Dutkiewicz, S., Sokolov, A., Scott, J., and Stone, P.: A three-dimensional ocean-seaice-carbon cycle model and its coupling to a two dimensional atmospheric model: Uses in climate change studies, Report 122, MIT Joint Program on the Science and Policy of Global Change, 2005. a
Eisaman, M. D., Geilert, S., Renforth, P., Bastianini, L., Campbell, J., Dale, A. W., Foteinis, S., Grasse, P., Hawrot, O., Löscher, C. R., Rau, G. H., and Rønning, J.: Assessing the technical aspects of ocean-alkalinity-enhancement approaches, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 3,
https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023.
a
Geller, L. S., Elkins, J. W., Lobert, J. M., Clarke, A. D., Hurst, D. F., Butler, J. H., and Myers, R. C.: Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time, Geophys. Res. Lett., 24, 675–678,
https://doi.org/10.1029/97GL00523, 1997.
a
González, M. F. and Ilyina, T.: Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations, Geophys. Res. Lett., 43, 6493–6502,
https://doi.org/10.1002/2016gl068576, 2016.
a
He, J. and Tyka, M. D.: Limits and CO2 equilibration of near-coast alkalinity enhancement, Biogeosciences, 20, 27–43,
https://doi.org/10.5194/bg-20-27-2023, 2023.
a,
b,
c,
d,
e,
f,
g,
h,
i
GWP: AVII – Annex VII: Glossary, Climate Change 2021 – The Physical Science Basis, Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge University Press, 2215–2256,
https://doi.org/10.1017/9781009157896.022, 2023. a
Ho, D. T., Bopp, L., Palter, J. B., Long, M. C., Boyd, P. W., Neukermans, G., and Bach, L. T.: Monitoring, reporting, and verification for ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 12,
https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023.
a
Humphreys, M. P., Daniels, C. J., Wolf-Gladrow, D. A., Tyrrell, T., and Achterberg, E. P.: On the influence of marine biogeochemical processes over CO
2 exchange between the atmosphere and ocean, Mar. Chem., 199, 1–11,
https://doi.org/10.1016/j.marchem.2017.12.006, 2018.
a
Jeltsch-Thömmes, A., Tran, G., Lienert, S., Keller, D., Oschlies, A., and Joos, F.: Earth system responses to carbon dioxide removal as exemplified by ocean alkalinity enhancement: tradeoffs and lags, Environ. Res. Lett., 19, 054054,
https://doi.org/10.1088/1748-9326/ad4401, 2024.
a,
b,
c,
d
Jin, X., Gruber, N., Frenzel, H., Doney, S. C., and McWilliams, J. C.: The impact on atmospheric CO
2 of iron fertilization induced changes in the ocean's biological pump, Biogeosciences, 5, 385–406,
https://doi.org/10.5194/bg-5-385-2008, 2008.
a
Jones, D. C., Ito, T., Takano, Y., and Hsu, W.-C.: Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide, Global Biogeochem. Cy., 28, 1163–1178,
https://doi.org/10.1002/2014GB004813, 2014.
a
Keller, D. P., Feng, E. Y., and Oschlies, A.: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario, Nat. Commun., 5, 3304,
https://doi.org/10.1038/ncomms4304, 2014.
a
Köhler, P.: Anthropogenic CO
2 of High Emission Scenario Compensated After 3500 Years of Ocean Alkalinization With an Annually Constant Dissolution of 5 Pg of Olivine, Frontiers in Climate, 2, 575744,
https://doi.org/10.3389/fclim.2020.575744, 2020.
a
Köhler, P., Abrams, J. F., Völker, C., Hauck, J., and Wolf-Gladrow, D. A.: Geoengineering impact of open ocean dissolution of olivine on atmospheric CO
2, surface ocean pH and marine biology, Environ. Res. Lett., 8, 014009,
https://doi.org/10.1088/1748-9326/8/1/014009, 2013.
a,
b
Lenton, A., Matear, R. J., Keller, D. P., Scott, V., and Vaughan, N. E.: Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways, Earth Syst. Dynam., 9, 339–357,
https://doi.org/10.5194/esd-9-339-2018, 2018.
a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997.
a
McWilliams, J. C., Gula, J., Molemaker, M. J., Renault, L., and Shchepetkin, A. F.: Filament Frontogenesis by Boundary Layer Turbulence, J. Phys. Oceanogr., 45, 1988–2005,
https://doi.org/10.1175/jpo-d-14-0211.1, 2015.
a
Munk, W., Armi, L., Fischer, K., and Zachariasen, F.: Spirals on the sea, P. Roy. Soc. Lond. A, 456, 1217–1280,
https://doi.org/10.1098/rspa.2000.0560, 2000.
a
National Academies Press: A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration, National Academies Press,
https://doi.org/10.17226/26278, 2022.
a
Oschlies, A.: Impact of atmospheric and terrestrial CO
2 feedbacks on fertilization-induced marine carbon uptake, Biogeosciences, 6, 1603–1613,
https://doi.org/10.5194/bg-6-1603-2009, 2009.
a,
b,
c,
d,
e
Schwinger, J., Bourgeois, T., and Rickels, W.: On the emission-path dependency of the efficiency of ocean alkalinity enhancement, Environ. Res. Lett., 19, 074067,
https://doi.org/10.1088/1748-9326/ad5a27, 2024.
a,
b,
c,
d
Stocker, T. F., Plattner, G.-K., and Dahe, Q.: IPCC Climate Change 2013: The Physical Science Basis – Findings and Lessons Learned,
https://api.semanticscholar.org/CorpusID:220600282 (last access: 11 July 2024), 2014.
a,
b
Suselj, K., Carroll, D., Menemenlis, D., Zhang, H., Beatty, N., Savage, A., and Whitt, D.: Quantifying Regional Efficiency of Marine Carbon1 Dioxide Removal (mCDR) via Alkalinity Enhancement2 using the ECCO-Darwin Ocean Biogeochemistry State3 Estimate and an Idealized Vertical 1-D Model, Global Biogeochem. Cy., 123, 123–123, 2024.
a,
b,
c,
d,
e,
f,
g
Tyka, M. D.: Efficiency metrics for ocean alkalinity enhancements under responsive and prescribed atmospheric pCO
2 conditions, Zenodo [code, data set],
https://doi.org/10.5281/zenodo.14172129, 2024.
a
Tyka, M. D., Van Arsdale, C., and Platt, J. C.: CO
2 capture by pumping surface acidity to the deep ocean, Energy Environ. Sci., 15, 786–798,
https://doi.org/10.1039/D1EE01532J, 2022.
a,
b,
c,
d
Wang, H., Pilcher, D. J., Kearney, K. A., Cross, J. N., Shugart, O. M., Eisaman, M. D., and Carter, B. R.: Simulated Impact of Ocean Alkalinity Enhancement on Atmospheric CO
2 Removal in the Bering Sea, Earth's Future, 11, e2022EF002816,
https://doi.org/10.1029/2022EF002816, 2023.
a,
b,
c
Yamamoto, K., DeVries, T., and Siegel, D. A.: Metrics for quantifying the efficiency of atmospheric CO
2 reduction by marine carbon dioxide removal (mCDR), Environ. Res. Lett., 19, 104053,
https://doi.org/10.1088/1748-9326/ad7477, 2024.
a,
b,
c
Zarakas, C., Badgley, G., and Chay, F.: Comparing carbon removal at different timescales,
https://carbonplan.org/research/cdr-timescale-accounting (last access: 11 July 2024), 2024.
a,
b
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO
2 in seawater: Equilibrium, kinetics, isotopes, Volume 65, Elsevier Oceanography Series, Elsevier Science, London, England, ISBN 9780444509468, 2001.
a,
b,
c
Zhou, M., Tyka, M. D., Ho, D. T., Yankovsky, E., Bachman, S., Nicholas, T., Karspeck, A. R., and Long, M. C.: Mapping the global variation in the efficiency of ocean alkalinity enhancement for carbon dioxide removal, Nat. Clim. Change, 123, 123–123, 2024.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l