Articles | Volume 22, issue 12
https://doi.org/10.5194/bg-22-2803-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2803-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of basalt, concrete fines, and steel slag on maize growth and toxic trace element accumulation in an enhanced weathering experiment
Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Arthur Vienne
Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Sara Vicca
Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Related authors
Arthur Vienne, Patrick Frings, Jet Rijnders, Tim Jesper Suhrhoff, Tom Reershemius, Reinaldy P. Poetra, Jens Hartmann, Harun Niron, Miguel Portillo Estrada, Laura Steinwidder, Lucilla Boito, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2025-1667, https://doi.org/10.5194/egusphere-2025-1667, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Our study explores Enhanced Weathering (EW) using basalt rock dust to combat climate change. We treated corn-planted mesocosms with varying basalt amounts and monitored them for 101 days. Surprisingly, we found no significant inorganic carbon dioxide removal (CDR). However, rock weathering was evident through increased exchangeable bases. While immediate inorganic CDR benefits were not observed, basalt amendment may enhance soil health and potentially long-term carbon sequestration.
Arthur Vienne, Jennifer Newell, Jasper Roussard, Rory Doherty, Siobhan F. Cox, Gary Lyons, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2025-3232, https://doi.org/10.5194/egusphere-2025-3232, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study explored how adding crushed basalt and biochar to soil affects plant growth, soil carbon emissions, and plant trace metal uptake. While basalt alone increased carbon dioxide release from soil, combining it with biochar reduced this effect. Biochar also boosted plant growth and lowered the amount of trace metals taken up by crops. These findings suggest that using biochar with basalt may improve soil health and help manage environmental risks.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Arthur Vienne, Patrick Frings, Jet Rijnders, Tim Jesper Suhrhoff, Tom Reershemius, Reinaldy P. Poetra, Jens Hartmann, Harun Niron, Miguel Portillo Estrada, Laura Steinwidder, Lucilla Boito, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2025-1667, https://doi.org/10.5194/egusphere-2025-1667, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Our study explores Enhanced Weathering (EW) using basalt rock dust to combat climate change. We treated corn-planted mesocosms with varying basalt amounts and monitored them for 101 days. Surprisingly, we found no significant inorganic carbon dioxide removal (CDR). However, rock weathering was evident through increased exchangeable bases. While immediate inorganic CDR benefits were not observed, basalt amendment may enhance soil health and potentially long-term carbon sequestration.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Cited articles
Abdalqadir, M., Hughes, D., Rezaei Gomari, S., and Rafiq, U.: A state of the art of review on factors affecting the enhanced weathering in agricultural soil: strategies for carbon sequestration and climate mitigation, Environ. Sci. Pollut. R., 31, 19047–19070, https://doi.org/10.1007/s11356-024-32498-5, 2024.
Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., and Jiang, J.: Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites, Sci. Total Environ., 712, 135637, https://doi.org/10.1016/j.scitotenv.2019.135637, 2020.
Amann, T., Hartmann, J., Struyf, E., de Oliveira Garcia, W., Fischer, E. K., Janssens, I., Meire, P., and Schoelynck, J.: Enhanced Weathering and related element fluxes – a cropland mesocosm approach, Biogeosciences, 17, 103–119, https://doi.org/10.5194/bg-17-103-2020, 2020.
Anda, M., Shamshuddin, J., and Fauziah, C. I.: Improving chemical properties of a highly weathered soil using finely ground basalt rocks, Catena, 124, 147–161, https://doi.org/10.1016/j.catena.2014.09.012, 2015.
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., Sarkar, B., Andrews, M. G., James, R. H., Pearce, C. R., Mercure, J. F., Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M., Koh, L., Quegan, S., Pidgeon, N. F., Janssens, I. A., Hansen, J., and Banwart, S. A.: Potential for large-scale CO2 removal via enhanced rock weathering with croplands, Nature, 583, 242–248, https://doi.org/10.1038/s41586-020-2448-9, 2020.
Berner, R. A.: The Phanerozoic Carbon Cycle: CO2 and O2, Oxford Academic, https://doi.org/10.1093/oso/9780195173338.001.0001, 2004.
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, 1983.
Bhatt, D. and Sharma, G.: Role of silicon in counteracting abiotic and biotic plant stresses, Int. J. Chem. Stud., 6, 1434–1442, 2018.
Boniao, R. D., Shamshuddin, J., Van Ranst, E., Zauyah, S., and Syed Omar, S. R.: Changes in chemical properties and growth of corn in volcanic soils treated with peat, ground basalt pyroclastics, and calcium silicate, Commun. Soil Sci. Plant Anal., 33, 1219–1233, https://doi.org/10.1081/CSS-120003883, 2002.
Branca, T. A., Pistocchi, C., Colla, V., Ragaglini, G., Amato, A., Tozzini, C., Mudersbach, D., Morillon, A., Rex, M., and Romaniello, L.: Investigation of (BOF\) Converter slag use for agriculture in europe, Metall Res. Technol., 111, 155–167, https://doi.org/10.1051/metal/2014022, 2014.
Brown, I. C.: A rapid method of determining exchangeable hydrogen and total exchangeable bases of soils, Soil Sci., 353–357, 10.1097/00010694-194311000-00004, 1943.
Buckingham, F. L. and Henderson, G. M.: The enhanced weathering potential of a range of silicate and carbonate additions in a UK agricultural soil, Sci. Total Environ., 907, 167701, https://doi.org/10.1016/j.scitotenv.2023.167701, 2024.
Calabrese, S., Wild, B., Bertagni, M. B., Bourg, I. C., White, C., Aburto, F., Cipolla, G., Noto, L. V., and Porporato, A.: Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering, Environ. Sci. Technol., 56, 15261–15272, https://doi.org/10.1021/acs.est.2c03163, 2022.
Castro, G. S. A. and Crusciol, C. A. C.: Yield and mineral nutrition of soybean, maize, and congo signal grass as affected by limestone and slag, Pesqui. Agropecu. Bras., 48, 673–681, https://doi.org/10.1590/S0100-204X2013000600013, 2013.
Chen, L., Liu, J., Hu, W., Gao, J., and Yang, J.: Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation, J. Hazard. Mater., 405, 124200, https://doi.org/10.1016/j.jhazmat.2020.124200, 2021.
Conceição, L. T., Silva, G. N., Holsback, H. M. S., Oliveira, C. de F., Marcante, N. C., Martins, É. de S., Santos, F. L. de S., and Santos, E. F.: Potential of basalt dust to improve soil fertility and crop nutrition, J. Agric. Food Res., 10, 100443, https://doi.org/10.1016/j.jafr.2022.100443, 2022.
Deus, A. C. F., Büll, L. T., Guppy, C. N., de Santos, S. M. C., and Moreira, L. L. Q.: Effects of lime and steel slag application on soil fertility and soybean yield under a no till-system, Soil Till. Res., 196, 104422, https://doi.org/10.1016/j.still.2019.104422, 2020.
De Windt, L., Chaurand, P., and Rose, J.: Kinetics of steel slag leaching: Batch tests and modeling, Waste Manage., 31, 225–235, https://doi.org/10.1016/j.wasman.2010.05.018, 2011.
Dieleman, W. I. J. and Janssens, I. A.: Can publication bias affect ecological research? A case study on soil respiration under elevated CO2, New Phytol., 190, 517–521, https://doi.org/10.1111/j.1469-8137.2010.03499.x, 2011.
dos Reis, G. S., Thue, P. S., Cazacliu, B. G., Lima, E. C., Sampaio, C. H., Quattrone, M., Ovsyannikova, E., Kruse, A., and Dotto, G. L.: Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer, J. Clean. Prod., 256, 120416, https://doi.org/10.1016/j.jclepro.2020.120416, 2020.
Dupla, X., Möller, B., Baveye, P. C., and Grand, S.: Potential accumulation of toxic trace elements in soils during enhanced rock weathering, Eur. J. Soil Sci., 74, e13343, https://doi.org/10.1111/ejss.13343, 2023.
Edwards, D. P., Lim, F., James, R. H., Pearce, C. R., Scholes, J., Freckleton, R. P., Beerling, D. J., and Edwards, D. P.: Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture, Biol. Lett., 13, 20160715, 10.1098/rsbl.2016.0715, 2017.
Ertani, A., Mietto, A., and Borin, M.: Chromium in Agricultural Soils and Crops: A Review, Water Air Soil Pollut., 228, 190, https://doi.org/10.1007/s11270-017-3356-y, 2017.
Fu, S. and Cheng, W.: Rhizosphere priming effects on the decomposition of soil organic matter in C4 and C3 grassland soils, Plant Soil, 238, 289–294, https://doi.org/10.1023/A:1014488128054, 2002.
Gao, D., Wang, F. P., Wang, Y. T., and Zeng, Y. N.: Sustainable utilization of steel slag from traditional industry and agriculture to catalysis, Sustainability, 12, 9295, https://doi.org/10.3390/su12219295, 2020.
Gillman, G. P., Burkett, D. C., and Coventry, R. J.: A laboratory study of application of basalt dust to highly weathered soils: Effect on soil cation chemistry, Aust. J. Soil Res., 39, 799–811, https://doi.org/10.1071/SR00073, 2001.
Goll, D. S., Ciais, P., Amann, T., Buermann, W., Chang, J., Eker, S., Hartmann, J., Janssens, I., Li, W., and Obersteiner, M.: Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock, Nat. Geosci., 14, 545–549, https://doi.org/10.1038/s41561-021-00798-x, 2021.
Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., and Oelkers, E. H.: An experimental study of crystalline basalt dissolution from and temperatures from 5 to 75 °C, Geochim. Cosmochim. Ac., 75, 5496–5509, https://doi.org/10.1016/j.gca.2011.06.035, 2011.
Guo, F., Wang, Y., Zhu, H., Zhang, C., Sun, H., Fang, Z., Yang, J., Zhang, L., Mu, Y., Man, Y. B., and Wu, F.: Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: A comparative field analysis of multi-agroclimatic regions in central China, Agric. Syst., 210, 103691, https://doi.org/10.1016/j.agsy.2023.103691, 2023.
Guo, W., Nazim, H., Liang, Z., and Yang, D.: Magnesium deficiency in plants: An urgent problem, Crop Journal, 4, 83–91, https://doi.org/10.1016/j.cj.2015.11.003, 2016.
Haque, F., Santos, R. M., Dutta, A., Thimmanagari, M., and Chiang, Y. W.: Co-Benefits of Wollastonite Weathering in Agriculture: CO2 Sequestration and Promoted Plant Growth, ACS Omega, 4, 1425–1433, https://doi.org/10.1021/acsomega.8b02477, 2019.
Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager, I., and White, P.: Functions of Macronutrients, Elsevier Ltd, 135–190, https://doi.org/10.1016/B978-0-12-384905-2.00006-6, 2012.
He, H., Xiao, Q., Yuan, M., Huang, R., Sun, X., Wang, X., and Zhao, H.: Effects of steel slag amendments on accumulation of cadmium and arsenic by rice (Oryza sativa) in a historically contaminated paddy field, Environ. Sci. Pollut. R., 27, 40001–40008, https://doi.org/10.1007/s11356-020-10028-3, 2020.
Ho, H. J., Iizuka, A., and Shibata, E.: Chemical recycling and use of various types of concrete waste: A review, 284, 124785, https://doi.org/10.1016/j.jclepro.2020.124785, 2021.
Hochmuth, G. J., Maynard, D., Vavrina, C., Hanlon, E., and Simonne, E.: Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida: HS964/EP081 rev. 10/2012, Edis, 10, 6, https://doi.org/10.32473/edis-ep081-2004, 2012.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots, R package version 0.6.0, https://doi.org/10.32614/CRAN.package.ggpubr, 2023.
Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews, M. G., Lomas, M. R., Cotton, T. E. A., Kemp, S. J., James, R. H., Pearce, C. R., Hartley, S. E., Hodson, M. E., Leake, J. R., Banwart, S. A., and Beerling, D. J.: Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil, Glob. Change Biol., 26, 3658–3676, https://doi.org/10.1111/gcb.15089, 2020.
Kicińska, A., Pomykała, R., and Izquierdo-Diaz, M.: Changes in soil pH and mobility of heavy metals in contaminated soils, Eur. J. Soil Sci., 73, 13203, https://doi.org/10.1111/ejss.13203, 2022.
Klitzke, S. and Lang, F.: Mobilization of Soluble and Dispersible Lead, Arsenic, and Antimony in a Polluted, Organic-rich Soil – Eff ects of pH Increase and Counterion Valency, Environmental Qualiry, 38, 933–939, https://doi.org/10.2134/jeq2008.0239, 2009.
Kögel-Knabner, I., Wiesmeier, M., and Mayer, S.: Mechanisms of soil organic carbon sequestration and implications for management, Burleigh Dodds Science Publishing, 11–46, https://doi.org/10.19103/as.2022.0106.02, 2022.
Kopsell, D. E., Kopsell, D. A., Sams, C. E., and Casey, T.: Ratio of Calcium to Magnesum influences biomass, elemental accumulations, and pigment concentrations in kale, J. Plant Nutr., 36, 2154–2165, https://doi.org/10.1080/01904167.2013.789108, 2013.
Kushwaha, A., Hans, N., Kumar, S., and Rani, R.: A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies, Ecotoxicol. Environ. Saf., 147, 1035–1045, https://doi.org/10.1016/j.ecoenv.2017.09.049, 2018.
Kuzyakov, Y.: Review: Factors affecting rhizosphere priming effects, J. Plant Nutr. Soil Sc., 165, 382–396, https://doi.org/10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23, 2002.
Lehmann, N., Lantuit, H., Böttcher, M. E., Hartmann, J., Eulenburg, A., and Thomas, H.: Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway, Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, 2023.
Lewis, A. L., Sarkar, B., Wade, P., Kemp, S. J., Hodson, M. E., Taylor, L. L., Yeong, K. L., Davies, K., Nelson, P. N., Bird, M. I., Kantola, I. B., Masters, M. D., DeLucia, E., Leake, J. R., Banwart, S. A., and Beerling, D. J.: Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering, Appl. Geochem., 132, 105023, https://doi.org/10.1016/j.apgeochem.2021.105023, 2021.
Li, L., Scheckel, K. G., Zheng, L., Liu, G., Xing, W., and Xiang, G.: Immobilization of Lead in Soil Influenced by Soluble Phosphate and Calcium: Lead Speciation Evidence, J. Environ. Qual., 43, 468–474, https://doi.org/10.2134/jeq2013.07.0272, 2014.
Li, P., Karunanidhi, D., Subramani, T., and Srinivasamoorthy, K.: Sources and Consequences of Groundwater Contamination, Arch. Environ. Contam. Toxicol., 80, 1–10, https://doi.org/10.1007/s00244-020-00805-z, 2021.
Lindsay, W. L., Schwab, A. P., State, C., and Collins, F.: The chemistry of iron in soils and its availability to plants, J. Plant Nutr., 5, 821–840, https://doi.org/10.1080/01904168209363012, 2008.
Liu, Z., Dreybrodt, W., and Liu, H.: Atmospheric CO2 sink: Silicate weathering or carbonate weathering?, Appl. Geochem., 26, S292–S294, https://doi.org/10.1016/j.apgeochem.2011.03.085, 2011.
Lizárraga-Paulín, E. G., Torres-pacheco, I., Moreno-martínez, E., and Miranda-castro, S. P.: Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level, Afr. J. Biotechnol., 10, 6439–6446, 2011.
Luchese, A. V., Gutz de Castro Leite, I. J., da Silva Giaretta, A. P., Alves, M. L., Pivetta, L. A., and Missio, R. F.: Use of quarry waste basalt rock powder as a soil remineralizer to grow soybean and maize, Heliyon, 9, e14050, https://doi.org/10.1016/j.heliyon.2023.e14050, 2023.
Majeed, S., Reetika, Z., Javaid, M., Muslima, A. B., and Rupesh, N.: Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system, 3 Biotech, 9, 73, https://doi.org/10.1007/s13205-019-1613-z, 2019.
Makabe-Sasaki, S., Kakuda, K.-i., Sasaki, Y., and Ando, H.: Effects of slag silicate fertilizer on silicon content of rice plants grown in paddy fields on the Shounai Plain, Yamagata, Japan, Soil Sci. Plant Nut, 60, 708–721, https://doi.org/10.1080/00380768.2014.936305, 2015.
Montgomery, E. G.: Correlation studies in corn., Neb. Agric. Exp. Stn. Annu. Rep., 24, 108–159, 1911.
Moosdorf, N., Renforth, P., and Hartmann, J.: Carbon Dioxide Efficiency of Terrestrial Enhanced Weathering, Environ. Sci. Technol., 48, 4809–4816, https://doi.org/10.1021/es4052022, 2014.
Nagajyoti, P. C., Lee, K. D., and Sreekanth, T. V. M.: Heavy metals, occurrence and toxicity for plants: A review, Environ. Chem. Lett., 8, 199–216, https://doi.org/10.1007/s10311-010-0297-8, 2010.
Ning, D., Song, A., Fan, F., Li, Z., and Liang, Y.: Effects of Slag-Based Silicon Fertilizer on Rice Growth and Brown-Spot Resistance, PLoS One, 9, e102681, https://doi.org/10.1371/journal.pone.0102681, 2014.
O'Connor, J., Nguyen, T. B. T., Honeyands, T., Monaghan, B., O'Dea, D., Rinklebe, J., Vinu, A., Hoang, S. A., Singh, G., Kirkham, M. B., and Bolan, N.: Production, characterisation, utilisation, and beneficial soil application of steel slag: A review, J. Hazard. Mater., 419, https://doi.org/10.1016/j.jhazmat.2021.126478, 2021.
Osemwota, I. O.: Effect of Calcium Magnesium Ratio in Soil on Magnesium Availability, Yield, and Yield Components of Maize, Commun. Soil Sci. Plant Anal., 38, 2849–2860, https://doi.org/10.1080/00103620701663081, 2007.
Palandri, J. and Kharaka, Y.: A compilation of rate parameters of water-mineral interaction kinerics for application to geochemical modeling, U.S. Geologival Survey, California, https://doi.org/10.3133/ofr20041068, 2004.
Pinheiro, J., Bates, D., Debroy, S., Sarka, D., and R Core Team, R.: nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1, 109, https://doi.org/10.32614/CRAN.package.nlme, 2013.
Pistocchi, C., Ragaglini, G., Colla, V., Branca, T. A., Tozzini, C., and Romaniello, L.: Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial, J. Environ. Manage., 203, 896–906, https://doi.org/10.1016/j.jenvman.2017.05.007, 2017.
Qian, P. and Schoenau, J. J.: Practical applications of ion exchange resins in agricultural and environmental soil research, Can. J. Soil Sci., 82, 9–21, https://doi.org/10.4141/S00-091,2002.
Ramezanian, A., Dahlin, A. S., Campbell, C. D., Hillier, S., Mannerstedt-Fogelfors, B., and Öborn, I.: Addition of a volcanic rockdust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity, Plant Soil, 367, 419–436, https://doi.org/10.1007/s11104-012-1474-2, 2013.
Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S., and Theodoro, S. H.: Possibilities of using silicate rock powder: An overview, Geosci. Front., 13, 101185, https://doi.org/10.1016/j.gsf.2021.101185, 2022.
Renforth, P., Washbourne, C. L., Taylder, J., and Manning, D. A. C.: Silicate production and availability for mineral carbonation, Environ. Sci. Technol., 45, 2035–2041, https://doi.org/10.1021/es103241w, 2011.
Rijnders, J., Vicca, S., Struyf, E., Amann, T., Hartmann, J., Meire, P., Janssens, I., and Schoelynck, J.: The effects of dunite fertilization on growth and elemental composition of barley and wheat differ with dunite grain size and rainfall regimes, Front Environ. Sci., 11, 1172621, https://doi.org/10.3389/fenvs.2023.1172621, 2023.
Rijnders, J., Vienne, A., and Vicca, S.: Effects of basalt, concrete fines, and steel slag on maize growth and toxic trace element accumulation in an enhanced weathering experiment, Zenodo [data set], https://doi.org/10.5281/zenodo.15674598, 2025.
Rmisc: Ryan Miscellaneous. R package version 1.5.1: https://cran.r-project.org/web/packages/Rmisc, last access: 19 November 2024.
Roychoudhury, A.: Vanadium Uptake and Toxicity in Plants, SF Journal of Agricultural and Crop Management, 12, 1010, https://www.researchgate.net/profile/Aryadeep-Roychoudhury/publication/346646236 (last access: 17 June 2025), 2020.
Sbai, K., Tahri, L., Hafiane, F. Z., Halima, O. I., and Fekhaoui, M.: Assessment of heavy metal pollution in groundwater using a multivariate analysis approach, J. Water Land Dev., 61, 175–182, https://doi.org/10.24425/jwld.2024.150272, 2024.
Schlüter, U., Mascher, M., Colmsee, C., Scholz, U., Bräutigam, A., Fahnenstich, H., and Sonnewald, U.: Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis, Plant Physiol., 160, 1384–1406, https://doi.org/10.1104/pp.112.204420, 2012.
Shenker, M. and Chen, Y.: Increasing Iron Availability to Crops: Fertilizers, Organo-Fertilizers, and Biological Approaches, Soil Sci. Plant Nutr, 51, 1–17, https://doi.org/10.1111/j.1747-0765.2005.tb00001.x, 2005.
Skov, K., Wardman, J., Healey, M., Mcbride, A., Bierowiec, T., Cooper, J., Edeh, I., George, D., Kelland, M. E., Mann, J., Manning, D., Murphy, M. J., Pape, R., Teh, Y. A., Id, W. T., Wade, P., and Liu, X.: Initial agronomic benefits of enhanced weathering using basalt: A study of spring oat in a temperate climate, PLoS One, 19, e0295031, https://doi.org/10.1371/journal.pone.0295031, 2024.
Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D., and Prasad, T. N. V. K. V: Occurrence, physiological responses and toxicity of nickel in plants, Int. J. Environ. Sci. Technol., 10, 1129–1140, https://doi.org/10.1007/s13762-013-0245-9, 2013.
Van Straaten, P.: Farming with rocks and minerals: Challenges and opportunities, An. Acad. Bras. Cienc., 78, 731–747, https://doi.org/10.1590/S0001-37652006000400009, 2006.
Swoboda, P., Döring, T. F., and Hamer, M.: Remineralizing soils? The agricultural usage of silicate rock powders: A review, Sci. Total Environ., 807, 150976, https://doi.org/10.1016/j.scitotenv.2021.150976, 2022.
Taylor, L. L., Beerling, D. J., Quegan, S., and Banwart, S. A.: Simulating carbon capture by enhanced weathering with croplands: An overview of key processes highlighting areas of future model development, Biol. Lett., 13, 20160868, https://doi.org/10.1098/rsbl.2016.0868, 2017.
Tchouankoue, J. P.: Soil Remineralization Trial: Preliminary Effects of Montserrat Volcanic Ash on Barbuda Limestone soils, in: Geotherapy, Taylor & Francis, 391–398, https://doi.org/10.1201/b13788-27, 2014.
Ten Berge, H. F. M., Meer, H. G. Van Der, Steenhuizen, J. W., Goedhart, P. W., Knops, P., and Verhagen, J.: Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment, PLoS One, 7, 42098, https://doi.org/10.1371/journal.pone.0042098, 2012.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S.: Agricultural sustainability and intensive production practices, Nature, 418, 671–677, 2002.
Ven, A., Verlinden, M. S., Verbruggen, E., and Vicca, S.: Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake, Funct. Ecol., 33, 2215–2225, https://doi.org/10.1111/1365-2435.13452, 2019.
Ven, A., Verlinden, M. S., Fransen, E., Olsson, P. A., Verbruggen, E., Wallander, H., and Vicca, S.: Phosphorus addition increased carbon partitioning to autotrophic respiration but not to biomass production in an experiment with Zea mays, Plant. Cell Environ., 43, 2054–2065, https://doi.org/10.1111/pce.13785, 2020.
Vienne, A., Poblador, S., Portillo-estrada, M., and Hartmann, J.: Enhanced Weathering Using Basalt Rock Powder: Carbon Sequestration, Co-benefits and Risks in a Mesocosm Study With Solanum tuberosum, Front. in Climate, 869456, https://doi.org/10.3389/fclim.2022.869456, 2022.
Vienne, A., Frings, P., Rijnders, J., Suhrhoff, T. J., Reershemius, T., Poetra, R. P., Hartmann, J., Niron, H., Estrada, M. P., Steinwidder, L., Boito, L., and Vicca, S.: Weathering without inorganic CDR revealed through cation tracing, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-1667, 2025.
Walinga, I., Van Der Lee, J. J., Houba, V. J. G., Van Vark, W., and Novozamsky, I.: Plant Analysis Manual, Springer Netherlands, https://doi.org/10.1007/978-94-011-0203-2, 1995.
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776–9782, https://doi.org/10.1029/JC086iC10p09776, 1981.
Wang, W., Sardans, J., Lai, D. Y. F., Wang, C., Zeng, C., Tong, C., and Liang, Y.: Field Crops Research Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China, Field Crops Res., 171, 146–156, https://doi.org/10.1016/j.fcr.2014.10.014, 2015.
Wang, X. and Qing-Sheng, C.: Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment, Soil Science Society of China, Pedosphere, 16, 519–524, https://doi.org/10.1016/S1002-0160(06)60083-0, 2006.
White, A. F., Schulz, M. S., Lawrence, C. R., Vivit, D. V., and Stonestrom, D. A.: Long-term flow-through column experiments and their relevance to natural granitoid weathering rates, Geochim. Cosmochim. Ac., 202, 190–214, https://doi.org/10.1016/j.gca.2016.11.042, 2017.
WHO and FAO: General standards for contaminants and toxins in food and feed, 1–85, https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (last access: 17 June 2025), 2022.
Wickham, H.: Data Analysis, in: ggplot2: Elegant Graphics for Data Analysis, Springer International Publishing, Cham, 189–201, https://doi.org/10.1007/978-3-319-24277-4_9, 2016.
Yan, Y., Dong, X., Li, R., Zhang, Y., Yan, S., Guan, X., Yang, Q., Chen, L., Fang, Y., Zhang, W., and Wang, S.: Wollastonite addition stimulates soil organic carbon mineralization: Evidences from 12 land-use types in subtropical China, Catena, 225, 107031, https://doi.org/10.1016/j.catena.2023.107031, 2023.
Yusuf, M., Fariduddin, Q., Hayat, S., and Ahmad, A.: Nickel: An overview of uptake, essentiality and toxicity in plants, Bull. Environ. Contam. Toxicol., 86, 1–17, https://doi.org/10.1007/s00128-010-0171-1, 2011.
Short summary
A mesocosm experiment was set up to investigate how maize responds to the application of basalt, concrete fines, and steel slag, using a dose–response approach. Biomass increased with basalt application but did not change with concrete fines or steel slag, except for increased tassel biomass. Mg, Ca, and Si generally increased in the crops, whereas toxic trace elements remained unaffected or even decreased in the plants. Overall, crops were positively affected by the application of silicate materials.
A mesocosm experiment was set up to investigate how maize responds to the application of basalt,...
Altmetrics
Final-revised paper
Preprint