Articles | Volume 22, issue 12
https://doi.org/10.5194/bg-22-2831-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2831-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magnesium (Mg∕Ca, δ26Mg), boron (B∕Ca, δ11B), and calcium (Ca2+) geochemistry of Arctica islandica and Crassostrea virginica extrapallial fluid and shell under ocean acidification
Blanca Alvarez Caraveo
CORRESPONDING AUTHOR
Atmospheric and Oceanic Sciences Department, University of California, Los Angeles, Math Sciences Building, 520 Portola Plaza, Los Angeles, CA 90095, USA
Center for Diverse Leadership in Science, Institute of the Environment and Sustainability, University of California, Los Angeles, La Kretz Hall, 619 Charles E. Young Dr. E. no. 300, Los Angeles, CA 90024, USA
Maxence Guillermic
Atmospheric and Oceanic Sciences Department, University of California, Los Angeles, Math Sciences Building, 520 Portola Plaza, Los Angeles, CA 90095, USA
Center for Diverse Leadership in Science, Institute of the Environment and Sustainability, University of California, Los Angeles, La Kretz Hall, 619 Charles E. Young Dr. E. no. 300, Los Angeles, CA 90024, USA
Earth, Planetary and Space Sciences, Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
Alan Downey-Wall
Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 430 Nahant Rd., Nahant, MA 01908, USA
Louise P. Cameron
Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 430 Nahant Rd., Nahant, MA 01908, USA
Jill N. Sutton
LEMAR, Université de Brest, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, IUEM, 29280, Plouzané, France
John A. Higgins
Department of Geosciences, Princeton University, Guyot Hall, Princeton, NJ 08544, USA
Justin B. Ries
Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 430 Nahant Rd., Nahant, MA 01908, USA
Katie Lotterhos
Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 430 Nahant Rd., Nahant, MA 01908, USA
Atmospheric and Oceanic Sciences Department, University of California, Los Angeles, Math Sciences Building, 520 Portola Plaza, Los Angeles, CA 90095, USA
Center for Diverse Leadership in Science, Institute of the Environment and Sustainability, University of California, Los Angeles, La Kretz Hall, 619 Charles E. Young Dr. E. no. 300, Los Angeles, CA 90024, USA
Related authors
No articles found.
Maxence Guillermic, Erik C. Krieger, Joyce Goh, Christopher E. Cornwall, and Robert A. Eagle
EGUsphere, https://doi.org/10.5194/egusphere-2025-2626, https://doi.org/10.5194/egusphere-2025-2626, 2025
Short summary
Short summary
We address the impact of light on four complexes of coralline red algae using boron and carbon isotopic signatures. We show that the four complexes up-regulated their δ11B derived pHCF relative to seawater by 0.6 to 0.8 pH unit but pHCF was not directly impacted by light at the complex level. The differences in calcification between encrusting and branching complexes result from different photosynthetic regimes and carbon concentrating mechanisms, which would be inherent to morphologies.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, and Aradhna Tripati
Clim. Past, 18, 183–207, https://doi.org/10.5194/cp-18-183-2022, https://doi.org/10.5194/cp-18-183-2022, 2022
Short summary
Short summary
Here we reconstruct atmospheric CO2 values across major climate transitions over the past 16 million years (Myr) from two sites in the West Pacific Warm Pool using a pH proxy on surface-dwelling foraminifera. We are able to reproduce pCO2 data from ice cores; therefore we apply the same framework to older samples to create a long-term pH and pCO2 reconstruction. We give quantitative constraints on pH and pCO2 changes over the main climate transitions of the last 16 Myr.
Yuzhen Yan, Nicole E. Spaulding, Michael L. Bender, Edward J. Brook, John A. Higgins, Andrei V. Kurbatov, and Paul A. Mayewski
Clim. Past, 17, 1841–1855, https://doi.org/10.5194/cp-17-1841-2021, https://doi.org/10.5194/cp-17-1841-2021, 2021
Short summary
Short summary
Here we reconstruct the rate of snow accumulation during the Last Interglacial period in an East Antarctic ice core located near the present-day northern edge of the Ross Ice Shelf. We find an order-of-magnitude increase in the accumulation rate during the peak warming in the Last Interglacial. This large increase in mass accumulation is compatible with less ice cover in the Ross Sea, perhaps created by a partly collapsed West Antarctic Ice Sheet, whose stability in a warming world is uncertain.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Cited articles
Addadi, L., Raz, S., and Weiner, S.: Taking Advantage of Disorder: Amorphous calcium carbonate and its roles in biomineralization, Advanced Materials, 15, 959–970, https://doi.org/10.1002/adma.200300381, 2003.
Addadi, L., Joester, D., Nudelman, F., and Weiner, S.: Mollusc Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes, Chem.-Eur. J., 12, 980–987, https://doi.org/10.1002/chem.200500980, 2006.
Ahm, A.-S. C., Bjerrum, C. J., Hoffman, P. F., Macdonald, F. A., Maloof, A. C., Rose, C. V., Strauss, J. V., and Higgins, J. A.: The Ca and Mg isotope record of the Cryogenian Trezona carbon isotope excursion, Earth Planet. Sc. Lett., 568, 117002, https://doi.org/10.1016/j.epsl.2021.117002, 2021.
Alibert, C. and McCulloch, M. T.: Strontium/calcium ratios in modern porites corals From the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO, Paleoceanography, 12, 345–363, https://doi.org/10.1029/97PA00318, 1997.
Allison, N. and Finch, A. A.: δ11B, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry, Geochim. Cosmochim. Ac., 74, 1790–1800, https://doi.org/10.1016/j.gca.2009.12.030, 2010.
Beniash, E., Ivanina, A., Lieb, N. S., Kurochkin, I., and Sokolova, I. M.: Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica, Mar. Ecol. Prog. Ser., 419, 95–108, https://doi.org/10.3354/meps08841, 2010.
Broecker, W. S. and Peng, T.-H.: Tracers in the Sea, Lamont-Doherty Geological Observatory, Columbia University Palisades, New York, b1–b2, https://doi.org/10.1017/S0033822200005221, New York, 1982.
Cameron, L. P.: Understanding Patterns of Bivalve Vulnerability and Resilience to Ocean Acidification: Insights from Field Studies, Tank Experiments and Novel Physiological Studies, Dissertation Northeastern University, ISBN 9798641900292, 2020.
Cameron, L. P., Reymond, C. E., Bijma, J., Büscher, J. V., de Beer, D., Guillermic, M., Eagle, R. A., Gunnell, J., Müller-Lundin, F., Schmidt-Grieb, G. M., Westfield, I., Westphal, H., Ries, J. B.: Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH, Journal of Marine Science and Engineering, 10, 1106, https://doi.org/10.3390/jmse10081106, 2022.
Cameron, L. P., Reymond, C. E., Müller-Lundin, F., Westfield, I., Grabowski, J. H., Westphal, H., and Ries, J. B.: Effects of temperature and ocean acidification on the extrapallial fluid pH, calcification rate, and condition factor of the king scallop Pecten maximus, J. Shellfish Res., 38, 763–777, https://doi.org/10.2983/035.038.0327, 2019.
Checa, A. G.: Physical and Biological Determinants of the fabrication of molluscan shell microstructures, Frontiers in Marine Science, 5, 353, https://doi.org/10.3389/fmars.2018.00353, 2018.
Cornwall, C. E., Comeau, S., and McCulloch, M. T.: Coralline algae elevate pH at the site of calcification under ocean acidification, Glob. Change Biol., 23, 4245–4256, https://doi.org/10.1111/gcb.13673, 2017.
Craig, H.: The geochemistry of the stable carbon isotopes, Geochim. Cosmochim. Ac., 3, 53–92, https://doi.org/10.1016/0016-7037(53)90001-5, 1953.
Crenshaw, M. A.: The inorganic composition of molluscan extrapallial fluid, Biol. Bull., 143, 506–512, 1972.
Cusack, M., Kamenos, N. A., Rollion-Bard, C., and Tricot, G.: Red coralline algae assessed as marine pH proxies using 11B MAS NMR, Sci. Rep.-UK, 5, 8175, https://doi.org/10.1038/srep08175, 2015.
Downey-Wall, A. M., Cameron, L. P., Ford, B. M., McNally, E. M., Venkataraman, Y. R., Roberts, S. B., Ries, J. B., and Lotterhos, K. E.: Ocean acidification induces subtle shifts in gene expression and DNA methylation in mantle tissue of the Eastern oyster (Crassostrea virginica), Frontiers in Marine Science, 7, 566419, https://doi.org/10.3389/fmars.2020.566419, 2020.
Dunbar, R. B., Wellington, G. M., Colgan, M. W., and Glynn, P. W.: Eastern Pacific sea surface temperature since 1600 A. D.: The δ18O record of climate variability in Galápagos Corals, Paleoceanography, 9, 291–315, https://doi.org/10.1029/93PA03501, 1994.
Eagle, R. A., Guillermic, M., De Corte, I., Alvarez Caraveo, B., Bove, C. B., Misra, S., Cameron, L. P., Castillo, K. D., and Ries, J. B.: Physicochemical Control of Caribbean Coral Calcification Linked to Host and Symbiont Responses to Varying pCO2 and Temperature, Journal of Marine Science and Engineering, 10, 1075, https://doi.org/10.3390/jmse10081075, 2022.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibrations for benthic foraminiferal paleothermometry and the carbonate ion hypothesis, Earth Planet. Sc. Lett., 250, 633–649, https://doi.org/10.1016/j.epsl.2006.07.041, 2006.
Fitzer, S. C., Chung, P., Maccherozzi, F., Dhesi, S. S., Kamenos, N. A., Phoenix, V. R., and Cusack, M.: Biomineral shell formation under ocean acidification: a shift from order to chaos, Sci. Rep.-UK, 6, 21076, https://doi.org/10.1038/srep21076, 2016.
Foster, G. L. and Rae, J. W. B.: Reconstructing Ocean pH with Boron Isotopes in Foraminifera, Annu. Rev. Earth Pl. Sc., 44, 207–237, https://doi.org/10.1146/annurev-earth-060115-012226, 2016.
Gagnon, A. C., Gothmann, A. M., Branson, O., Rae, J. W. B., and Stewart, J. A.: Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification, Earth Planet. Sc. Lett., 554, 116662, https://doi.org/10.1016/j.epsl.2020.116662, 2021.
Gaillardet, J., Lemarchand, D., Göpel, C., and Manhès, G.: Evaporation and Sublimation of Boric Acid: Application for Boron Purification from Organic Rich Solutions, Geostandard. Newslett., 25, 67–75, https://doi.org/10.1111/j.1751-908X.2001.tb00788.x, 2001.
Gazeau, F., Parker, L. M., Comeau, S., Gattuso, J.-P., O'Connor, W. A., Martin, S., Pörtner, H.-O., and Ross, P. M.: Impacts of ocean acidification on marine shelled molluscs, Mar. Biol., 160, 2207–2245, https://doi.org/10.1007/s00227-013-2219-3, 2013.
Gibson, R., Barnes, M., and Atkinson, R.: Molluscs as archives of environmental change, Oceanogr. Mar. Biol., 39, 103–164, 2001.
Gosling, E.: Bivalve molluscs: biology, ecology and culture, John Wiley & Sons, 2008.
Guillermic, M., Cameron, L. P., De Corte, I., Misra, S., Bijma, J., De Beer, D., Reymond, C. E., Westphal, H., Ries, J. B., and Eagle, R. A.: Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry, Science Advances, 7, eaba9958, https://doi.org/10.1126/sciadv.aba9958, 2021.
Gutjahr, M., Bordier, L., Douville, E., Farmer, J., Foster, G. L., Hathorne, E. C., Hönisch, B., Lemarchand, D., Louvat, P., McCulloch, M., Noireaux, J., Pallavicini, N., Rae, J. W. B., Rodushkin, I., Roux, P., Stewart, J. A., Thil, F., and You, C.: Sub-Permil Interlaboratory Consistency for Solution-Based Boron Isotope Analyses on Marine Carbonates, Geostand. Geoanal. Res., 45, 59–75, https://doi.org/10.1111/ggr.12364, 2021.
Heinemann, A., Fietzke, J., Melzner, F., Böhm, F., Thomsen, J., Garbe-Schönberg, D., and Eisenhauer, A.: Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and δ11B, Geochem. Geophy. Geosy., 13, 2011GC003790, https://doi.org/10.1029/2011GC003790, 2012.
Helm, M. M., Bourne, N., and Lovatelli, A.: The hatchery culture of bivalves: a practical manual, FAO, Rome, ISBN 92-5-105224-7, XXI, 177 pp., 2004.
Hemming, N. G. and Hanson, G. N.: Boron isotopic composition and concentration in modern marine carbonates, Geochim. Cosmochim. Ac., 56, 537–543, https://doi.org/10.1016/0016-7037(92)90151-8, 1992.
Hess, P., Lansman, J. B., and Tsien, R. W.: Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells, J. Gen. Physiol., 88, 293–319, https://doi.org/10.1085/jgp.88.3.293, 1986.
Higgins, J. A., Blättler, C. L., Lundstrom, E. A., Santiago-Ramos, D. P., Akhtar, A. A., Crüger Ahm, A.-S., Bialik, O., Holmden, C., Bradbury, H., Murray, S. T., and Swart, P. K.: Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments, Geochim. Cosmochim. Ac., 220, 512–534, https://doi.org/10.1016/j.gca.2017.09.046, 2018.
Hönisch, B., Hemming, N., Grottoli, A. G., Amat, A., Hanson, G. N., and Bijma, J.: Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects, Geochim. Cosmochim. Ac., 68, 3675–3685, https://doi.org/10.1016/j.gca.2004.03.002, 2004.
Husson, J. M., Higgins, J. A., Maloof, A. C., and Schoene, B.: Ca and Mg isotope constraints on the origin of Earth's deepest δ13C excursion, Geochim. Cosmochim. Ac., 160, 243–266, https://doi.org/10.1016/j.gca.2015.03.012, 2015.
Johnstone, M. B., Gohad, N. V., Falwell, E. P., Hansen, D. C., Hansen, K. M., and Mount, A. S.: Cellular orchestrated biomineralization of crystalline composites on implant surfaces by the eastern oyster, Crassostrea virginica (Gmelin, 1791), J. Exp. Mar. Biol. Ecol., 463, 8–16, https://doi.org/10.1016/j.jembe.2014.10.014, 2015.
Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., and Tossell, J. A.: Experimental measurement of boron isotope fractionation in seawater, Earth Planet. Sc. Lett., 248, 276–285, https://doi.org/10.1016/j.epsl.2006.05.034, 2006.
Klochko, K., Cody, G. D., Tossell, J. A., Dera, P., and Kaufman, A. J.: Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR, Geochim. Cosmochim. Ac., 73, 1890–1900, https://doi.org/10.1016/j.gca.2009.01.002, 2009.
Kroeker, K. J., Micheli, F., Gambi, M. C., and Martz, T. R.: Divergent ecosystem responses within a benthic marine community to ocean acidification, P. Natl. Acad. Sci. USA, 108, 14515–14520, https://doi.org/10.1073/pnas.1107789108, 2011.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., and Gattuso, J. P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Liu, Y.-W., Sutton, J. N., Ries, J. B., and Eagle, R. A.: Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification, Science Advances, 6, eaax1314, https://doi.org/10.1126/sciadv.aax1314, 2020.
Lorens, R. B. and Bender, M. L.: Physiological exclusion of magnesium from Mytilus edulis calcite, Nature, 269, 793–794, https://doi.org/10.1038/269793a0, 1977.
Mavromatis, V., Gautier, Q., Bosc, O., and Schott, J.: Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite, Geochim. Cosmochim. Ac., 114, 188–203, https://doi.org/10.1016/j.gca.2013.03.024, 2013.
McCulloch, M. T., D'Olivo, J. P., Falter, J., Holcomb, M., and Trotter, J. A.: Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation, Nat. Commun., 8, 15686, https://doi.org/10.1038/ncomms15686, 2017.
McCulloch, M. T., D’Olivo, J. P., Falter, J., Georgiou, L., Holcomb, M., Montagna, P., and Trotter, J. A.: Boron isotopic systematics in scleractinian corals and the role of pH up-regulation. Boron isotopes: The fifth element, edited by: Marschall, H. and Foster, G., 145–162, Advances in Isotope Geochemistry, Springer, Cham, https://doi.org/10.1007/978-3-319-64666-4_6, 2018.
McNally, E. M., Downey-Wall, A. M., Titmuss, F. D., Cortina, C., Lotterhos, K., and Ries, J. B.: Parental exposure of Eastern oysters (Crassostrea virginica) to elevated pCO2 mitigates its negative effects on early larval shell growth and morphology, Limnol. Oceanogr., 67, 1732–1745, https://doi.org/10.1002/lno.12162, 2022.
Michaelidis, B., Ouzounis, C., Paleras, A., and Pörtner, H. O.: Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis, Mar. Ecol. Prog. Ser., 293, 109–118, https://doi.org/10.3354/meps293109, 2005.
Mount, A. S., Wheeler, A. P., Paradkar, R. P., and Snider, D.: Hemocyte-Mediated Shell Mineralization in the Eastern Oyster, Science, 304, 297–300, https://doi.org/10.1126/science.1090506, 2004.
Nir, O., Vengosh, A., Harkness, J. S., Dwyer, G. S., and Lahav, O.: Direct measurement of the boron isotope fractionation factor: Reducing the uncertainty in reconstructing ocean paleo-pH, Earth Planet. Sc. Lett., 414, 1–5, https://doi.org/10.1016/j.epsl.2015.01.006, 2015.
Norrie, C. R., Dunphy, B. J., Ragg, N. L. C., and Lundquist, C. J.: Ocean acidification can interact with ontogeny to determine the trace element composition of bivalve shell, Limnol. Oceanogr. Lett., 3, 393–400, https://doi.org/10.1002/lol2.10090, 2018.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M., Yamanaka, Y., and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681–686, https://doi.org/10.1038/nature04095, 2005.
Peharda, M., Schöne, B. R., Black, B. A., and Correge, T.: Advances of sclerochronology research in the last decade, Palaeogeogr. Palaeocl., 570, 110371, https://doi.org/10.1016/j.palaeo.2021.110371, 2021.
Pierrot, D. E., Wallace, D. W. R., and Lewis, E.: MS Excel program developed for CO2 system calculations, Carbon dioxide information analysis center, https://doi.org/10.3334/cdiac/otg.co2sys_xls_cdiac105a, 2011.
Planchon, F., Poulain, C., Langlet, D., Paulet, Y.-M., and André, L.: Mg-isotopic fractionation in the manila clam (Ruditapes philippinarum): New insights into Mg incorporation pathway and calcification process of bivalves, Geochim. Cosmochim. Ac., 121, 374–397, https://doi.org/10.1016/j.gca.2013.07.002, 2013.
Raitzsch, M., Bijma, J., Bickert, T., Schulz, M., Holbourn, A., and Kučera, M.: Atmospheric carbon dioxide variations across the middle Miocene climate transition, Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, 2021.
Ramesh, K., Hu, M. Y., Thomsen, J., Bleich, M., and Melzner, F.: Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification, Nat. Commun., 8, 1709, https://doi.org/10.1038/s41467-017-01806-8, 2017.
Ramesh, K., Melzner, F., Griffith, A. W., Gobler, C. J., Rouger, C., Tasdemir, D., and Nehrke, G.: In vivo characterization of bivalve larval shells: a confocal Raman microscopy study, J. R. Soc. Interface, 15, 20170723, https://doi.org/10.1098/rsif.2017.0723, 2018.
Ries, J. B.: A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification, Geochim. Cosmochim. Ac., 75, 4053–4064, https://doi.org/10.1016/j.gca.2011.04.025, 2011.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131–1134, https://doi.org/10.1130/G30210A.1, 2009.
Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I., and Castillo, K. D.: Impacts of seawater saturation state ( ) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates, Geochim. Cosmochim. Ac., 192, 318–337, https://doi.org/10.1016/j.gca.2016.07.001, 2016.
Rollion-Bard, C., Blamart, D., Trebosc, J., Tricot, G., Mussi, A., and Cuif, J.-P.: Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS, Geochim. Cosmochim. Ac., 75, 1003–1012, https://doi.org/10.1016/j.gca.2010.11.023, 2011.
Sanyal, A., Bijma, J., Spero, H., and Lea, D. W.: Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy, Paleoceanography, 16, 515–519, https://doi.org/10.1029/2000PA000547, 2001.
Saulnier, S., Rollion-Bard, C., Vigier, N., and Chaussidon, M.: Mg isotope fractionation during calcite precipitation: An experimental study, Geochim. Cosmochim. Ac., 91, 75–91, https://doi.org/10.1016/j.gca.2012.05.024, 2012.
Schöne, B. R., Zhang, Z., Radermacher, P., Thébault, J., Jacob, D. E., Nunn, E. V., and Maurer, A. F.: and ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies, Palaeogeogr. Palaeocl., 302, 52–64, https://doi.org/10.1016/j.palaeo.2010.03.016, 2011.
Sillanpää, J. K., Ramesh, K., Melzner, F., Sundh, H., and Sundell, K.: Calcium mobilisation following shell damage in the Pacific oyster, Crassostrea gigas, Mar. Genom., 27, 75–83, https://doi.org/10.1016/j.margen.2016.03.001, 2016.
Sillanpää, J. K., Sundh, H., and Sundell, K. S.: Calcium transfer across the outer mantle epithelium in the Pacific oyster, Crassostrea gigas, P. R. Soc. B, 285, 20181676, https://doi.org/10.1098/rspb.2018.1676, 2018.
Sillanpää, J. K., Cardoso, J. C. dos R., Félix, R. C., Anjos, L., Power, D. M., and Sundell, K.: Dilution of seawater affects the Ca2+ transport in the outer mantle epithelium of Crassostrea gigas, Front. Physiol., 11, 496427, https://doi.org/10.3389/fphys.2020.00001, 2020.
Stemmer, K., Brey, T., Gutbrod, M. S., Beutler, M., Schalkhausser, B., and De Beer, D.: In situ measurements of pH, Ca2+, and DIC dynamics within the extrapallial fluid of the ocean quahog Arctica islandica, J. Shellfish Res., 38, 71–78, https://doi.org/10.2983/035.038.0107, 2019.
Stewart-Sinclair, P. J., Last, K. S., Payne, B. L., and Wilding, T. A.: A global assessment of the vulnerability of shellfish aquaculture to climate change and ocean acidification, Ecol. Evol., 10, 3518–3534, https://doi.org/10.1002/ece3.6149, 2020.
Sutton, J. N., Liu, Y.-W., Ries, J. B., Guillermic, M., Ponzevera, E., and Eagle, R. A.: δ11B as monitor of calcification site pH in divergent marine calcifying organisms, Biogeosciences, 15, 1447–1467, https://doi.org/10.5194/bg-15-1447-2018, 2018.
Thomsen, J., Casties, I., Pansch, C., Körtzinger, A., and Melzner, F.: Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments, Glob. Change Biol., 19, 1017–1027, https://doi.org/10.1111/gcb.12109, 2013.
Ulrich, R. N., Guillermic, M., Campbell, J., Hakim, A., Han, R., Singh, S., Stewart, J. D., Román-Palacios, C., Carroll, H. M., and De Corte, I.: Patterns of element incorporation in calcium carbonate biominerals recapitulate phylogeny for a diverse range of marine calcifiers, Front. Earth Sci., 9, 641760, https://doi.org/10.3389/feart.2021.641760, 2021.
Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R.: Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States, Geol. Soc. Am. Bull., 62, 399–416, https://doi.org/10.1130/0016-7606(1951)62[399:MOPATO]2.0.CO;2, 1951.
Vogl, J., Rosner, M., and Pritzkow, W.: Development and validation of a single collector SF-ICPMS procedure for the determination of boron isotope ratios in water and food samples, J. Anal. Atom. Spectrom., 26, 861–869, https://doi.org/10.1039/C0JA00220H, 2011.
Waldbusser, G. G., Voigt, E. P., Bergschneider, H., Green, M. A., and Newell, R. I. E.: Biocalcification in the Eastern Oyster (Crassostrea virginica) in Relation to Long-term Trends in Chesapeake Bay pH, Estuar. Coast., 34, 221–231, https://doi.org/10.1007/s12237-010-9307-0, 2011.
Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P., Brunner, E. L., Gray, M. W., Miller, C. A., and Gimenez, I.: Saturation-state sensitivity of marine bivalve larvae to ocean acidification, Nat. Clim. Change, 5, 273–280, https://doi.org/10.1038/nclimate2479, 2015.
Wanamaker Jr., A. D., Kreutz, K. J., Wilson, T., Borns Jr., H. W., Introne, D. S., and Feindel, S.: Experimentally determined and ratios in juvenile bivalve calcite for Mytilus edulis: implications for paleotemperature reconstructions, Geo-Mar. Lett., 28, 359–368, https://doi.org/10.1007/s00367-008-0112-8, 2008.
Wang, B.-S., You, C.-F., Huang, K.-F., Wu, S.-F., Aggarwal, S. K., Chung, C.-H., and Lin, P.-Y.: Direct separation of boron from Na-and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS, Talanta, 82, 1378–1384, https://doi.org/10.1016/j.talanta.2010.07.010, 2010.
Wang, X., Wang, M., Jia, Z., Qiu, L., Wang, L., Zhang, A., and Song, L.: A Carbonic Anhydrase Serves as an Important Acid-Base Regulator in Pacific Oyster Crassostrea gigas Exposed to Elevated CO2: Implication for Physiological Responses of mollusc to Ocean Acidification, Mar. Biotechnol., 19, 22–35, https://doi.org/10.1007/s10126-017-9734-z, 2017.
Weiner, S. and Dove, P. M.: An overview of biomineralization processes and the problem of the vital effect, Rev. Mineral. Geochem., 54, 1–29, https://doi.org/10.1007/s10126-017-9734-z, 2003.
Wilbur, K. M. and Saleuddin, A. S. M.: Shell formation. In the mollusca, Academic Press, 235–287, edited by: Saleuddin, A. S. M. and Wilbur, K. M., https://doi.org/10.1016/B978-0-12-751404-8.50014-1, 1983.
Wilbur, K. M. and Bernhardt, A. M.: Effects of amino acids, magnesium, and molluscan extrapallial fluid on crystallization of calcium carbonate: In vitro experiments, Biol. Bull., 166, 251–259, https://doi.org/10.2307/1541446, 1984.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes, edited by: Zeebe, R. E. and Wolf-Gladrow, D., Gulf Professional Publishing, 65, ISBN 0444509461, 2001.
Zhao, L., Milano, S., Walliser, E. O., and Schöne, B. R.: Bivalve shell formation in a naturally CO2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures, Chemosphere, 203, 132–138, https://doi.org/10.1016/j.chemosphere.2018.03.180, 2018.
Zhao, L., Milano, S., Tanaka, K., Liang, J., Deng, Y., Yang, F., Walliser, E. O., and Schöne, B. R.: Trace elemental alterations of bivalve shells following transgenerational exposure to ocean acidification: Implications for geographical traceability and environmental reconstruction, Sci. Total Environ., 705, 135501, https://doi.org/10.1016/j.scitotenv.2019.135501, 2020.
Zittier, Z. M., Bock, C., Lannig, G., and Pörtner, H. O.: Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis ( L.) from the North Sea, J. Exp. Mar. Biol. Ecol., 473, 16–25, https://doi.org/10.1016/j.jembe.2015.08.001, 2015.
Short summary
We studied the geochemistry of two bivalves: Crassostrea virginica and Arctica islandica. We examined the effects of three ocean acidification conditions (ambient, moderate, and high) on the geochemistry of C. virginica. We show that bivalves have high physiological control over the internal calcifying fluid, presenting a challenge in using elemental proxies for reconstructing seawater parameters.
We studied the geochemistry of two bivalves: Crassostrea virginica and Arctica islandica. We...
Altmetrics
Final-revised paper
Preprint