Articles | Volume 22, issue 6
https://doi.org/10.5194/bg-22-1631-2025
https://doi.org/10.5194/bg-22-1631-2025
BG Letters
 | Highlight paper
 | 
28 Mar 2025
BG Letters | Highlight paper |  | 28 Mar 2025

Composite model-based estimate of the ocean carbon sink from 1959 to 2022

Jens Terhaar

Data sets

Supplemental data of Global Carbon Budget 2023 (Version 1.1) Global Carbon Project https://doi.org/10.18160/gcp-2023

Model code and software

Plotting functions for "Composite model-based estimate of the ocean carbon sink from 1959 to 2022" Jens Terhaar https://doi.org/10.5281/zenodo.14793530

Download
Co-editor-in-chief
The ocean plays a key role in the global carbon cycle and its carbon sink strength is critical for removing atmospheric carbon dioxide and stabilizing global climate. This oceanic carbon sink strength is difficult to measure and models provide estimates that differ from one another. Terhaar combines multiple modeling approaches using composite model-based averages and fully coupled Earth System Models to take advantages of the benefits of both, and in doing so derives a similar sink strength to existing estimates but with reduced uncertainty.
Short summary
The ocean is a major natural carbon sink. Despite its importance, estimates of the ocean carbon sink remain uncertain. Here, I present a hybrid model estimate of the ocean carbon sink from 1959 to 2022. By combining ocean models in hindcast mode and Earth system models, I keep the strength of each approach and remove the respective weaknesses. This composite model estimate is similar in magnitude to the best estimate of the Global Carbon Budget but 70 % less uncertain.
Share
Altmetrics
Final-revised paper
Preprint