Articles | Volume 22, issue 11
https://doi.org/10.5194/bg-22-2541-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2541-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Depositional controls and budget of organic carbon burial in fine-grained sediments of the North Sea – the Helgoland Mud Area as a natural laboratory
Section Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
Section Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Walter Geibert
Section Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Moritz Holtappels
Section Benthic Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Lasse Sander
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Research Station, 25992 List/Sylt, Germany
Elda Miramontes
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Heidi Taubner
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Susann Henkel
Section Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Kai-Uwe Hinrichs
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Denise Bethke
Section Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Ingrid Dohrmann
Section Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Sabine Kasten
Section Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Related authors
No articles found.
Susann Henkel, Bo Liu, Michael Staubwasser, Simone A. Kasemann, Anette Meixner, David A. Aromokeye, Michael W. Friedrich, and Sabine Kasten
Biogeosciences, 22, 1673–1696, https://doi.org/10.5194/bg-22-1673-2025, https://doi.org/10.5194/bg-22-1673-2025, 2025
Short summary
Short summary
We intend to unravel iron (Fe) reduction pathways in high-deposition methanic sediments because pools of Fe minerals could stimulate methane oxidation and also generation. Our data from the North Sea show that Fe release takes place mechanistically differently to Fe reduction in shallow sediments, which typically fractionates Fe isotopes. We conclude that fermentation of organic matter involving interspecies electron transfer, partly through conductive Fe oxides, could play an important role.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
Clim. Past, 21, 299–326, https://doi.org/10.5194/cp-21-299-2025, https://doi.org/10.5194/cp-21-299-2025, 2025
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial–interglacial sea ice responses to a changing climate and enhance our understanding of ocean–sea ice–ice shelf interactions and dynamics.
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Short summary
We use a reactive continuum model based on a lognormal distribution (l-RCM) to inversely determine model parameters μ and σ at 123 sites across the global ocean. Our results show organic matter (OM) reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. In addition, OM reactivity is higher than predicted in some specific regions, yet the l-RCM can still capture OM reactivity features in these regions.
Autun Purser, Laura Hehemann, Lilian Boehringer, Ellen Werner, Santiago E. A. Pineda-Metz, Lucie Vignes, Axel Nordhausen, Moritz Holtappels, and Frank Wenzhoefer
Earth Syst. Sci. Data, 14, 3635–3648, https://doi.org/10.5194/essd-14-3635-2022, https://doi.org/10.5194/essd-14-3635-2022, 2022
Short summary
Short summary
Within this paper we present the seafloor images, maps and acoustic camera data collected by a towed underwater research platform deployed in 20 locations across the eastern Weddell Sea, Antarctica, during the PS124 COSMUS expedition with the research icebreaker RV Polarstern in 2021. The 20 deployments highlight the great variability in seafloor structure and faunal communities present. Of key interest was the discovery of the largest fish nesting colony discovered globally to date.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021, https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary
Short summary
Oxygen penetrates sediments not only from the ocean bottom waters but also from the basement. The impact of the latter is poorly understood. We show that this basement oxygen has a clear impact on the nitrogen cycle, the redox state, and the distribution of manganese, nickel cobalt and organic matter in the sediments. This is important for (1) global biogeochemical cycles, (2) understanding sedimentary life and (3) the interpretation of the sediment record to reconstruct the past.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Lasse Sander, Alexander Kirdyanov, Alan Crivellaro, and Ulf Büntgen
Geochronology, 3, 171–180, https://doi.org/10.5194/gchron-3-171-2021, https://doi.org/10.5194/gchron-3-171-2021, 2021
Short summary
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Jessica B. Volz, Laura Haffert, Matthias Haeckel, Andrea Koschinsky, and Sabine Kasten
Biogeosciences, 17, 1113–1131, https://doi.org/10.5194/bg-17-1113-2020, https://doi.org/10.5194/bg-17-1113-2020, 2020
Short summary
Short summary
Potential future deep-sea mining of polymetallic nodules at the seafloor is expected to severely harm the marine environment. However, the consequences on deep-sea ecosystems are still poorly understood. This study on surface sediments from man-made disturbance tracks in the Pacific Ocean shows that due to the removal of the uppermost sediment layer and thereby the loss of organic matter, the geochemical system in the sediments is disturbed for millennia before reaching a new equilibrium.
Ole Valk, Michiel M. Rutgers van der Loeff, Walter Geibert, Sandra Gdaniec, S. Bradley Moran, Kate Lepore, Robert Lawrence Edwards, Yanbin Lu, Viena Puigcorbé, Nuria Casacuberta, Ronja Paffrath, William Smethie, and Matthieu Roy-Barman
Ocean Sci., 16, 221–234, https://doi.org/10.5194/os-16-221-2020, https://doi.org/10.5194/os-16-221-2020, 2020
Short summary
Short summary
After 2007 230Th decreased significantly in the central Amundsen Basin. This decrease is accompanied by a circulation change, indicated by changes in salinity. Ventilation of waters is most likely not the reason for the observed depletion in 230Th as atmospherically derived tracers do not reveal an increase in ventilation rate. It is suggested that these interior waters have undergone enhanced scavenging of Th during transit from Fram Strait and the Barents Sea to the central Amundsen Basin.
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020, https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Short summary
This study deals with two membrane lipids called BDGTs and PDGTs. Membrane lipids are molecules forming the cell envelope of all organisms. Different organisms produce different lipids thus they can be used to detect the presence of specific organisms in the environment. We analyzed the structure of these new lipids and looked for potential producers. We found that they are likely made by microbes emitting methane below the sediment surface and could be used to track these specific microbes.
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019, https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary
Short summary
This study is dedicated to tidally induced dynamics in the Sylt-Rømø Bight with a focus on the non-linear component. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment, and the distribution of bedforms. The newly obtained high-quality bathymetric data supported the use of high-resolution grids (up to 2 m in the intertidal zone) and elaboration of the details of tidal energy transformation in the domain.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
Knut Krämer, Soeren Ahmerkamp, Ulrike Schückel, Moritz Holtappels, and Christian Winter
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-152, https://doi.org/10.5194/os-2018-152, 2019
Preprint withdrawn
Short summary
Short summary
The sandy seafloor in shelf seas is constantly overturned by waves and currents but also by a large number of animals searching for shelter and food. By taking a close look at the seafloor surface with the help of a laser scanner, this study evaluates their contribution to the overall reworking of sediment: It makes up as much as 14 % of the physically driven reworking. The activity of the organisms varies with the seasons and between different locations and can be estimated from physical values.
Florence Schubotz, Sitan Xie, Julius S. Lipp, Kai-Uwe Hinrichs, and Stuart G. Wakeham
Biogeosciences, 15, 6481–6501, https://doi.org/10.5194/bg-15-6481-2018, https://doi.org/10.5194/bg-15-6481-2018, 2018
Short summary
Short summary
Organisms living in natural environments have to cope with constantly fluctuating conditions in order to compete and survive. Hereby, membrane lipids may play an integral role. This study demonstrates that the lipid repertoire and lipid modifications in marine picoplankton living in oxygen minimum zones may be larger than previously thought. The abundant presence of non-phosphorus lipids hint at nutrient limitation within deeper depths of the ocean, even though these are not considered as such.
Dirk Koopmans, Moritz Holtappels, Arjun Chennu, Miriam Weber, and Dirk de Beer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-199, https://doi.org/10.5194/bg-2018-199, 2018
Revised manuscript not accepted
Short summary
Short summary
Over the next century the dissolved carbon dioxide gas and hydrogen ion concentrations in seawater will triple. We used a new technique that incorporates the net productivity of all organisms in a ten square meter area to examine what the future of seagrass might look like. We compared seagrass at a CO2 vent to seagrass at a conventional shore. Seagrass meadow productivity was reduced at the vent, but it is likely that contaminants in vent fluids may have been the cause.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Fumio Inagaki, Kai-Uwe Hinrichs, Yusuke Kubo, and the IODP Expedition 337 Scientists
Sci. Dril., 21, 17–28, https://doi.org/10.5194/sd-21-17-2016, https://doi.org/10.5194/sd-21-17-2016, 2016
H. J. Mills, J. de Leeuw, K.-U. Hinrichs, F. Inagaki, and J. Kallmeyer
Sci. Dril., 20, 59–65, https://doi.org/10.5194/sd-20-59-2015, https://doi.org/10.5194/sd-20-59-2015, 2015
Short summary
Short summary
Proceedings and results are presented from the Seoul 2014 Advancing Subsurface Biosphere and Paleoclimate Research workshop. Participants discussed past and present directions of IODP and ICDP subsurface research, including efforts with DCO and IMPRESS. Discussions led to the formation of a level-based communication system with the goal of improving communication and expectations between all drilling disciplines. The production of a biology-themed handbook to guide surface research is planned.
A. Lichtschlag, D. Donis, F. Janssen, G. L. Jessen, M. Holtappels, F. Wenzhöfer, S. Mazlumyan, N. Sergeeva, C. Waldmann, and A. Boetius
Biogeosciences, 12, 5075–5092, https://doi.org/10.5194/bg-12-5075-2015, https://doi.org/10.5194/bg-12-5075-2015, 2015
R. Zhu, Y.-S. Lin, J. S. Lipp, T. B. Meador, and K.-U. Hinrichs
Biogeosciences, 11, 4869–4880, https://doi.org/10.5194/bg-11-4869-2014, https://doi.org/10.5194/bg-11-4869-2014, 2014
Related subject area
Biogeochemistry: Coastal Ocean
Effects of submarine groundwater on nutrient concentration and primary production in a deep bay of the Japan Sea
The bacteria–protist link as a main route of dissolved organic matter across contrasting productivity areas on the Patagonian Shelf
Ocean alkalinity enhancement (OAE) does not cause cellular stress in a phytoplankton community of the subtropical Atlantic Ocean
Reviews and syntheses: On increasing hypoxia in eastern boundary upwelling systems – zooplankton under metabolic stress
Technical note: Testing a new approach for the determination of N2 fixation rates by coupling a membrane equilibrator to a mass spectrometer for long-term observations
Long-term variations in pH in coastal waters along the Korean Peninsula
The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes
Evaluating ocean alkalinity enhancement as a carbon dioxide removal strategy in the North Sea
Assessing the impacts of simulated ocean alkalinity enhancement on viability and growth of nearshore species of phytoplankton
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
The influence of zooplankton and oxygen on the particulate organic carbon flux in the Benguela Upwelling System
Reviews and syntheses: Biological indicators of low-oxygen stress in marine water-breathing animals
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Spring-neap tidal cycles modulate the strength of the carbon source at the estuary-coast interface
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Improved understanding of eutrophication trends, indicators and problem areas using machine learning
Distribution of nutrients and dissolved organic matter in a eutrophic equatorial estuary: the Johor River and the East Johor Strait
Amplified bottom water acidification rates on the Bering Sea shelf from 1970–2022
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment
Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea
Influence of ocean alkalinity enhancement with olivine or steel slag on a coastal plankton community in Tasmania
Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change
Picoplanktonic methane production in eutrophic surface waters
Vertical mixing alleviates autumnal oxygen deficiency in the central North Sea
Hypoxia also occurs in small highly turbid estuaries: the example of the Charente (Bay of Biscay)
Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)
Oceanographic processes driving low-oxygen conditions inside Patagonian fjords
Above- and belowground plant mercury dynamics in a salt marsh estuary in Massachusetts, USA
Variability and drivers of carbonate chemistry at shellfish aquaculture sites in the Salish Sea, British Columbia
Unusual Hemiaulus bloom influences ocean productivity in Northeastern US Shelf waters
Insights into carbonate environmental conditions in the Chukchi Sea
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
Iron “ore” nothing: benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland
Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections
The additionality problem of ocean alkalinity enhancement
Short-term variation in pH in seawaters around coastal areas of Japan: characteristics and forcings
Revisiting the applicability and constraints of molybdenum- and uranium-based paleo redox proxies: comparing two contrasting sill fjords
Influence of a small submarine canyon on biogenic matter export flux in the lower St. Lawrence Estuary, eastern Canada
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming: a case study in the Hinase area, Okayama Prefecture, and Shizugawa Bay, Miyagi Prefecture, Japan
Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan
Menghong Dong, Xinyu Guo, Takuya Matsuura, Taichi Tebakari, and Jing Zhang
Biogeosciences, 22, 2383–2402, https://doi.org/10.5194/bg-22-2383-2025, https://doi.org/10.5194/bg-22-2383-2025, 2025
Short summary
Short summary
Submarine groundwater discharge (SGD), a common coastal hydrological process that involves submarine inflow of groundwater into the sea, is associated with a large nutrient load. To clarify the distribution of SGD-derived nutrients after release at the bottom of the sea and their contribution to phytoplankton growth in the marine ecosystem, we modeled the SGD process in Toyama Bay using a specialized computer code that can distinguish SGD-derived nutrients from nutrients from other sources.
M. Celeste López-Abbate, John E. Garzón-Cardona, Ricardo Silva, Juan-Carlos Molinero, Laura A. Ruiz-Etcheverry, Ana M. Martínez, Azul S. Gilabert, and Rubén J. Lara
Biogeosciences, 22, 2309–2325, https://doi.org/10.5194/bg-22-2309-2025, https://doi.org/10.5194/bg-22-2309-2025, 2025
Short summary
Short summary
This study explores how microbial dynamics influence the dissolved organic matter (DOM) pool in the Patagonian Shelf. Despite high phytoplankton biomass, selective grazing on fast-growing bacteria led to DOM accumulation, likely due to reduced DOM-consuming bacteria and added egestion compounds. Experiments showed that bacteria not only acted as a carbon sink through mineralization but also transferred assimilated carbon dioxide (CO2) to higher trophic levels.
Librada Ramírez, Leonardo J. Pozzo-Pirotta, Aja Trebec, Víctor Manzanares-Vázquez, José L. Díez, Javier Arístegui, Ulf Riebesell, Stephen D. Archer, and María Segovia
Biogeosciences, 22, 1865–1886, https://doi.org/10.5194/bg-22-1865-2025, https://doi.org/10.5194/bg-22-1865-2025, 2025
Short summary
Short summary
We studied the potential effects of increasing ocean alkalinity on a natural plankton community in subtropical waters of the Atlantic near Gran Canaria, Spain. Alkalinity is the capacity of water to resist acidification, and plankton are usually microscopic plants (phytoplankton) and animals (zooplankton), often less than 2.5 cm in length. This study suggests that increasing ocean alkalinity did not have a significant negative impact on the plankton community studied.
Leissing Frederick, Mauricio A. Urbina, and Ruben Escribano
Biogeosciences, 22, 1839–1852, https://doi.org/10.5194/bg-22-1839-2025, https://doi.org/10.5194/bg-22-1839-2025, 2025
Short summary
Short summary
Evidence shows that due to global warming, zooplankton inhabiting the coastal upwelling zone are exposed to increasing hypoxia affecting their physiology, metabolism, and population dynamics. The adaptive responses of zooplankton to cope with mild/severe hypoxia may depend on trade-offs with other metabolic/energy demands, implying less energy for growth, feeding, and reproduction, with ecological consequences for the zooplankton population and the marine food web.
Sören Iwe, Oliver Schmale, and Bernd Schneider
Biogeosciences, 22, 1767–1779, https://doi.org/10.5194/bg-22-1767-2025, https://doi.org/10.5194/bg-22-1767-2025, 2025
Short summary
Short summary
We present a novel method for quantifying N2 fixation by cyanobacteria, which is crucial in Baltic Sea eutrophication. Our Gas Equilibrium – Membrane-Inlet Mass Spectrometer (GE-MIMS), designed for operation on voluntary observing ships (VOSs), enables large-scale monitoring of surface water N2 depletion caused by N2 fixation. Laboratory tests confirm the device’s accuracy and precision, ensuring that it can complement current methods and contribute valuable data for better understanding N2 fixation in the Baltic Sea.
Yong-Woo Lee, Mi-Ok Park, Seong-Gil Kim, Tae-Hoon Kim, Yong Hwa Oh, Sang Heon Lee, and DongJoo Joung
Biogeosciences, 22, 675–690, https://doi.org/10.5194/bg-22-675-2025, https://doi.org/10.5194/bg-22-675-2025, 2025
Short summary
Short summary
Long-term pH variation in coastal waters along the Korean Peninsula was assessed for the first time, and it exhibited no significant pH change over an 11-year period. This contrasts with the ongoing pH decline in open oceans and other coastal areas. Analysis of environmental data showed that pH is mainly controlled by dissolved oxygen in bottom waters. This suggests that ocean warming could cause a pH decline in Korean coastal waters, affecting many fish and seaweed aquaculture operations.
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025, https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Short summary
We studied the effect of addition of carbonate minerals on coastal sediments. We carried out laboratory experiments to quantify the dissolution kinetics and integrated these observations into a numerical model that describes biogeochemical cycling in surficial sediments. Using the model, we demonstrate the buffering effect of the mineral additions and their duration. We quantify the effect under different environmental conditions and assess the potential for increased atmospheric CO2 uptake.
Feifei Liu, Ute Daewel, Jan Kossack, Kubilay Timur Demir, Helmuth Thomas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-81, https://doi.org/10.5194/egusphere-2025-81, 2025
Short summary
Short summary
Ocean Alkalinity Enhancement boosts oceanic CO₂ absorption, offering a climate solution. Using a regional model, we examined OAE in the North Sea, revealing that shallow coastal areas achieve higher CO₂ uptake than offshore, where alkalinity is more susceptible to deep-ocean loss. Long-term carbon storage is limited, and pH shifts vary by location. Our findings guide OAE deployment to optimize carbon removal while minimizing ecological effects, supporting global climate mitigation efforts.
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
Biogeosciences, 22, 499–512, https://doi.org/10.5194/bg-22-499-2025, https://doi.org/10.5194/bg-22-499-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising negative emission technology that results in the net sequestration of atmospheric carbon. In this paper, we assess the potential impact of OAE on phytoplankton through an analysis of prior studies and the effects of simulated OAE on photosynthetic competence. Our findings suggest that there may be little if any significant impact on most phytoplankton studied to date if OAE is conducted in well-flushed, nearshore environments.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024, https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
Short summary
This study exposed a natural community to two non-CO2-equilibrated ocean alkalinity enhancement (OAE) deployments using different minerals. Adding alkalinity in this manner decreases dissolved CO2, essential for photosynthesis. While photosynthesis was not suppressed, bloom formation was mildly delayed, potentially impacting marine food webs. The study emphasizes the need for further research on OAE without prior equilibration and on its ecological implications.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024, https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Short summary
Moored and drifting sediment trap experiments in the northern (nBUS) and southern (sBUS) Benguela Upwelling System showed that active carbon fluxes by vertically migrating zooplankton were about 3 times higher in the sBUS than in the nBUS. Despite these large variabilities, the mean passive particulate organic carbon (POC) fluxes were almost equal in the two subsystems. The more intense near-bottom oxygen minimum layer seems to lead to higher POC fluxes and accumulation rates in the nBUS.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024, https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of low-oxygen stress for marine animals including their use, research needs, and application to confront the challenges of ocean oxygen loss.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
EGUsphere, https://doi.org/10.5194/egusphere-2024-2643, https://doi.org/10.5194/egusphere-2024-2643, 2024
Short summary
Short summary
A commercial vessel equipped with scientific instruments regularly travelled between two large macro-tidal estuaries. We found that biogeochemical variability in the outer estuaries is driven by the 14-day spring-neap tidal cycle, with strong effects on dissolved inorganic and organic carbon concentrations and distribution. Since this land-sea interface effect increases the strength of the carbon source to the atmosphere by 74 % during spring tide, it should be accounted for in regional models.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024, https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
Short summary
The European Arctic is experiencing rapid regional warming, causing glaciers that terminate in the sea to retreat onto land. Due to this process, the area of a well-studied fjord, Hornsund, has increased by around 100 km2 (40%) since 1976. Combining satellite and in situ data with a mathematical model, we estimated that, despite some negative consequences of glacial meltwater release, such emerging coastal waters could mitigate climate change by increasing carbon uptake and storage by sediments.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Deep S. Banerjee and Jozef Skakala
EGUsphere, https://doi.org/10.22541/essoar.171405637.76928549/v1, https://doi.org/10.22541/essoar.171405637.76928549/v1, 2024
Short summary
Short summary
Nitrate is a crucial nutrient in oceans. Excess nutrients can trigger uncontrolled algae growth (eutrophication), damaging marine ecosystems. We used a machine learning tool to generate a skilled, gap-free, bi-decadal surface nitrate dataset from sparse observations. This dataset reveals areas on the North West European Shelf at risk of eutrophication, bi-decadal trends in coastal nitrate, and an impact of winter nitrate on spring phytoplankton blooms.
Amanda Y. L. Cheong, Kogila Vani Annammala, Ee Ling Yong, Yongli Zhou, Robert S. Nichols, and Patrick Martin
Biogeosciences, 21, 2955–2971, https://doi.org/10.5194/bg-21-2955-2024, https://doi.org/10.5194/bg-21-2955-2024, 2024
Short summary
Short summary
We measured nutrients and dissolved organic matter for 1 year in a eutrophic tropical estuary to understand their sources and cycling. Our data show that the dissolved organic matter originates partly from land and partly from microbial processes in the water. Internal recycling is likely important for maintaining high nutrient concentrations, and we found that there is often excess nitrogen compared to silicon and phosphorus. Our data help to explain how eutrophication persists in this system.
Darren Pilcher, Jessica Cross, Natalie Monacci, Linquan Mu, Kelly Kearney, Albert Hermann, and Wei Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1096, https://doi.org/10.5194/egusphere-2024-1096, 2024
Short summary
Short summary
The Bering Sea shelf is a highly productive marine ecosystem that is vulnerable to ocean acidification. We use a computational model to simulate the carbon cycle and acidification rates from 1970–2022. The results suggest that bottom water acidification rates are more than twice as great as surface rates. Bottom waters are also naturally more acidic, thus these waters will pass key thresholds known to negatively impact marine organisms, such as red king crab, much sooner than surface waters.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Sandy E. Tenorio and Laura Farías
Biogeosciences, 21, 2029–2050, https://doi.org/10.5194/bg-21-2029-2024, https://doi.org/10.5194/bg-21-2029-2024, 2024
Short summary
Short summary
Time series studies show that CH4 is highly dynamic on the coastal ocean surface and planktonic communities are linked to CH4 accumulation, as found in coastal upwelling off Chile. We have identified the crucial role of picoplankton (> 3 µm) in CH4 recycling, especially with the addition of methylated substrates (trimethylamine and methylphosphonic acid) during upwelling and non-upwelling periods. These insights improve understanding of surface ocean CH4 recycling, aiding CH4 emission estimates.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Eleanor Simpson, Debby Ianson, Karen E. Kohfeld, Ana C. Franco, Paul A. Covert, Marty Davelaar, and Yves Perreault
Biogeosciences, 21, 1323–1353, https://doi.org/10.5194/bg-21-1323-2024, https://doi.org/10.5194/bg-21-1323-2024, 2024
Short summary
Short summary
Shellfish aquaculture operates in nearshore areas where data on ocean acidification parameters are limited. We show daily and seasonal variability in pH and saturation states of calcium carbonate at nearshore aquaculture sites in British Columbia, Canada, and determine the contributing drivers of this variability. We find that nearshore locations have greater variability than open waters and that the uptake of carbon by phytoplankton is the major driver of pH and saturation state variability.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin
Biogeosciences, 21, 929–948, https://doi.org/10.5194/bg-21-929-2024, https://doi.org/10.5194/bg-21-929-2024, 2024
Short summary
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Lennart Thomas Bach
Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, https://doi.org/10.5194/bg-21-261-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities.
Tsuneo Ono, Daisuke Muraoka, Masahiro Hayashi, Makiko Yorifuji, Akihiro Dazai, Shigeyuki Omoto, Takehiro Tanaka, Tomohiro Okamura, Goh Onitsuka, Kenji Sudo, Masahiko Fujii, Ryuji Hamanoue, and Masahide Wakita
Biogeosciences, 21, 177–199, https://doi.org/10.5194/bg-21-177-2024, https://doi.org/10.5194/bg-21-177-2024, 2024
Short summary
Short summary
We carried out parallel year-round observations of pH and related parameters in five stations around the Japan coast. It was found that short-term acidified situations with Omega_ar less than 1.5 occurred at four of five stations. Most of such short-term acidified events were related to the short-term low salinity event, and the extent of short-term pH drawdown at high freshwater input was positively correlated with the nutrient concentration of the main rivers that flow into the coastal area.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
Biogeosciences, 20, 4875–4891, https://doi.org/10.5194/bg-20-4875-2023, https://doi.org/10.5194/bg-20-4875-2023, 2023
Short summary
Short summary
Benthic foraminifera are single-cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling, we show here that foraminiferal burrow formation increases the oxygen penetration depth in the sediment, leading to a change in the structure of the prokaryotic community.
Masahiko Fujii, Ryuji Hamanoue, Lawrence Patrick Cases Bernardo, Tsuneo Ono, Akihiro Dazai, Shigeyuki Oomoto, Masahide Wakita, and Takehiro Tanaka
Biogeosciences, 20, 4527–4549, https://doi.org/10.5194/bg-20-4527-2023, https://doi.org/10.5194/bg-20-4527-2023, 2023
Short summary
Short summary
This is the first study of the current and future impacts of climate change on Pacific oyster farming in Japan. Future coastal warming and acidification may affect oyster larvae as a result of longer exposure to lower-pH waters. A prolonged spawning period may harm oyster processing by shortening the shipping period and reducing oyster quality. To minimize impacts on Pacific oyster farming, in addition to mitigation measures, local adaptation measures may be required.
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023, https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Short summary
Carbon and nitrogen are essential elements for organisms; their stable isotope ratios (13C : 12C, 15N : 14N) are useful tools for understanding turnover and movement in the ocean. In the Sea of Japan, the environment is rapidly being altered by human activities. The 13C : 12C of small organic particles is increased by active carbon fixation, and phytoplankton growth increases the values. The 15N : 14N variations suggest that nitrates from many sources contribute to organic production.
Cited articles
Abromeit, C., Hunke, A., Kehrhahn-Eyrich, S., Klein, B., Thoma, D., Trümpler, K., Schröder-Fürstenberg, J., Weigelt, A., and Zabrocki, M.: Für Schutz und Nutzung der Meere – für eine lebenswerte Zukunft, Jahresbericht 2021, Bundesamt für Seeschifffahrt und Hydrographie, Rostock, 77 pp., http://www.bsh.de/webcode/274786 (last access: 2 June 2025), 2021.
Abromeit, C., Bold, S., Hunke, A., Brauch, J., Mansfeld, M., Rossbach, L., Thoma, D., Trümpler, K., Schröder-Fürstenberg, J., Weigelt, A., Wunsch, M., Zabrocki, M., Fischer, J.-G., and Westfeld, P.: Für Meer und Mensch, Schifffahrt und Umwelt, Jahresbericht 2022, Bundesamt für Seeschifffahrt und Hydrographie, Rostock, 64 pp., http://www.bsh.de/webcode/274788 (last access: 2 June 2025), 2022.
Aller, R. C.: Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation, Chem. Geol., 114, 331–345, https://doi.org/10.1016/0009-2541(94)90062-0, 1994.
Amorim, F. D. L. L. D., Balkoni, A., Sidorenko, V., and Wiltshire, K. H.: Analyses of sea surface chlorophyll a trends and variability from 1998 to 2020 in the German Bight (North Sea), Ocean Sci., 20, 1247–1265, https://doi.org/10.5194/os-20-1247-2024, 2024.
Anderson, O. L. and Schreiber, E.: The relation between refractive index and density of minerals related to the Earth's mantle, J. Geophys. Res., 70, 1463–1471, https://doi.org/10.1029/JZ070i006p01463, 1965.
Appleby, P. G. and Oldfield, F.: The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment, CATENA, 5, 1–8, https://doi.org/10.1016/S0341-8162(78)80002-2, 1978.
Arias-Ortiz, A., Masqué, P., Garcia-Orellana, J., Serrano, O., Mazarrasa, I., Marbà, N., Lovelock, C. E., Lavery, P. S., and Duarte, C. M.: Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight, Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, 2018.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P.: Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth-Sci. Rev., 123, 53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013.
Baumann, M.: Die Ablagerung von Tschernobyl-Radiocäsium in der Norwegischen See und in der Nordsee, University of Bremen, 133 pp., ISSN 0931-0800, 1991.
Baur, A., Flach, L., and Gröschl, J.: Containerschifffahrt in stürmischen Zeiten - Analyse und Ausblick, ifo Schnelld., 74, 59–65, 2021.
Becker, G. A., Dick, S., and Dippner, J. W.: Hydrography of the German Bight, Mar. Ecol. Prog. Ser., 91, 9–18, 1992.
Berelson, W., McManus, J., Coale, K., Johnson, K., Burdige, D., Kilgore, T., Colodner, D., Chavez, F., Kudela, R., and Boucher, J.: A time series of benthic flux measurements from Monterey Bay, CA, Cont. Shelf Res., 23, 457–481, https://doi.org/10.1016/S0278-4343(03)00009-8, 2003.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43, 1500–1510, https://doi.org/10.4319/lo.1998.43.7.1500, 1998.
Berner, E. K. and Berner, R. A.: Global environment: water, air, and geochemical cycles, 2nd ed., Princeton University Press, 488 pp., https://doi.org/10.1515/9781400842766, 2012.
Berner, R. A.: Early diagenesis: a theoretical approach, Princeton University Press, 256 pp., ISBN 978-0-691-08260-8, 1980.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance, Am. J. Sci., 282, 451–473, https://doi.org/10.2475/ajs.282.4.451, 1982.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Process. Landforms, 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Bockelmann, F.-D., Puls, W., Kleeberg, U., Müller, D., and Emeis, K.-C.: Mapping mud content and median grain-size of North Sea sediments – A geostatistical approach, Mar. Geol., 397, 60–71, https://doi.org/10.1016/j.margeo.2017.11.003, 2018.
Bogus, K. A., Zonneveld, K. A. F., Fischer, D., Kasten, S., Bohrmann, G., and Versteegh, G. J. M.: The effect of meter-scale lateral oxygen gradients at the sediment-water interface on selected organic matter based alteration, productivity and temperature proxies, Biogeosciences, 9, 1553–1570, https://doi.org/10.5194/bg-9-1553-2012, 2012.
Boxberg, F., Asendorf, S., Bartholomä, A., Schnetger, B., de Lange, W. P., and Hebbeln, D.: Historical anthropogenic heavy metal input to the south-eastern North Sea, Geo-Marine Lett., 40, 135–148, https://doi.org/10.1007/s00367-019-00592-0, 2020.
Bruns, I., Holler, P., Capperucci, R. M., Papenmeier, S., and Bartholomä, A.: Identifying trawl marks in North Sea sediments, Geosciences, 10, 422, https://doi.org/10.3390/geosciences10110422, 2020.
Bruns, I., Bartholomä, A., Menjua, F., and Kopf, A.: Physical impact of bottom trawling on seafloor sediments in the German North Sea, Front. Earth Sci., 11, 1–13, https://doi.org/10.3389/feart.2023.1233163, 2023.
Burchard, H., Gräwe, U., Klingbeil, K., Koganti, N., Lange, X., and Lorenz, M.: Effective diahaline diffusivities in estuaries, J. Adv. Model. Earth Sy., 13, 1–18, https://doi.org/10.1029/2020MS002307, 2021.
Burdige, D. J.: Burial of terrestrial organic matter in marine sediments: A re-assessment, Global Biogeochem. Cycles, 19, GB4011, https://doi.org/10.1029/2004GB002368, 2005.
Burdige, D. J.: Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Canfield, D. E.: Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315–329, https://doi.org/10.1016/0009-2541(94)90061-2, 1994.
Callies, U., Gaslikova, L., Kapitza, H., and Scharfe, M.: German Bight residual current variability on a daily basis: principal components of multi-decadal barotropic simulations, Geo-Marine Lett., 37, 151–162, https://doi.org/10.1007/s00367-016-0466-2, 2017.
Clare, M. A., Lichtschlag, A., Paradis, S., and Barlow, N. L. M.: Assessing the impact of the global subsea telecommunications network on sedimentary organic carbon stocks, Nat. Commun., 14, 2080, https://doi.org/10.1038/s41467-023-37854-6, 2023.
Daewel, U., Akhtar, N., Christiansen, N., and Schrum, C.: Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea, Commun. Earth Environ., 3, 292, https://doi.org/10.1038/s43247-022-00625-0, 2022.
Dauwe, B. and Middelburg, J. J.: Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments, Limnol. Oceanogr., 43, 782–798, https://doi.org/10.4319/lo.1998.43.5.0782, 1998.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, 2021a.
De Borger, E., Braeckman, U., and Soetaert, K.: Rapid organic matter cycling in North Sea sediments, Cont. Shelf Res., 214, 104327, https://doi.org/10.1016/j.csr.2020.104327, 2021b.
de Groot, S. J.: The impact of bottom trawling on benthic fauna of the North Sea, Ocean Manag., 9, 177–190, https://doi.org/10.1016/0302-184X(84)90002-7, 1984.
de Haas, H., Okkels, E., and van Weering, T. C. E.: Recent sediment accumulation in the Norwegian Channel, North Sea, NGU-Bulletin, 430, 57–65, 1996.
de Haas, H., Boer, W., and van Weering, T. C. E.: Recent sedimentation and organic carbon burial in a shelf sea: the North Sea, Mar. Geol., 144, 131–146, https://doi.org/10.1016/S0025-3227(97)00082-0, 1997.
de Haas, H., van Weering, T. C. E., and de Stigter, H.: Organic carbon in shelf seas: sinks or sources, processes and products, Cont. Shelf Res., 22, 691–717, https://doi.org/10.1016/S0278-4343(01)00093-0, 2002.
de Lange, G. J., Thomson, J., Reitz, A., Slomp, C. P., Speranza Principato, M., Erba, E., and Corselli, C.: Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel, Nat. Geosci., 1, 606–610, https://doi.org/10.1038/ngeo283, 2008.
Depestele, J., Ivanović, A., Degrendele, K., Esmaeili, M., Polet, H., Roche, M., Summerbell, K., Teal, L. R., Vanelslander, B., and O'Neill, F. G.: Measuring and assessing the physical impact of beam trawling, ICES J. Mar. Sci., 73, i15–i26, https://doi.org/10.1093/icesjms/fsv056, 2016.
Diesing, M., Thorsnes, T., and Bjarnadóttir, L. R.: Organic carbon densities and accumulation rates in surface sediments of the North Sea and Skagerrak, Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021, 2021.
Diesing, M., Paradis, S., Jensen, H., Thorsnes, T., Bjarnadóttir, L. R., and Knies, J.: Glacial troughs as centres of organic carbon accumulation on the Norwegian continental margin, Commun. Earth Environ., 5, 327, https://doi.org/10.1038/s43247-024-01502-8, 2024.
Doll, M. K. M.: Reflexionsseismische und hydroakustische Untersuchungen des Helgoländer Schlickgebietes in der südlichen Nordsee, B.S. thesis, University of Bremen, 63 pp., 2015.
Dominik, J., Förstner, U., Mangini, A., and Reineck, H.-E.: Pb and 137Cs chronology of heavy metal pollution in a sediment core from the German Bight (North Sea), Senck. Marit., 10, 213–227, 1978.
Eigaard, O. R., Bastardie, F., Hintzen, N. T., Buhl-Mortensen, L., Buhl-Mortensen, P., Catarino, R., Dinesen, G. E., Egekvist, J., Fock, H. O., Geitner, K., Gerritsen, H. D., González, M. M., Jonsson, P., Kavadas, S., Laffargue, P., Lundy, M., Gonzalez-Mirelis, G., Nielsen, J. R., Papadopoulou, N., Posen, P. E., Pulcinella, J., Russo, T., Sala, A., Silva, C., Smith, C. J., Vanelslander, B., and Rijnsdorp, A. D.: The footprint of bottom trawling in European waters: distribution, intensity, and seabed integrity, ICES J. Mar. Sci., 74, 847–865, https://doi.org/10.1093/icesjms/fsw194, 2017.
Figge, K.: Sedimentverteilung in der Deutschen Bucht, Deutsches Hydrographisches Institut, Karte Nr. 2900 (mit Begleitheft), 1981.
Förstner, U. and Reineck, H. E.: Die Anreicherung von Spurenelementen in den rezenten Sedimenten eines Profilkerns aus der Deutschen Bucht, Senck. Marit., 6, 175–184, 1974.
Freitas, F. S., Pika, P. A., Kasten, S., Jørgensen, B. B., Rassmann, J., Rabouille, C., Thomas, S., Sass, H., Pancost, R. D., and Arndt, S.: New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation, Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, 2021.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Gadow, S.: Gips als Leitmineral für das Liefergebiet Helgoland und für den Transport bei Sturmfluten, Nat. Mus., 99, 537–540, 1969.
Gardner, L. R., Sharma, P., and Moore, W. S.: A regeneration model for the effect of bioturbation by fiddler crabs on 210Pb profiles in salt marsh sediments, J. Environ. Radioact., 5, 25–36, https://doi.org/10.1016/0265-931X(87)90042-7, 1987.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4, 243–289, https://doi.org/10.1080/17451000801888726, 2008.
Grasshoff, K., Kremling, K., and Ehrhardt, M. (Eds.): Methods of seawater analysis, 3rd edN., Wiley-VCH, Weinheim, 634 pp., ISBN 9783527295890, 1999.
Haeckel, M., Boudreau, B. P., and Wallmann, K.: Bubble-induced porewater mixing: a 3-D model for deep porewater irrigation, Geochim. Cosmochim. Ac., 71, 5135–5154, https://doi.org/10.1016/j.gca.2007.08.011, 2007.
Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., and Kösters, F.: An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015), Earth Syst. Sci. Data, 13, 2573–2594, https://doi.org/10.5194/essd-13-2573-2021, 2021.
Hamburg Port Authority: Umgang mit Baggergut aus dem Hamburger Hafen, Verbringung von Baggergut zur Tonne E3, Kurzbericht 2015, 72 pp., https://www.hamburg-port-authority.de/fileadmin/user_upload/170424_Kurzbericht_Tonne_E3_2015_fg.pdf (last access: 2 June 2025), 2017.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature, 391, 572–575, https://doi.org/10.1038/35351, 1998.
Hebbeln, D., Scheurle, C., and Lamy, F.: Depositional history of the Helgoland mud area, German Bight, North Sea, Geo-Marine Lett., 23, 81–90, https://doi.org/10.1007/s00367-003-0127-0, 2003.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81–115, https://doi.org/10.1016/0304-4203(95)00008-F, 1995.
Hedges, J. I., Clark, W. A., and Come, G. L.: Fluxes and reactivities of organic matter in a coastal marine bay, Limnol. Oceanogr., 33, 1137–1152, https://doi.org/10.4319/lo.1988.33.5.1137, 1988.
Hedges, J. I., Mayorga, E., Tsamakis, E., McClain, M. E., Aufdenkampe, A., Quay, P., Richey, J. E., Benner, R., Opsahl, S., Black, B., Pimentel, T., Quintanilla, J., and Maurice, L.: Organic matter in Bolivian tributaries of the Amazon River: A comparison to the lower mainstream, Limnol. Oceanogr., 45, 1449–1466, https://doi.org/10.4319/lo.2000.45.7.1449, 2000.
Henrichs, S. M.: Early diagenesis of organic matter in marine sediments: progress and perplexity, Mar. Chem., 39, 119–149, https://doi.org/10.1016/0304-4203(92)90098-U, 1992.
Hertweck, G.: Das Schlickgebiet in der inneren Deutschen Bucht, Senckenbergiana Maritima, 15, 219–249, 1983.
Hintzen, N. T., Bastardie, F., Beare, D., Piet, G. J., Ulrich, C., Deporte, N., Egekvist, J., and Degel, H.: VMStools: Open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data, Fish. Res., 115–116, 31–43, https://doi.org/10.1016/j.fishres.2011.11.007, 2012.
IPCC: Summary for Policymakers, in: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1–34, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023.
Irion, G., Wunderlich, F., and Schwedhelm, E.: Transport of clay minerals and anthropogenic compounds into the German Bight and the provenance of fine-grained sediments SE of Helgoland, J. Geol. Soc. London., 144, 153–160, https://doi.org/10.1144/gsjgs.144.1.0153, 1987.
Jørgensen, B., Bang, M., and Blackburn, T.: Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition, Mar. Ecol. Prog. Ser., 59, 39–54, https://doi.org/10.3354/meps059039, 1990.
Jørgensen, B. B.: Bacteria and Marine Biogeochemistry, in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer-Verlag, Berlin/Heidelberg, 169–206, https://doi.org/10.1007/3-540-32144-6_5, 2006.
Jung, M., Ilmberger, J., Mangini, A., and Emeis, K.-C.: Why some Mediterranean sapropels survived burn-down (and others did not), Mar. Geol., 141, 51–60, https://doi.org/10.1016/S0025-3227(97)00031-5, 1997.
Kasten, S., Zabel, M., Heuer, V., and Hensen, C.: Processes and signals of nonsteady-state diagenesis in deep-sea sediments and their pore waters, in: The South Atlantic in the Late Quaternary, Springer Berlin Heidelberg, Berlin, Heidelberg, 431–459, https://doi.org/10.1007/978-3-642-18917-3_20, 2003.
Kretschmer, S., Geibert, W., Rutgers van der Loeff, M. M., and Mollenhauer, G.: Grain size effects on 230Thxs inventories in opal-rich and carbonate-rich marine sediments, Earth Planet. Sci. Lett., 294, 131–142, https://doi.org/10.1016/j.epsl.2010.03.021, 2010.
Kroopnick, P. M.: The distribution of 13C of ΣCO2 in the world oceans, Deep Sea Res. Part A. Oceanogr. Res. Pap., 32, 57–84, https://doi.org/10.1016/0198-0149(85)90017-2, 1985.
Kuderer, M. and Middelburg, J. J.: Organic carbon reaction kinetics in bioturbated sediments, Geophys. Res. Lett., 51, e2024GL110404, https://doi.org/10.1029/2024GL110404, 2024.
Lamb, A. L., Wilson, G. P., and Leng, M. J.: A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material, Earth-Sci. Rev., 75, 29–57, https://doi.org/10.1016/j.earscirev.2005.10.003, 2006.
LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoarfrost, A., Lang, S. Q., Lloyd, K. G., Mahmoudi, N., Orsi, W. D., Shah Walter, S. R., Steen, A. D., and Zhao, R.: The fate of organic carbon in marine sediments - new insights from recent data and analysis, Earth-Sci. Rev., 204, 103146, https://doi.org/10.1016/j.earscirev.2020.103146, 2020.
Laurer, W.-U., Naumann, M., and Zeiler, M.: Erstellung der Karte zur Sedimentverteilung auf dem Meeresboden in der deutschen Nordsee nach der Klassifikation von FIGGE (1981), 1–19, https://www.gpdn.de/media/1449 (last access: 2 June 2025), 2013.
Legge, O., Johnson, M., Hicks, N., Jickells, T., Diesing, M., Aldridge, J., Andrews, J., Artioli, Y., Bakker, D. C. E., Burrows, M. T., Carr, N., Cripps, G., Felgate, S. L., Fernand, L., Greenwood, N., Hartman, S., Kröger, S., Lessin, G., Mahaffey, C., Mayor, D. J., Parker, R., Queirós, A. M., Shutler, J. D., Silva, T., Stahl, H., Tinker, J., Underwood, G. J. C., Van Der Molen, J., Wakelin, S., Weston, K., and Williamson, P.: Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences, Front. Mar. Sci., 7, 143, https://doi.org/10.3389/fmars.2020.00143, 2020.
Levinson, M.: The Box, 2nd edn., Princeton University Press, Princeton, 282 pp., https://doi.org/10.1515/9781400880751, 2016.
Maerz, J., Hofmeister, R., van der Lee, E. M., Gräwe, U., Riethmüller, R., and Wirtz, K. W.: Maximum sinking velocities of suspended particulate matter in a coastal transition zone, Biogeosciences, 13, 4863–4876, https://doi.org/10.5194/bg-13-4863-2016, 2016.
McCave, I. N.: Deposition of fine-grained suspended sediment from tidal currents, J. Geophys. Res., 75, 4151–4159, https://doi.org/10.1029/JC075i021p04151, 1970.
Meade, R. H.: Transport and deposition of sediments in estuaries, in: Environmental Framework of Coastal Plain Estuaries, Geological Society of America, 91–120, https://doi.org/10.1130/MEM133-p91, 1972.
Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B., and Garlan, T.: Influence of bottom trawling on sediment resuspension in the “Grande-Vasière” area (Bay of Biscay, France), Ocean Dynam., 66, 1181–1207, https://doi.org/10.1007/s10236-016-0974-7, 2016.
Middelburg, J. J., Soetaert, K., and Herman, P. M. J.: Empirical relationships for use in global diagenetic models, Deep Sea Res. Pt. I, 44, 327–344, https://doi.org/10.1016/S0967-0637(96)00101-X, 1997.
Miguel, S., Bolívar, J. P., and García-Tenorio, R.: Mixing, sediment accumulation and focusing using 210Pb and 137Cs, J. Paleolimnol., 29, 1–11, https://doi.org/10.1023/A:1022864615111, 2003.
Miller, J. B. and Tans, P. P.: Calculating isotopic fractionation from atmospheric measurements at various scales, Tellus B, 55, 207, https://doi.org/10.3402/tellusb.v55i2.16697, 2003.
Müller, D. and Kasten, S.: Compilation of studies on sediments since the mid-20th century in and around the Helgoland Mud Area, SE German Bight, North Sea (GIS shape file), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.968994, 2024.
Müller, D., Holtappels, M., Liu, B., Dohrmann, I., Bethke, D., and Kasten, S.: Oxygen micro profiles of multi-corer sediment cores taken during RV Heincke cruise HE595 in the Helgoland Mud Area, SE German Bight, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.970325, 2024a.
Müller, D., Dohrmann, I., Bethke, D., Taubner, H., Hinrichs, K.-U., and Kasten, S.: Pore-water dissolved inorganic carbon (DIC) and its stable carbon isotopic composition (δ13C) for sediment cores taken during RV Heincke cruise HE575 and HE595 in the Helgoland Mud Area, German Bight, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.969033, 2024b.
Müller, D., Geibert, W., Dohrmann, I., Bethke, D., Sander, L., Miramontes, E., and Kasten, S.: Solid-phase porosity, grain sizes, TOC, 210Pbxs and 137Cs data for sediment cores taken during RV Heincke cruise HE575 and HE595 in the Helgoland Mud Area, SE German Bight, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.968969, 2024c.
Neumann, A., Möbius, J., Hass, H. C., Puls, W., and Friedrich, J.: Empirical model to estimate permeability of surface sediments in the German Bight (North Sea), J. Sea Res., 127, 36–45, https://doi.org/10.1016/j.seares.2016.12.002, 2017.
Neumann, H., Reiss, H., Ehrich, S., Sell, A., Panten, K., Kloppmann, M., Wilhelms, I., and Kröncke, I.: Benthos and demersal fish habitats in the German Exclusive Economic Zone (EEZ) of the North Sea, Helgol. Mar. Res., 67, 445–459, https://doi.org/10.1007/s10152-012-0334-z, 2013.
Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., and Schulz, H. D.: Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia, Geochim. Cosmochim. Ac., 62, 455–464, https://doi.org/10.1016/S0016-7037(98)00055-6, 1998.
O'Neill, F. G. and Summerbell, K.: The mobilisation of sediment by demersal otter trawls, Mar. Pollut. Bull., 62, 1088–1097, https://doi.org/10.1016/j.marpolbul.2011.01.038, 2011.
Oehler, T., Martinez, R., Schückel, U., Winter, C., Kröncke, I., and Schlüter, M.: Seasonal and spatial variations of benthic oxygen and nitrogen fluxes in the Helgoland Mud Area (southern North Sea), Cont. Shelf Res., 106, 118–129, https://doi.org/10.1016/j.csr.2015.06.009, 2015.
Olley, J., Burton, J., Smolders, K., Pantus, F., and Pietsch, T.: The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-east Queensland, Australia, Hydrol. Process., 27, 885–895, https://doi.org/10.1002/hyp.9422, 2013.
Oni, O., Miyatake, T., Kasten, S., Richter-Heitmann, T., Fischer, D., Wagenknecht, L., Kulkarni, A., Blumers, M., Shylin, S. I., Ksenofontov, V., Costa, B. F. O., Klingelhöfer, G., and Friedrich, M. W.: Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea, Front. Microbiol., 6, 1–15, https://doi.org/10.3389/fmicb.2015.00365, 2015a.
Oni, O. E., Schmidt, F., Miyatake, T., Kasten, S., Witt, M., Hinrichs, K.-U., and Friedrich, M. W.: Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland Mud Area, North Sea, Front. Microbiol., 6, 1–16, https://doi.org/10.3389/fmicb.2015.01290, 2015b.
Paradis, S., Pusceddu, A., Masqué, P., Puig, P., Moccia, D., Russo, T., and Lo Iacono, C.: Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean), Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, 2019.
Paradis, S., Goñi, M., Masqué, P., Durán, R., Arjona-Camas, M., Palanques, A., and Puig, P.: Persistence of biogeochemical alterations of deep-sea sediments by bottom trawling, Geophys. Res. Lett., 48, e2020GL091279, https://doi.org/10.1029/2020GL091279, 2021.
Pham, M. K., Sanchez-Cabeza, J. A., Povinec, P. P., Andor, K., Arnold, D., Benmansour, M., Bikit, I., Carvalho, F. P., Dimitrova, K., Edrev, Z. H., Engeler, C., Fouche, F. J., Garcia-Orellana, J., Gascó, C., Gastaud, J., Gudelis, A., Hancock, G., Holm, E., Legarda, F., Ikäheimonen, T. K., Ilchmann, C., Jenkinson, A. V., Kanisch, G., Kis-Benedek, G., Kleinschmidt, R., Koukouliou, V., Kuhar, B., LaRosa, J., Lee, S.-H., LePetit, G., Levy-Palomo, I., Liong Wee Kwong, L., Llauradó, M., Maringer, F. J., Meyer, M., Michalik, B., Michel, H., Nies, H., Nour, S., Oh, J.-S., Oregioni, B., Palomares, J., Pantelic, G., Pfitzner, J., Pilvio, R., Puskeiler, L., Satake, H., Schikowski, J., Vitorovic, G., Woodhead, D., and Wyse, E.: A new certified reference material for radionuclides in Irish sea sediment (IAEA-385), Appl. Radiat. Isot., 66, 1711–1717, https://doi.org/10.1016/j.apradiso.2007.10.020, 2008.
Provoost, P., Braeckman, U., Van Gansbeke, D., Moodley, L., Soetaert, K., Middelburg, J. J., and Vanaverbeke, J.: Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea, Estuar. Coast. Shelf Sci., 120, 1–11, https://doi.org/10.1016/j.ecss.2013.01.008, 2013.
Puls, W., Heinrich, H., Mayerj, B., and Mayer, B.: Suspended particulate matter budget for the German Bight, Mar. Pollut. Bull., 34, 398–409, https://doi.org/10.1016/S0025-326X(96)00161-0, 1997.
Puls, W., Beusekom, J., Brockmann, U., Doerffer, R., Hentschke, U., König, P., Murphy, D., Mayer, B., Müller, A., Pohlmann, T., Reimer, A., Schmidt-Nia, R., and Sündermann, J.: SPM concentrations in the German Bight: comparison between a model simulation and measurements, Dtsch. Hydrogr. Zeitschrift, 51, 221–244, https://doi.org/10.1007/BF02764175, 1999.
Reineck, H.-E.: Sedimentgefüge im Bereich der südlichen Nordsee, Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 505, 1–138, ISBN 978-3-510-61295-6, 1963.
Reineck, H.-E.: Zwei Sparkerprofile südöstlich Helgoland, Nat. Mus., 98, 9–14, 1969.
Reineck, H.-E., Gutmann, W. F., and Hertweck, G.: Das Schlickgebiet südlich Helgoland als Beispiel rezenter Schelfablagerungen, Senckenbergiana lethaea, 48, 219–275, 1967.
Sampere, T. P., Bianchi, T. S., Allison, M. A., and McKee, B. A.: Burial and degradation of organic carbon in Louisiana shelf/slope sediments, Estuar. Coast. Shelf Sci., 95, 232–244, https://doi.org/10.1016/j.ecss.2011.09.003, 2011.
Sanchez-Cabeza, J. A. and Ruiz-Fernández, A. C.: 210Pb sediment radiochronology: an integrated formulation and classification of dating models, Geochim. Cosmochim. Ac., 82, 183–200, https://doi.org/10.1016/j.gca.2010.12.024, 2012.
Santos, I. R., Eyre, B. D., and Huettel, M.: The driving forces of porewater and groundwater flow in permeable coastal sediments: A review, Estuar. Coast. Shelf Sci., 98, 1–15, https://doi.org/10.1016/j.ecss.2011.10.024, 2012.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Kölling, M.: Rhizon sampling of porewaters near the sediment-water interface of aquatic systems, Limnol. Oceanogr. Methods, 3, 361–371, https://doi.org/10.4319/lom.2005.3.361, 2005.
Serna, A., Pätsch, J., Dähnke, K., Wiesner, M. G., Hass, H. C., Zeiler, M., Hebbeln, D., and Emeis, K.-C.: History of anthropogenic nitrogen input to the German Bight/SE North Sea as reflected by nitrogen isotopes in surface sediments, sediment cores and hindcast models, Cont. Shelf Res., 30, 1626–1638, https://doi.org/10.1016/j.csr.2010.06.010, 2010.
Shojaei, M. G., Gutow, L., Dannheim, J., Rachor, E., Schröder, A., and Brey, T.: Common trends in German Bight benthic macrofaunal communities: Assessing temporal variability and the relative importance of environmental variables, J. Sea Res., 107, 25–33, https://doi.org/10.1016/j.seares.2015.11.002, 2016.
Shojaei, M. G., Gutow, L., Dannheim, J., Schröder, A., and Brey, T.: Long-term changes in ecological functioning of temperate shelf sea benthic communities, Estuar. Coast. Shelf Sci., 249, 107097, https://doi.org/10.1016/j.ecss.2020.107097, 2021.
Sievers, J., Milbradt, P., Ihde, R., Valerius, J., Hagen, R., and Plüß, A.: An integrated marine data collection for the German Bight – Part 1: Subaqueous geomorphology and surface sedimentology (1996–2016), Earth Syst. Sci. Data, 13, 4053–4065, https://doi.org/10.5194/essd-13-4053-2021, 2021.
Smith, J. T., Wright, S. M., Cross, M. A., Monte, L., Kudelsky, A. V., Saxén, R., Vakulovsky, S. M., and Timms, D. N.: Global analysis of the riverine transport of 90Sr and 137Cs, Environ. Sci. Technol., 38, 850–857, https://doi.org/10.1021/es0300463, 2004.
Song, G., Liu, S., Zhu, Z., Zhai, W., Zhu, C., and Zhang, J.: Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea, Deep-Sea Res. Pt. II, 124, 53–63, https://doi.org/10.1016/j.dsr2.2015.04.012, 2016.
Ståhl, H., Tengberg, A., Brunnegård, J., Bjørnbom, E., Forbes, T. L., Josefson, A. B., Kaberi, H. G., Hassellöv, I. M. K., Olsgard, F., Roos, P., and Hall, P. O. J.: Factors influencing organic carbon recycling and burial in Skagerrak sediments, J. Mar. Res., 62, 867–907, https://elischolar.library.yale.edu/journal_of_marine_research/66/ (last access: 2 June 2025), 2004.
Suess, E.: Particulate organic carbon flux in the oceans–surface productivity and oxygen utilization, Nature, 288, 260–263, https://doi.org/10.1038/288260a0, 1980.
Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C. M., Kassabgy, M., Huang, S., Mann, A. J., Waldmann, J., Weber, M., Klindworth, A., Otto, A., Lange, J., Bernhardt, J., Reinsch, C., Hecker, M., Peplies, J., Bockelmann, F. D., Callies, U., Gerdts, G., Wichels, A., Wiltshire, K. H., Glöckner, F. O., Schweder, T., and Amann, R.: Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom, Science, 336, 608–611, https://doi.org/10.1126/science.1218344, 2012.
Thatje, S. and Gerdes, D.: The benthic macrofauna of the inner German Bight: present and past, Arch. Fish. Mar. Res., 45, 93–112, 1997.
Thünen Institute: Fine-scale footprint of bottom trawling in the German EEZ of the North Sea (2012–2016), https://hub.hereon.de/server/rest/services/NOAH_geoDB/TI_SARnested/MapServer (last access: 22 February 2024), 2018.
Torres, M. E., Mix, A. C., and Rugh, W. D.: Precise δ13C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry, Limnol. Oceanogr. Methods, 3, 349–360, https://doi.org/10.4319/lom.2005.3.349, 2005.
van de Velde, S.: sevdevel/FLIPPER: v0.1.0 (v0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6624982, 2022.
van de Velde, S. J., Hylén, A., Eriksson, M., James, R. K., Kononets, M. Y., Robertson, E. K., and Hall, P. O. J.: Exceptionally high respiration rates in the reactive surface layer of sediments underlying oxygen-deficient bottom waters, P. R. Soc. A, 479, 20230189, https://doi.org/10.1098/rspa.2023.0189, 2023.
Vink, A., Steffen, H., Reinhardt, L., and Kaufmann, G.: Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea), Quat. Sci. Rev., 26, 3249–3275, https://doi.org/10.1016/j.quascirev.2007.07.014, 2007.
Wei, B., Müller, D., Kusch, S., Niu, L., Hefter, J., Sander, L., Hanz, U., Mollenhauer, G., Jia, G., Kasten, S., and Holtappels, M.: Twice the global average carbon burial efficiency in the Helgoland Mud Area of the North Sea: Insights into carbon sequestration in small-size depocenters on sand-dominated shelves, Chem. Geol., 681, 122712, https://doi.org/10.1016/j.chemgeo.2025.122712, 2025.
Wrede, A., Dannheim, J., Gutow, L., and Brey, T.: Who really matters: influence of German Bight key bioturbators on biogeochemical cycling and sediment turnover, J. Exp. Mar. Bio. Ecol., 488, 92–101, https://doi.org/10.1016/j.jembe.2017.01.001, 2017.
Wu, Z., Liu, B., Escher, P., Kowalski, N., and Böttcher, M. E.: Carbon diagenesis in different sedimentary environments of the subtropical Beibu Gulf, South China Sea, J. Mar. Syst., 186, 68–84, https://doi.org/10.1016/j.jmarsys.2018.06.002, 2018.
Xu, S., Liu, B., Arndt, S., Kasten, S., and Wu, Z.: Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model, Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, 2023.
Zander, F., Heimovaara, T., and Gebert, J.: Spatial variability of organic matter degradability in tidal Elbe sediments, J. Soils Sediments, 20, 2573–2587, https://doi.org/10.1007/s11368-020-02569-4, 2020.
van der Zee, C., van Raaphorst, W., Helder, W., and de Heij, H.: Manganese diagenesis in temporal and permanent depositional areas of the North Sea, Cont. Shelf Res., 23, 625–646, https://doi.org/10.1016/S0278-4343(03)00024-4, 2003.
von Haugwitz, W., Wong, H. K., and Salge, U.: The mud area southeast of Helgoland: a reflection seismic study, Mitteilungen aus dem Geol. Inst. der Univ. Hambg., 65, 409–422, 1988.
Zeiler, M., Schulz-Ohlberg, J., and Figge, K.: Mobile sand deposits and shoreface sediment dynamics in the inner German Bight (North Sea), Mar. Geol., 170, 363–380, https://doi.org/10.1016/S0025-3227(00)00089-X, 2000.
Zhang, W., Porz, L., Yilmaz, R., Wallmann, K., Spiegel, T., Neumann, A., Holtappels, M., Kasten, S., Kuhlmann, J., Ziebarth, N., Taylor, B., Ho-Hagemann, H. T. M., Bockelmann, F.-D., Daewel, U., Bernhardt, L., and Schrum, C.: Long-term carbon storage in shelf sea sediments reduced by intensive bottom trawling, Nat. Geosci., 17, 1268–1276, https://doi.org/10.1038/s41561-024-01581-4, 2024.
Zhou, Z., Waska, H., Henkel, S., Dittmar, T., Kasten, S., and Holtappels, M.: Iron promotes the retention of terrigenous dissolved organic matter in subtidal permeable sediments, Environ. Sci. Technol., 58, 6204–6214, https://doi.org/10.1021/acs.est.3c09531, 2024.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G.: Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We...
Altmetrics
Final-revised paper
Preprint