacoviello, Thomas H. G. Ezard, and Bridget S. Wade
J. Micropalaeontol., 44, 213–235, https://doi.org/10.5194/jm-44-213-2025, https://doi.org/10.5194/jm-44-213-2025, 2025
Short summary
Short summary
Pulleniatina is a genus of planktonic foraminifera used in biostratigraphy. Here, we illustrate typical specimens of Pulleniatina and the likely ancestor Neogloboquadrina acostaensis from International Ocean Discovery Program Site U1488. We present a novel integration of high-definition light microscopy images, X-ray microcomputed tomography data, and scanning electron microscope images to compare the six Pulleniatina species, supporting an evolutionary model with two diverging lineages.
Iris Arndt, Jonathan Erez, David Evans, Tobias Erhardt, Adam Levi, and Wolfgang Müller
EGUsphere, https://doi.org/10.5194/egusphere-2025-3479, https://doi.org/10.5194/egusphere-2025-3479, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study explores daily geochemical variations in giant clam (Tridacna) shells from controlled, isotopically-labelled day-night growth experiments. Results show five times higher daytime calcification rates. Light availability and metabolic activity significantly influence elemental incorporation mechanisms. The findings enhance our understanding of clam geochemistry and growth dynamics, offering valuable insights for studies on past environmental changes.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Tirza Maria Weitkamp, Mohammad Javad Razmjooei, Paul Nicholas Pearson, and Helen Katherine Coxall
J. Micropalaeontol., 44, 1–78, https://doi.org/10.5194/jm-44-1-2025, https://doi.org/10.5194/jm-44-1-2025, 2025
Short summary
Short summary
Deep Sea Drilling Project Site 407, near Iceland, offers a valuable 25-million-year record of planktonic foraminifera evolution from the Late Cenozoic. Species counts and ranges, assemblage changes, and biostratigraphic zones were identified. Key findings include the shifts in species dominance and diversity. Challenges include sediment gaps and missing biozone markers. We aim to enhance the Neogene–Quaternary Middle Atlas and improve the North Atlantic palaeoceanography and biostratigraphy.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Jakub Witkowski, Karolina Bryłka, Steven M. Bohaty, Elżbieta Mydłowska, Donald E. Penman, and Bridget S. Wade
Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, https://doi.org/10.5194/cp-17-1937-2021, 2021
Short summary
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Cited articles
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846, 2003.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, https://doi.org/10.1111/j.1469-185X.2011.00178.x, 2011.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures used for foraminiferal paleothermometry, Geochem. Geophy. Geosy., 4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised palaeotemperature equations, Paleoceanography, 13, 150–160, 1998.
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D., and O'Regan, M.: Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals, Mar. Micropaleontol., 10, 127–145, https://doi.org/10.1016/j.marmicro.2013.02.002, 2013.
Boscolo-Galazzo, F., Crichton, K. A., Ridgwell, A., Mawbey, E. M., Wade, B. S., and Pearson P. N.: Temperature controls carbon cycling and biological evolution in the ocean twilight zone, Science, 371, 1148–1152, https://doi.org/10.1126/science.abb6643, 2021.
Boscolo-Galazzo, F., Jones, A., Dunkley Jones, T., Crichton, K. A., Wade, B. S., and Pearson, P. N.: Late Neogene evolution of modern deep-dwelling plankton, Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, 2022.
Boscolo-Galazzo, F., Evans, D., Mawbey, E. M., Gray, W. R., Pearson, P. N., and Wade, B. S.: Code and datasets to accompany Boscolo-Galazzo et al. (2025): Exploring macroevolutionary links in multi-species planktonic foraminiferal Mg Ca and δ18O from 15 Ma to Recent, Zenodo [code] and [data set], https://doi.org/10.5281/zenodo.14847243, 2025.
Branson, O., Read, E., Redfern, S. A. T., Rau, C., and Elderfield, H.: Revisiting diagenesis on the Ontong Java Plateau: Evidence for authigenic crust precipitation in Globorotalia tumida, Paleoceanography, 30, 1490–1502, https://doi.org/10.1002/2014PA002759, 2015.
Brennan, S. T., Lowenstein, T. K., and Cendon, D. I.: The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite, Am. J. Sci., 313, 713–775, https://doi.org/10.2475/08.2013.01, 2013.
Chave, K. E.: Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms, J. Geol., 62, 266–283, https://doi.org/10.1086/626162, 1954.
Daëron, M. and Gray, W. R.: Revisiting oxygen-18 and clumped isotopes in planktic and benthic foraminifera, Paleoceanography and Paleoclimatology, 38, e2023PA004660, https://doi.org/10.1029/2023PA004660, 2023.
Davis, C. V., Fehrenbacher, J. S., Hill, T. M., Russell, A. D., and Spero, H. J.: Relationships between temperature, pH, and crusting on ratios in laboratory-grown Neogloboquadrina foraminifera, Paleoceanography, 32, 2017PA003111, https://doi.org/10.1002/2017PA003111, 2017.
Dekens, P. S., Lea, D. W., Pak, D. K., and Spero, H. J.: Core top calibration of in tropical foraminifera: Refining paleotemperature estimation, Geochem. Geophy. Geosy., 3, 1–29, https://doi.org/10.1029/2001GC000200, 2002.
Edgar, K. M., Anagnostou, E., Pearson, P. N., and Foster, G. L.: Assessing the impact of diagenesis on δ11B, δ13C, δ18O, and values in fossil planktic foraminiferal calcite, Geochim. Cosmochim. Ac., 166, 189–209, https://doi.org/10.1016/j.gca.2015.06.018, 2015.
Eggins S. M., Sadekov, A., and De Deckker P.: Modulation and daily banding of in Orbulina universa tests by symbiont photosynthesis and respiration: a complication for seawater thermometry?, Earth Planet. Sc. Lett., 225, 411–419, https://doi.org/10.1016/j.epsl.2004.06.019, 2004.
Elderfield, H. and Ganssen, G.: Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg Ca ratios, Nature, 405, 442–445, 2000.
Emiliani, C.: Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios, Am. J. Sci., 252, 149–158, 1954.
Erez, J. and Luz, B.: Experimental paleotemperature equation for planktonic foraminifera, Geochim. Cosmochim. Ac., 47, 1025–1031, https://doi.org/10.1016/0016-7037(83)90232-6, 1983.
Evans, D.: dbjevans/MgCaRB: v1.3 (v1.3), Zenodo [code], https://doi.org/10.5281/zenodo.14056982, 2024.
Evans D., Erez J., Oron S., and Muller W.: temperature and seawater-test chemistry relationships in the shallow-dwelling large benthic foraminifera Operculina ammonoides, Geochim. Cosmochim. Ac., 148, 325–342, https://doi.org/10.1016/j.gca.2014.09.039, 2015.
Evans, D., Brierley, C., Raymo, M. E., Erez, J., and Müller, W.: Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater , temperature and sea level change, Earth Planet. Sc. Lett., 438, 139–148, https://doi.org/10.1016/j.epsl.2016.01.013, 2016a.
Evans, D., Wade, B. S., Henehan, M., Erez, J., and Müller, W.: Revisiting carbonate chemistry controls on planktic foraminifera : implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition, Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, 2016b.
Fabbrini, A., Zaminga, I., Ezard, T., and Wade, B. S.: Systematic taxonomy of middle Miocene Sphaeroidinellopsis (planktonic foraminifera), J. Syst. Palaeontol., 19, 953–968, https://doi.org/10.1080/14772019.2021.1991500, 2021.
Fayolle, F. and Wade, B. S.: Data report: Miocene planktonic foraminifers Dentoglobigerina and Globoquadrina from IODP Sites U1489 and U1490, Expedition 363, in: Western Pacific Warm Pool. Proceedings of the International Ocean Discovery Program, edited by: Rosenthal, Y., Holbourn, A. E., Kulhanek, D. K., and the Expedition 363 Scientists, 363, College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/iodp.proc.363.203.2020, 2020.
Fehrenbacher, J. S. and Martin, P. A.: Exploring the dissolution effect on the intrashell Mg Ca variability of the planktic foraminifer Globigerinoides ruber, Paleoceanography, 29, 854–868, 2014.
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J., Cooper, M. J., and Fiebig, J.: Influence of test size, water depth, and ecology on , , δ18O and δ13C in nine modern species of planktic foraminifers, Earth Planet. Sc. Lett., 319, 133–145, https://doi.org/10.1016/j.epsl.2011.12.002, 2012.
Fritz-Endres, T. and Fehrenbacher, J.: Preferential loss of high trace element bearing inner calcite in foraminifera during physical and chemical cleaning, Geochem. Geophy. Geosy., 22, e2020GC009419, https://doi.org/10.1029/2020GC009419, 2021.
Gaskell, D. E. and Hull, P. M.: Technical note: A new online tool for δ18O-temperature conversions, Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023, 2023.
Gaskell, D. E., Huber, M., O'Brien, C. L., Inglis, G. N., Acosta, R. P., Poulsen, C. J., and Hull, P. M.: The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal 18O over the past 95 million years, P. Natl. Acad. Sci. USA, 119, e2111332119, https://doi.org/10.1073/pnas.2111332119, 2022.
Gray, W. R. and Evans, D.: Nonthermal influences on in planktonic foraminifera: A review of culture studies and application to the last glacial maximum, Paleoceanography and Paleoclimatology, 34, 306–315, https://doi.org/10.1029/2018PA003517, 2019.
Gray, W. R., Weldeab, S., Lea, D. W., Rosenthal, Y., Gruber, N., Donner, B., and Fischer, G.: The effects of temperature, salinity, and the carbonate system on in Globigerinoides ruber (white): A global sediment trap calibration, Earth Planet. Sc. Lett., 482, 607–620, https://doi.org/10.1016/j.epsl.2017.11.026, 2018.
Holland, K., Branson, O., Haynes, L. L., Honisch, B., Allen, K. A., Russell, A. D., Fehrenbacher, J. S., Spero, H. J., and Eggins S. M.: Constraining multiple controls on planktic foraminifera , Geochim. Cosmochim. Ac., 273, 116–136, https://doi.org/10.1016/j.gca.2020.01.015, 2020.
Hönisch, B., Allen, K. A., Lea, D. W., Spero, H. J., Eggins, S. M., Arbuszewski, J., deMenocal, P., Rosenthal, Y., Russell, A. D., and Elderfield, H.: The influence of salinity on in planktic foraminifers – evidence from cultures, core-top sediments and complementary δ18O, Geochim. Cosmochim. Acta, 121, 196–213, https://doi.org/10.1016/j.gca.2013.07.028, 2013.
Huber, B. T., Petrizzo, M. R., Young, J., Falzoni, F., Gilardoni, S., Bown, P. R., and Wade, B. S.: Pforams@mikrotax: A new online taxonomic database for planktonic foraminifera, Micropalaeontology, 62, 429–438, 2016.
John, E. H., Staudigel, P. T., Buse, B., Lear, C. H., Pearson, P. N., and Slater, S. M.: Revealing their true stripes: banding in the Paleogene planktonic foraminifera genus Morozovella and implications for paleothermometry, Paleoceanography and Paleoclimatology, 38, e2023PA004652, https://doi.org/10.1029/2023PA004652, 2023.
Jonkers, L., de Nooijer, L. J., Reichart, G.-J., Zahn, R., and Brummer, G.-J. A.: Encrustation and trace element composition of Neogloboquadrina dutertrei assessed from single chamber analyses – implications for paleotemperature estimates, Biogeosciences, 9, 4851–4860, https://doi.org/10.5194/bg-9-4851-2012, 2012.
Jonkers, L., Gopalakrishnan, A., Weßel, L., Chiessi, C. M., Groeneveld, J., Monien, P., Douglas, L., and Morard, R.: Morphotype and crust effects on the geochemistry of Globorotalia inflata, Paleoceanography and Paleoclimatology, 36, e2021PA004224, https://doi.org/10.1029/2021PA004224, 2021.
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V., Cramer, B. S., and Rosenthal, Y.: Stepwise transition from the Eocene greenhouse to the Oligocene icehouse, Nat. Geosci., 1, 329–334, 2008.
Kim, S.-T., and O'Neil, J. R.: Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, 1997.
Kısakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D., and Erez, J.: Controls on shell and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white), Earth Planet. Sc. Lett., 273, 260–269, https://doi.org/10.1016/j.epsl.2008.06.026, 2008.
LeGrande A. N. and Schmidt G. A.: Global gridded data set of the oxygen isotopic composition in seawater, Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011, 2006.
Lea, D. W., Mashiotta, T. A., and Spero, H. J.: Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing, Geochim. Cosmochim. Ac., 63, 2369–2379, https://doi.org/10.1016/S0016-7037(99)00197-0, 1999.
Lear, C. H., Elderfield, H., and Wilson, P. A.: Cenozoic deep-sea temperatures and global ice volumes from Mg Ca in benthic foraminiferal calcite, Science, 287, 269–272, 2000.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal -paleothermometry: A revised core-top calibration, Geochim. Cosmochim. Ac., 66, 3375–3387, https://doi.org/10.1016/S0016-7037(02)00941-9, 2002.
Leckie, R. M., Wade, B. S., Pearson, P. N., Fraass, A. J., King, D. J., Olsson, R. K., Premoli Silva, I., Spezzaferri, S., and Berggren, W. A.: Taxonomy, biostratigraphy, and phylogeny of Oligocene and early Miocene Paragloborotalia and Parasubbotina, in: Atlas of Oligocene Planktonic Foraminifera, edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman Foundation of Foraminiferal Research, Special Publication, 46, 125–178, ISBN 9781970168419, 2018.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S., Mishonov, A., NOAA Atlas NESDIS 73, 40 pp., https://doi.org/10.7289/V55X26VD, 2013.
Lourens, L. J., Hilgen, F. J., Shackleton, N. J., Laskar, J., and Wilson, D.: The Neogene Period, in: Geological Time Scale 2004, edited by: Gradstein, F. M., Ogg, J. G., and Smith, A. G., Cambridge University Press, 409–440, https://doi.org/10.1016/B978-0-12-824360-2.00029-2, 2004.
Malevich, S. B., Vetter, L., and Tierney, J. E.: Global Core Top Calibration of 18O in Planktic Foraminifera to Sea Surface Temperature, Paleoceanography and Paleoclimatology, 34, 1292–1315, https://doi.org/10.1029/2019PA003576, 2019.
Mathien-Blard, E. and Bassinot, F.: Salinity bias on the foraminifera thermometry: correction procedure and implications for past ocean hydrographic reconstructions, Geochem. Geophys. Geosyst., 10, Q12011, https://doi.org/10.1029/2008GC002353, 2009.
McConnell, M. C. and Thunell, R. C.: Calibration of the planktonic foraminiferal paleothermometer: sediment trap results from the Guaymas Basin, Gulf of California, Paleoceanography, 20, PA2016, https://doi.org/10.1029/2004PA001077, 2005.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Science Advances, 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Morard, R., Darling, K. F., Weiner, A. K. M., Hassenrück, C., Vanni, C., Cordier, T., Henry, N., Greco, M., Vollma, N. M., Milivojevic, T., Rahman, S. N., Siccha, M., Meilland, J., Jonkers, L., Quillévéré, F., Escarguel, G., Douady, C. J., de Garidel-Thoron, T., de Vargas, C., and Kucera, M.: The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton, Biol. Rev., 99, 1218–1241, https://doi.org/10.1111/brv.13065, 2024.
Mohtadi, M., Steinke, S., Groeneveld, J., Fink, H. G., Rixen, T., Hebbeln, D., Donner, B., and Herunadi, B.: Low-latitudecontrol on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java: A sediment trapstudy, Paleoceanography, 24, PA1201, https://doi.org/10.1029/2008PA001636, 2009.
Mucci, A.: Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater, Geochim. Cosmochim. Ac., 51, 1977–1984, https://doi.org/10.1016/0016-7037(87)90186-4, 1987.
Mucci, A. and Morse, J. W.: The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition, Geochim. Cosmochim. Ac., 47, 217–233, https://doi.org/10.1016/0016-7037(83)90135-7, 1983.
Nuernberg, D.: Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern latitudes, J. Foramin. Res., 25, 350–368, https://doi.org/10.2113/gsjfr.25.4.350, 1995.
Nürnberg, D., Bijma, J., and Hemleben, C.: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures, Geochim. Cosmochim. Ac., 60, 803–814, https://doi.org/10.1016/0016-7037(95)00446-7, 1996.
Opdyke, B. N. and Pearson, P. N.: Data report: geochemical analysis of multiple planktonic foraminifer species at discrete time intervals, in: Proceedings of the Ocean Drilling Program, Scientific Results, 144, edited by: Haggerty, J. A., Premoli Silva, I., Rack, F., and McNutt, M. K., 993–995, https://doi.org/10.2973/odp.proc.sr.144.052.1995, 1995.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The heartbeat of the Oligocene climate system, Science, 314, 1894–1898, https://doi.org/10.1126/science.1133822, 2006.
Pearson, P. N., Shackleton, N. J., and Hall, M. A.: Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa, J. Geol. Soc. London, 154, 295–302, https://doi.org/10.1144/gsjgs.154.2.0295, 1997.
Pearson, P. N.: Oxygen isotopes in foraminifera: overview and historical review, in: Reconstructing Earth's Deep-Time Climate, Paleontological Society Papers, vol. 18, edited by: Ivany, L. and Huber, B., 1–38, Cambridge University Press, https://doi.org/10.1017/S1089332600002539, 2012.
Pearson, P. N., Young, J., King, D. J., and Wade, B. S.: Biochronology and evolution of Pulleniatina (planktonic foraminifera), J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, 2023.
Rae, J. W. B., Zhang, Y., Liu, X., Foster, G. L., Stoll, H. M., and Whiteford, D. M.: Atmospheric CO2 over the past 66 million years from marine archives, Annu. Rev. Earth Pl. Sc., 49, 609–641, https://doi.org/10.1146/annurev-earth-082420-063026, 2021.
Regenberg, M., Steph, S., Nürnberg, D., Tiedemann, R., and Garbe-Schönberg, D.: Calibrating Mg Ca ratios of multiple planktonic foraminiferal species with δ18O-calcification temperatures: Paleothermometry for the upper water column, Earth Planet. Sc. Lett., 278, 324–336, 2009.
Regenberg, M., Regenberg, A., Garbe-Schönberg, D., and Lea, D. W.: Global dissolution effects on planktonic foraminiferal ratios controlled by the calcite-saturation state of bottom waters, Paleoceanography, 29, 127–142, https://doi.org/10.1002/2013PA002492, 2014.
Rohling, E. J., Foster, G. L., Gernon, T. M., Grant, K. M., Heslop, D., Hibbert, F. D., Roberts, A. P., and Yu, J.: Comparison and synthesis of sea-level and deep-sea temperature variations over the past 40 million years, Rev. Geophys., 60, e2022RG000775, https://doi.org/10.1029/2022RG000775, 2022.
Rongstad, B. L., Marchitto, T. M., and Herguera, J. C.: Understanding the effects of dissolution on the paleothermometer in planktic foraminifera: Evidence from a novel individual foraminifera method, Paleoceanography, 32, 1386–1402, https://doi.org/10.1002/2017PA003179, 2017.
Rosenthal, Y., Bova, S., and Zhou, X.: A user guide for choosing planktic foraminiferal -temperature calibrations. Paleoceanography and Paleoclimatology, 37, e2022PA004413, https://doi.org/10.1029/2022PA004413, 2022.
Russell, A. D., Honisch, B., Spero, H. J., and Lea, D. W.: Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera, Geochim. Cosmochim. Ac., 68, 4347–4361, https://doi.org/10.1016/j.gca.2004.03.013, 2004.
Sexton, P. E., Wilson, P. A., and Pearson, P. N.: Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty”, Geochem. Geophy. Geosy., 7, Q12P19, https://doi.org/10.1029/2006GC001291, 2006.
Schiebel, R. and Hemleben, C.: Planktic foraminifers in the modern ocean, Springer, 366 pp., ISBN 978-3-662-50295-2, https://doi.org/10.1007/978-3-662-50297-6, 2017.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497–500, https://doi.org/10.1038/37333, 1997.
Spezzaferri, S., Coxall, H. K., Olsson, R. K., and Hemleben, C.: Taxonomy, biostratigraphy and phylogeny of Oligocene Globigerina, Globigerinella, and Quiltyella n. gen., in: Atlas of Oligocene Planktonic Foraminifera, Cushman Foundation of Foraminiferal Research, edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Special Publication, Cushman Foundation for Foraminiferal research, 46, 125–178, 2018.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Staudigel, P. T., John, E. H., Buse, B., Pearson, P. N., and Lear, C. H.: Apparent preservation of primary foraminiferal ratios and Mg-banding in recrystallized foraminifera, Geology, 50, 760–764, https://doi.org/10.1130/G49984.1, 2022.
Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L., and Thirumalai, K.: Bayesian calibration of the paleothermometer in planktic foraminifera, Paleoceanography and Paleoclimatology, 34, 2005–2030, https://doi.org/10.1029/2019PA003744, 2019.
Urey, H. C.: The thermodynamic properties of isotopic substance, J. Chem. Soc., 1947, 562–581, 1947.
Von Langen, P. J., Pak, D. K., Spero, H. J., and Lea, D. W.: Effects of temperature on in neogloboquadrinid shells determined by live culturing, Geochem. Geophy. Geosy., 6, Q10P03, https://doi.org/10.1029/2005GC000989, 2005.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth-Sci. Rev., 104, 111–142, https://doi.org/10.1016/j.earscirev.2010.09.003, 2011.
Weiner, A. K. M., Weinkauf, M. F. G., Kurasawa, A., Darling, K. F., and Kucera, M.: Genetic and morphometric evidence for parallel evolution of the Globigerinella calida morphotype, Mar. Micropaleontol., 114, 19–35, https://doi.org/10.1016/j.marmicro.2014.10.003, 2015.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., Vleeschouwer, D. D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: Anastronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Yu, J., Elderfield, H., Greaves, M., and Day, J.: Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning, Geochem. Geophy. Geosy., 8, Q06016, https://doi.org/10.1029/2006GC001571, 2007.
Zarkogiannis, S. D., Antonarakou, A., Tripati, A., Kontakiotis, G., Mortyn, P. G., Drinia, H., and Greaves, M.: Influence of surface ocean density on planktonic foraminifera calcification, Sci. Rep.-UK, 9, 533, https://doi.org/10.1038/s41598-018-36935-7, 2019.
Zeebe, R. E.: An explanation of the effect of sea water carbonate concentration on foraminiferal oxygen isotopes, Geochim. Cosmochim. Ac., 63, 2001–2007, https://doi.org/10.1016/S0016-7037(99)00091-5, 1999.
Zeebe, R. E. and Tyrrell, T.: History of carbonate ion concentration over the last 100 million years II: revised calculations and new data, Geochim. Cosmochim. Ac., 257, 373–392, https://doi.org/10.1016/j.gca.2019.02.041, 2019.
Zhou, X., Rosenthal, Y., Haynes, L., Si W., Evans, D., Huang, K.-F., Honisch, B., and Erez, J.: Planktic foraminiferal : A potential proxy for seawater calcium concentration, Geochim. Cosmochim. Ac., 305, 306–322, https://doi.org/10.1016/j.gca.2021.04.012, 2021.
Short summary
Here we compare the Mg / Ca and oxygen isotope signatures for 57 recent to fossil species of planktonic foraminifera for the last 15 Myr. We find the occurrence of lineage-specific offsets in Mg / Ca conservative between ancestor-descendent species. Taking into account species kinship significantly improves temperature reconstructions, and we suggest that the occurrence of Mg / Ca offsets in modern species results from their evolution when ocean properties were different from today's.
Here we compare the Mg / Ca and oxygen isotope signatures for 57 recent to fossil species of...
Altmetrics
Final-revised paper
Preprint