The magnitude of the soil sink is a major uncertainty of the atmospheric molecular hydrogen (H2) budget. This manuscript provides critical data for understanding this process, though a yearlong set of H2 flux measurements at a deciduous woodland and a managed grassland in Scotland. Net fluxes are related to soil temperature, moisture and type, major factors that regulate the biological uptake of H2. While soil moisture is the dominant control on H2 fluxes in the grassland site, the variability of the larger magnitude fluxes at the woodland site illustrates that more work needs to be done to identify local controllers on H2 soil uptake.
The magnitude of the soil sink is a major uncertainty of the atmospheric molecular hydrogen (H2)...
We measured soil hydrogen (H2) fluxes from two field sites, a managed grassland and a planted deciduous woodland, with flux measurements of H2 covering full seasonal cycles. We estimate annual H2 uptake of −3.1 ± 0.1 and −12.0 ± 0.4 kg H2 ha−1 yr−1 for the grassland and woodland sites, respectively. Soil moisture was found to be the primary driver of H2 uptake, with the silt/clay content of the soils providing a physical barrier which limited H2 uptake.
We measured soil hydrogen (H2) fluxes from two field sites, a managed grassland and a planted...