Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-3821-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3821-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lake anoxia, primary production, and algal community shifts in response to rapid climate changes during the Late Glacial
Oeschger Center for Climate Change Research, Universität Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Noé R. M. M. Schmidhauser
Oeschger Center for Climate Change Research, Universität Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Martin Grosjean
Oeschger Center for Climate Change Research, Universität Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Andrea Lami
Water Research Institute (CRN-IRSA), Unit Verbania, Viale Tonolli 50, 28922 Verbania, Italy
Petra Boltshauser-Kaltenrieder
Oeschger Center for Climate Change Research, Universität Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Institute of Plant Sciences, Universität Bern, Altenbergrain 21, 2013 Bern, Switzerland
Jacqueline F. N. van Leeuwen
Oeschger Center for Climate Change Research, Universität Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Institute of Plant Sciences, Universität Bern, Altenbergrain 21, 2013 Bern, Switzerland
Hendrik Vogel
Oeschger Center for Climate Change Research, Universität Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Institute of Geology, Universität Bern, Baltzerstrasse 1, 3012 Bern, Switzerland
Petra Zahajská
Oeschger Center for Climate Change Research, Universität Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Related authors
No articles found.
Jasmine Sofia Berg, Paula Catalina Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark Alexander Lever
EGUsphere, https://doi.org/10.5194/egusphere-2024-4158, https://doi.org/10.5194/egusphere-2024-4158, 2025
Short summary
Short summary
Our research explores microbial sulfur cycling in the 13,500-year sediment record of a sulfate-rich alpine lake. We present evidence for active sulfur cycling across sediment layers, even in sulfate-depleted zones, driven by uncultivated microorganisms. In addition, rapid organic matter sulfurization could contribute to its preservation. These findings enhance our understanding of the role of sulfur in organic matter preservation and deep biosphere processes.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Paul D. Zander, Stefanie B. Wirth, Adrian Gilli, Sandro Peduzzi, and Martin Grosjean
Biogeosciences, 20, 2221–2235, https://doi.org/10.5194/bg-20-2221-2023, https://doi.org/10.5194/bg-20-2221-2023, 2023
Short summary
Short summary
This study shows, for the first time, that hyperspectral imaging can detect bacteriochlorophyll pigments produced by green sulfur bacteria in sediment cores. We tested our method on cores from Lake Cadagno, Switzerland, and were able to reconstruct high-resolution variations in the abundance of green and purple sulfur bacteria over the past 12 700 years. Climate conditions, flood events, and land use had major impacts on the lake’s biogeochemical conditions over short and long timescales.
Paul D. Zander, Maurycy Żarczyński, Wojciech Tylmann, Shauna-kay Rainford, and Martin Grosjean
Clim. Past, 17, 2055–2071, https://doi.org/10.5194/cp-17-2055-2021, https://doi.org/10.5194/cp-17-2055-2021, 2021
Short summary
Short summary
High-resolution geochemical imaging techniques provide new opportunities to investigate the biogeochemical composition of sediments at micrometer scale. Here, we compare biogeochemical data from biochemical varves with meteorological data to understand how seasonal meteorological variations are recorded in varve composition. We find that these scanning techniques help to clarify climate–proxy relationships in biochemical varves and show great potential for high-resolution climate reconstruction.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Stamatina Makri, Andrea Lami, Luyao Tu, Wojciech Tylmann, Hendrik Vogel, and Martin Grosjean
Biogeosciences, 18, 1839–1856, https://doi.org/10.5194/bg-18-1839-2021, https://doi.org/10.5194/bg-18-1839-2021, 2021
Short summary
Short summary
Anoxia in lakes is a major growing concern. In this study we applied a multiproxy approach combining high-resolution hyperspectral imaging (HSI) pigment data with specific HPLC data to examine the Holocene evolution and main drivers of lake anoxia and trophic state changes. We find that when human impact was low, these changes were driven by climate and natural lake-catchment evolution. In the last 500 years, increasing human impact has promoted lake eutrophication and permanent anoxia.
Cited articles
Aitchison, J.: The statistical analysis of compositional data, J. Roy. Stat. Soc. B Met., 44, 139–160, 1982.
Albrecht, M., Ruther, A., and Sandmann, G.: Purification and biochemical characterization of a hydroxyneurosporene desaturase involved in the biosynthetic pathway of the carotenoid spheroidene in Rhodobacter sphaeroides, J. Bacteriol., 179, 7462–7467, https://doi.org/10.1128/jb.179.23.7462-7467, 1997.
Ammann, B., van Leeuwen, J. F., van der Knaap, W. O., Lischke, H., Heiri, O., and Tinner, W.: Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland), Palaeogeogr. Palaeocl., 391, 40–59, https://doi.org/10.1016/j.palaeo.2012.07.010, 2013.
Bakke, J., Lie, Ø., Heegaard, E., Dokken, T., Haug, G. H., Birks, H. H., Dulski, P., and Nilsen, T.: Rapid oceanic and atmospheric changes during the Younger Dryas cold period, Nat. Geosci., 2, 202–205, https://doi.org/10.1038/ngeo439, 2009.
Bertrand, S., Tjallingii, R., Kylander, M. E., Wilhelm, B., Roberts, S. J., Arnaud, F., Brown, E., and Bindler, R.: Inorganic geochemistry of lake sediments: A review of analytical techniques and guidelines for data interpretation, Earth-Sci. Rev., 249, 104639, https://doi.org/10.1016/j.earscirev.2023.104639, 2023.
Bianchi, T. S. and Canuel, E. A.: Photosynthetic Pigments: Chlorophylls, Carotenoids, and Phycobilins, in: Chemical Biomarkers in Aquatic Ecosystems, edited by: Bianchi, T. S. and Canuel, E. A., Princeton University Press, 221–247, https://doi.org/10.1515/9781400839100, 2011.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and deep Atlantic meridional overturning circulation during the last glacial cycle, Nature, 517, 73–76, https://doi.org/10.1038/ngeo439, 2015.
Bolland, A., Rey, F., Gobet, E., Tinner, W., and Heiri, O.: Summer temperature development 18,000–14,000 cal. BP recorded by a new chironomid record from Burgäschisee, Swiss Plateau, Quaternary Sci. Rev., 243, 106484, https://doi.org/10.1016/j.quascirev.2020.106484, 2020.
Bolsenga, S. J., Herdendorf, C. E., and Norton, D. C.: Spectral transmittance of lake ice from 400–850 nm, Hydrobiologia, 218, 15–25, https://doi.org/10.1007/BF00006414, 1991.
Bos, I. J., Busschers, F. S., and Hoek, W. Z.: Organic-facies determination: a key for understanding facies distribution in the basal peat layer of the Holocene Rhine-Meuse delta, The Netherlands, Sedimentology, 59, 676–703, https://doi.org/10.1111/j.1365-3091.2011.01271.x, 2012.
Boussiba, S. and Vonshak, A.: Astaxanthin accumulation in the green alga Haematococcus pluvialis, Plant Cell Physiol., 32, 1077–1082, https://doi.org/10.1093/oxfordjournals.pcp.a078171, 1991.
Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., and Negendank, J. F.: An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period, Nat. Geosci., 1, 520–523, https://doi.org/10.1038/ngeo263, 2008.
Brodie, C. R., Casford, J. S., Lloyd, J. M., Leng, M. J., Heaton, T. H., Kendrick, C. P., and Yongqiang, Z.: Evidence for bias in , δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods, Quaternary Sci. Rev., 30, 3076–3087, https://doi.org/10.1016/j.quascirev.2011.07.003, 2011.
Buchaca, T. and Catalan, J.: On the contribution of phytoplankton and benthic biofilms to the sediment record of marker pigments in high mountain lakes, J. Paleolimnol., 40, 369–383, https://doi.org/10.1007/s10933-007-9167-1, 2008.
Bush, T., Diao, M., Allen, R. J., Sinnige, R., Muyzer, G., and Huisman, J.: Oxic-anoxic regime shifts mediated by feedbacks between biogeochemical processes and microbial community dynamics, Nat. Commun., 8, 789, https://doi.org/10.1038/s41467-017-00912-x, 2017.
Butz, C., Grosjean, M., Fischer, D., Wunderle, S., Tylmann, W., and Rein, B.: Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments, J. Appl. Remote Sens., 9, 096031, https://doi.org/10.1117/1.JRS.9.096031, 2015.
Carey, C. C., Hanson, P. C., Thomas, R. Q., Gerling, A. B., Hounshell, A. G., Lewis, A. S., Lofton, M. E., McClure, R. P., Wander, H. L., Woelmer, W. M., Niederlehner, B. R., and Schreiber M. E.: Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus sink in freshwaters, Glob. Change Biol., 28, 4861–4881, https://doi.org/10.1002/essoar.10508415.3, 2022.
Comeau, A. M., Harding, T., Galand, P. E., Vincent, W. F., and Lovejoy, C.: Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters, Sci. Rep., 2, 604, https://doi.org/10.1038/srep00604, 2012.
Eicher, U.: Die spätglazialen sowie die frühpostglazialen Klimaverhältnisse im Bereiche der Alpen : Sauerstoffisotopenkurven kalkhaltiger Sedimente, Geogr. Helv., 42, 99–104, https://doi.org/10.5194/gh-42-99-1987, 1987.
Eicher, U.: Stable oxygen and carbon isotope analyses on lacustrine carbonate sediments, in: Problems of Stable Isotopes in Tree-rings, Lake Sediments and Peat-bogs as Climatic Evidence for the Holocene, Paläoklimaforschung, G. Fischer, Stuttgart, 29–38, https://doi.org/10.1130/G46593.1, 1995.
Fabbri, S. C., Buechi, M. W., Horstmeyer, H., Hilbe, M., Hübscher, C., Schmelzbach, C., Weiss, B., and Anselmetti, F. S.: A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier, Quaternary Sci. Rev., 187, 62–79, https://doi.org/10.1016/j.quascirev.2018.03.010, 2018.
Foley, B., Jones, I. D., Maberly, S. C., and Rippey, B.: Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication, Freshwater Biol., 57, 278–289, https://doi.org/10.1111/j.1365-2427.2011.02662.x, 2012.
Friedrich, J., Janssen, F., Aleynik, D., Bange, H. W., Boltacheva, N., Çagatay, M. N., Dale, A. W., Etiope, G., Erdem, Z., Geraga, M., Gilli, A., Gomoiu, M. T., Hall, P. O. J., Hansson, D., He, Y., Holtappels, M., Kirf, M. K., Kononets, M., Konovalov, S., Lichtschlag, A., Livingstone, D. M., Marinaro, G., Mazlumyan, S., Naeher, S., North, R. P., Papatheodorou, G., Pfannkuche, O., Prien, R., Rehder, G., Schubert, C. J., Soltwedel, T., Sommer, S., Stahl, H., Stanev, E. V., Teaca, A., Tengberg, A., Waldmann, C., Wehrli, B., and Wenzhöfer, F.: Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon, Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, 2014.
Gächter, R., Meyer, J. S., and Mares, A.: Contribution of bacteria to release and fixation of phosphorus in lake sediments, Limnol. Oceanogr., 33, 1542–1558, https://doi.org/10.4319/lo.1988.33.6_part_2.1542, 1988.
Gilarranz, L. J., Narwani, A., Odermatt, D., Siber, R., and Dakos, V.: Regime shifts, trends, and variability of lake productivity at a global scale, P. Natl. Acad. Sci. USA, 119, e2116413119, https://doi.org/10.1073/pnas.2116413119, 2022.
Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13–35, https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
Guthruf, K, Maurer, V., Ryser, R., Zeh, M., and Zweifel, N.: Amsoldingersee, in Zustand der Kleinseen, Awa Fakten, Bau-, Verkehrs- und Energiedirektion des Kantons Bern, 35–42, 2015.
Heiri, O., Ilyashuk, B., Millet, L., Samartin, S., and Lotter, A. F.: Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region, Holocene, 25, 137–149, https://doi.org/10.1177/0959683614556382, 2015.
Hoek, W. Z., Lammertsma, E. I., Bohncke, S. J., Bos, J. A., Bunnik, F., Kasse, C., Schokker, J., and Westerhoff, W.: Lateglacial and early Holocene vegetation development and fluvial system changes in the northern Meuse valley, the Netherlands: a review of palynological data, Neth. J. Geosci., 96, 93–114, https://doi.org/10.1017/njg.2017.4, 2017.
Hupfer, M. and Lewandowski, J.: Oxygen controls the phosphorus release from lake sediments–a long-lasting paradigm in limnology, Int. Rev. Hydrobiol., 93, 415–432, https://doi.org/10.1002/iroh.200711054, 2008.
Ivy-Ochs, S., Kerschner, H., Kubik, P. W., and Schlüchter, C.: Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial, J. Quaternary Sci., 21, 115–130, https://doi.org/10.1002/jqs.955, 2006.
Jane, S. F., Hansen, G. J. A., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., Pilla, R. M., Stetler, J. T., Williamson, C. E., Woolway, R. I., Arvola, L., Chandra, S., DeGasperi, C. L., Diemer, L., Dunalska, J., Erina, O., Flaim, G., Grossart, H.-P., Hambright, K. D., Hein, C., Hejzlar, J., Janus, L. L., Jenny, J.-P., Jones, J. R., Knoll, L. B., Leoni, B., Mackay, E., Matsuzaki, S.-I. S., McBride, C., Müller-Navarra, D. C., Paterson, A. M., Pierson, D., Rogora, M., Rusak, J. A., Sadro, S., Saulnier-Talbot, E., Schmid, M., Sommaruga, R., Thiery, W., Verburg, P., Weathers, K. C., Weyhenmeyer, G. A., Yokota, K., and Rose, K. C.: Widespread deoxygenation of temperate lakes, Nature, 594, 66–70, https://doi.org/10.1038/s41586-021-03550-y, 2021.
Jansen, J., MacIntyre, S., Barrett, D. C., Chin, Y.-P., Cortés, A., Forrest, A. L., Hrycik, A. R., Martin, R., McMeans, B. C., Rautio, M., and Schwefel, R.: Winter limnology: how do hydrodynamics and biogeochemistry shape ecosystems under ice?, J. Geophys. Res.-Biogeo., 126, e2020JG006237, https://doi.org/10.5194/egusphere-egu21-1693, 2021.
Jansen, J., Simpson, G. L., Weyhenmeyer, G. A., Härkönen, L. H., Paterson, A. M., del Giorgio, P. A., and Prairie, Y. T.: Climate-driven deoxygenation of northern lakes, Nat. Clim. Change, 14, 832–838, https://doi.org/10.1038/s41558-024-02058-3, 2024.
Jeffrey, S. T. and Humphrey, G. F.: New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pfl., 167, 191–194, https://doi.org/10.1016/s0015-3796(17)30778-3, 1975.
Jenny, J.-P., Francus, P., Normandeau, A., Lapointe, F., Perga, M.-E., Ojala, A., Schimmelmann, A., Zolitschka, B.: Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure, Glob. Change Biol., 22, 1481–1489, https://doi.org/10.1111/gcb.13193, 2016.
Jeppesen, E., Moss, B., Bennion, H., Carvalho, L., DeMeester, L., Feuchtmayr, H., Friberg, N., Gessner, M. O., Hefting, M., Lauridsen, T. L., Liboriussen, L., Malmquist, H. J., May, L., Meerhoff, M., Olafsson, J. S., Soons, M. B., and Verhoeven, J. T. A.: Interaction of Climate Change and Eutrophication, in: Climate Change Impacts on Freshwater Ecosystems, edited by: Kernan, M., Battarbee, R. W., and Moss, B., Wiley, 119–151, https://doi.org/10.1002/9781444327397.ch6, 2010.
Karr, E. A., Sattley, W. M., Jung, D. O., Madigan, M. T., and Achenbach, L. A.: Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake, Appl. Environ. Microb., 69, 4910–4914, https://doi.org/10.1128/aem.69.8.4910-4914.2003, 2003.
Keskin, T., Abo-Hashesh, M., and Hallenbeck, P. C.: Photofermentative hydrogen production from wastes, Bioresource Technol., 102, 8557–8568, https://doi.org/10.1016/j.biortech.2011.04.004, 2011.
Klanten, Y., Couture, R.-M., Christoffersen, K. S., Vincent, W. F., and Antoniades, D.: Oxygen depletion in Arctic lakes: circumpolar trends, biogeochemical processes, and implications of climate change, Global Biogeochem. Cy., 37, e2022GB007616, https://doi.org/10.1029/2022gb007616, 2023.
Koffman, B. G., Yoder, M. F., Methven, T., Hanschka, L., Sears, H. B., Saylor, P. L., and Wallace, K. L.: Glacial dust surpasses both volcanic ash and desert dust in its iron fertilization potential, Global Biogeochem. Cy., 35, e2020GB006821, https://doi.org/10.1029/2020gb006821, 2021.
Kramer, S. J. and Siegel, D. A.: How can phytoplankton pigments be best used to characterize surface ocean phytoplankton groups for ocean color remote sensing algorithms?, J. Geophys. Res.-Oceans, 124, 7557–7574, https://doi.org/10.1029/2019jc015604, 2019.
Lami, A., Guilizzoni, P., and Marchetto, A.: High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: The MOLAR project, J. Limnol., 59, 15–28, https://doi.org/10.4081/jlimnol.2000.s1.15, 2000.
Lami, A., Musazzi, S., Marchetto, A., Buchaca, T., Kernan, M., Jeppesen, E., and Guilizzoni, P.: Sedimentary pigments in 308 alpine lakes and their relation to environmental gradients, Adv. Limnol., 62, 247–268, https://doi.org/10.1127/advlim/62/2009/247, 2009.
Leavitt, P. R. and Hodgson, D. A.: Sedimentary pigments, in: Tracking environmental change using lake sediments: Terrestrial, algal, and siliceous indicators, edited by: Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S., and Alverson, K., Springer, Dordrecht, the Netherlands, 295–325, https://doi.org/10.1007/0-306-47668-1_15, 2001.
Legendre, P.: Numerical ecology, Elsevier, https://doi.org/10.1016/b978-0-12-409548-9.10595-0, 2012.
Lévesque, B., Gervais, M. C., Chevalier, P., Gauvin, D., Anassour-Laouan-Sidi, E., Gingras, S., Fortin, N., Brisson, B., Greer, C., and Bird, D.: Prospective study of acute health effects in relation to exposure to cyanobacteria, Sci. Total Environ., 466, 397–403, https://doi.org/10.1016/j.scitotenv.2013.07.045, 2014.
Lotter, A. and Boucherle, M. M.: A late-glacial and post-glacial history of Amsoldingersee and vicinity, Switzerland, Schweiz. Z. Hydrol., 46, 192–209, https://doi.org/10.1007/bf02538061, 1984.
Lotter, A. F., Eicher, U., Siegenthaler, U., and Birks, H. J.: Late-glacial climatic oscillations as recorded in Swiss lake sediments, J. Quaternary Sci., 7, 187–204, https://doi.org/10.1002/jqs.3390070302, 1992.
Lotter, A. F., Birks, H. J., Eicher, U., Hofmann, W., Schwander, J., and Wick, L.: Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages, Palaeogeogr. Palaeocl., 159, 349–361,10.1016/s0031-0182(00)00093-6, 2000.
Lotter, A. F., Heiri, O., Brooks, S., van Leeuwen, J. F., Eicher, U., and Ammann, B.: Rapid summer temperature changes during Termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland), Quaternary Sci. Rev., 36, 103–113, https://doi.org/10.1016/j.quascirev.2010.06.022, 2012.
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R. L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems, Nat. Commun., 6, 6344, https://doi.org/10.1038/ncomms7344, 2015.
Lukkari, K., Hartikainen, H., and Leivuori, M.: Fractionation of sediment phosphorus revisited. I: Fractionation steps and their biogeochemical basis, Limnol. Oceanogr.-Meth., 5, 433–444, https://doi.org/10.4319/lom.2007.5.433, 2007.
Makri, S., Rey, F., Gobet, E., Gilli, A., Tinner, W., and Grosjean, M.: Early human impact in a 15,000-year high-resolution hyperspectral imaging record of paleoproduction and anoxia from a varved lake in Switzerland, Quaternary Sci. Rev., 239, 106335, https://doi.org/10.1016/j.quascirev.2020.106335, 2020.
Meerhoff, M., Audet, J., Davidson, T. A., De Meester, L., Hilt, S., Kosten, S., Liu, Z., Mazzeo, N., Paerl, H., Scheffer, M., and Jeppesen E.: Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back, Inland Waters, 12, 187–204, https://doi.org/10.1080/20442041.2022.2029317, 2022.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213–250, https://doi.org/10.1016/s0146-6380(97)00049-1, 1997.
Moore, P. D., Webb, J. A., and Collison, M. E. (Eds.): Pollen analysis, Blackwell Scientific Publications, Oxford, vii+266 pp., ISBN 9780632021765, 1991.
Mottl, O., Grytnes, J.-A., Seddon, A. W., Steinbauer, M. J., Bhatta, K. P., Felde, V. A., Flantua, S. G. A., and Birks, H. J. B.: Rate-of-change analysis in paleoecology revisited: A new approach, Rev. Palaeobot. Palyno., 293, 104483, https://doi.org/10.1016/j.revpalbo.2021.104483, 2021.
Myrbo, A., Morrison, A., and McEwan, R.: Tool for microscopic identification (TMI), LacCore, http://tmi.laccore.umn.edu (last access: 31 July 2025), 2011.
North Greenland Ice Core Project members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Nürnberg, G. K.: Prediction of annual and seasonal phosphorus concentrations in stratified and polymictic lakes, Limnol. Oceanogr., 43, 1544–1552, https://doi.org/10.4319/lo.1998.43.7.1544, 1998.
Orosa, M., Valero, J. F., Herrero, C., and Abalde, J.: Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions, Biotechnology Letters, 23, 1079–1085, https://doi.org/10.1023/A:1010510508384, 2001.
Pigati, J. S. and Springer, K. B.: Hydroclimate response of spring ecosystems to a two-stage Younger Dryas event in western North America, Sci. Rep., 12, 7323, https://doi.org/10.1038/s41598-022-11377-4, 2022.
Podani, J. and Miklós, I.: Resemblance coefficients and the horseshoe effect in principal coordinates analysis, Ecology, 83, 3331–3343, 2002.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Plicht, J. van der, Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Reinig, F., Wacker, L., Jöris, O., Oppenheimer, C., Guidobaldi, G., Nievergelt, D., Adolphi, F., Cherubini, P., Engels, S., Esper, J., Land, A., Lane, C., Pfanz, H., Remmele, S., Sigl, M., Sookdeo, A., and Büntgen, U.: Precise date for the Laacher See eruption synchronizes the Younger Dryas, Nature, 595, 66–69, https://doi.org/10.1038/s41586-021-03608-x, 2021.
Reuss, N. S., Anderson, N. J., Fritz, S. C., and Simpson, G. L.: Responses of microbial phototrophs to late-Holocene environmental forcing of lakes in south-west Greenland, Freshwater Biol., 58, 690–704, https://doi.org/10.1111/fwb.12073, 2013.
Rey, F., Gobet, E., Schwörer, C., Hafner, A., Szidat, S., and Tinner, W.: Climate impacts on vegetation and fire dynamics since the last deglaciation at Moossee (Switzerland), Clim. Past, 16, 1347–1367, https://doi.org/10.5194/cp-16-1347-2020, 2020.
Rey, F., Gobet, E., van Leeuwen, J. F., Gilli, A., van Raden, U. J., Hafner, A., Wey, O., Rhiner, J., Schmocker, D., Zünd, J., and Tinner, W.: Vegetational and agricultural dynamics at Burgäschisee (Swiss Plateau) recorded for 18,700 years by multi-proxy evidence from partly varved sediments, Veg. Hist. Archaeobot., 26, 571–586, https://doi.org/10.1007/s00334-017-0635-x, 2017.
Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., Bloh, W. von, Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., Petri, S., Porkka, M., Rahmstorf, S., Schaphoff, S., Thonicke, K., Tobian, A., Virkki, V., Wang-Erlandsson, L., Weber, L., and Rockström, J.: Earth beyond six of nine planetary boundaries, Sci. Adv., 9, eadh2458, https://doi.org/10.1126/sciadv.adh2458, 2023.
Rogozin, D. Y., Zykov, V. V., Chernetsky, M. Y., Degermendzhy, A. G., and Gulati, R. D.: Effect of winter conditions on distributions of anoxic phototrophic bacteria in two meromictic lakes in Siberia, Russia, Aquat. Ecol., 43, 661–672, https://doi.org/10.1007/s10452-009-9270-7, 2009.
Romero-Viana, L., Keely, B. J., Camacho, A., Vicente, E., and Miracle, M. R.: Primary production in Lake La Cruz (Spain) over the last four centuries: reconstruction based on sedimentary signal of photosynthetic pigments, J. Paleolimnol., 43, 771–786, https://doi.org/10.1007/s10933-009-9367-y, 2010.
Rousseau, D.-D., Chauvel, C., Sima, A., Hatté, C., Lagroix, F., Antoine, P., Balkanski, Y., Fuchs, M., Mellet, C., Kageyama, M., Ramstein, G., Lang, A.: European glacial dust deposits: Geochemical constraints on atmospheric dust cycle modeling, Geophys. Res. Lett., 41, 7666–7674, https://doi.org/10.1002/2014gl061382, 2014.
Rousseau, D.-D., Antoine, P., and Sun, Y.: How dusty was the last glacial maximum over Europe?, Quaternary Sci. Rev., 254, 106775, https://doi.org/10.1016/j.quascirev.2020.106775, 2021.
Salk, K. R., Venkiteswaran, J. J., Couture, R.-M., Higgins, S. N., Paterson, M. J., and Schiff, S. L.: Warming combined with experimental eutrophication intensifies lake phytoplankton blooms, Limnol. Oceanogr., 67, 147–158, https://doi.org/10.1002/lno.11982, 2022.
Schaller, T. and Wehrli, B.: Geochemical-focusing of manganese in lake sediments—an indicator of deep-water oxygen conditions, Aquat. Geochem., 2, 359–378, https://doi.org/10.1007/bf00115977, 1996.
Schlüter, L., Lauridsen, T. L., Krogh, G., and Jørgensen, T.: Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy, Freshwater Biol., 51, 1474–1485, https://doi.org/10.1111/j.1365-2427.2006.01582.x, 2006.
Schmidt, R., Psenner, R., Müller, J., Indinger, P., and Kamenik, C.: Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria): validation of a conceptual model by multi proxy studies, J. Limnol., 61, 49–60,10.4081/jlimnol.2002.49, 2002.
Scholtysik, G., Goldhammer, T., Arz, H. W., Moros, M., Littke, R., and Hupfer, M.: Geochemical focusing and burial of sedimentary iron, manganese, and phosphorus during lake eutrophication, Limnol. Oceanogr., 67, 768–783, https://doi.org/10.1002/lno.12019, 2022.
Schouten, S. J.: multiproxyplotter, GitHub repository [code], https://github.com/SJSchouten/multiproxyplotter, 2024a.
Schouten, S. J.: Pigment_Heatmaps, GitHub repository [code], https://github.com/SJSchouten/Pigment_Heatmaps, 2024b.
Schouten, S. J.: RDA, GitHub repository [code], https://github.com/SJSchouten/RDA, 2025a.
Schouten, S. J.: RoC, GitHub repository [code], https://github.com/SJSchouten/RoC, 2025b.
Schouten, S. J., Zahajská, P., Schmidhauser, N. R. M. M., Lami, A., van Leeuwen, J. F. N., Boltshauser-Kaltenrieder, P., Vogel, H., and Grosjean, M.: Pigments, sequential extraction, and CNS measurements of Amsoldingersee sediment core, Switzerland, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.975327, 2025a.
Schouten, S. J., Zahajská, P., Schmidhauser, N. R. M. M., Lami, A., van Leeuwen, J. F. N., Boltshauser-Kaltenrieder, P., Vogel, H., and Grosjean, M.: XRF measurements of Amsoldingersee sediment core, Switzerland, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.975263, 2025b.
Schouten, S. J., Zahajská, P., Schmidhauser, N. R. M. M., Lami, A., van Leeuwen, J. F. N., Boltshauser-Kaltenrieder, P., Vogel, H., and Grosjean, M.: Hyperspectral measurements of Amsoldingersee sediment core, Switzerland, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.975261, 2025c.
Schütte, U. M., Cadieux, S. B., Hemmerich, C., Pratt, L. M., and White, J. R.: Unanticipated geochemical and microbial community structure under seasonal ice cover in a dilute, dimictic Arctic lake, Front. Microbiol., 7, 1035, https://doi.org/10.3389/fmicb.2016.01035, 2016.
Shotyk, W., Weiss, D., Kramers, J. D., Frei, R., Cheburkin, A. K., Gloor, M., and Reese, S.: Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP, Geochim. Cosmochim. Ac., 65, 2337–2360, https://doi.org/10.1016/s0016-7037(01)00586-5, 2001.
Stomp, M., Huisman, J., Stal, L. J., and Matthijs, H. C.: Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule, ISME J., 1, 271–282, https://doi.org/10.1038/ismej.2007.59, 2007.
Szidat, S., Salazar, G. A., Vogel, E., Battaglia, M., Wacker, L., Synal, H.-A., and Türler, A.: 14C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA), Radiocarbon, 56, 561–566, https://doi.org/10.1017/s0033822200049602, 2014.
Thiel, T.: Nitrogen fixation in heterocyst-forming cyanobacteria, in: Genetics and regulation of nitrogen fixation in free-living bacteria, edited by: Klipp, W., Masepohl, B., Gallon, J. R., and Newton, W. E., Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/1-4020-2179-8, 73–110, 2004.
Tu, L., Gilli, A., Lotter, A. F., Vogel, H., Moyle, M., Boyle, J. F., and Grosjean, M.: The nexus among long-term changes in lake primary productivity, deep-water anoxia, and internal phosphorus loading, explored through analysis of a 15,000-year varved sediment record, Global Planet. Change, 207, 103643, https://doi.org/10.1016/j.gloplacha.2021.103643, 2021.
Újvári, G., Stevens, T., Svensson, A., Klötzli, U. S., Manning, C., Németh, T., Kovács, J., Sweeney, M. R., Gocke, M., Wiesenberg, G. L. B., Markovic, S. B., and Zech, M.: Two possible source regions for central Greenland last glacial dust, Geophys. Res. Lett., 42, 10–399, https://doi.org/10.1002/2015gl066153, 2015.
Van Raden, U. J., Colombaroli, D., Gilli, A., Schwander, J., Bernasconi, S. M., van Leeuwen, J., Leuenberger, M., and Eicher, U.: High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP, Palaeogeogr. Palaeocl., 391, 13–24, https://doi.org/10.1016/j.palaeo.2012.05.017, 2013.
Vinnå, Råman, L., Medhaug, I., Schmid, M., and Bouffard, D.: The vulnerability of lakes to climate change along an altitudinal gradient, Communications Earth & Environment, 2, 35, https://doi.org/10.1038/s43247-021-00106-w, 2021.
Weber, J., Bauersachs, T., and Schwark, L.: A multiphasic Younger Dryas cold period recorded in sediments of Lake Steisslingen, SW-Germany: A biomarker perspective, Quatern. Int., 542, 121–136, https://doi.org/10.1016/j.quaint.2020.03.028, 2020.
Weltje, G. J. and Tjallingii, R.: Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application, Earth Planet. Sc. Lett., 274, 423–438. https://doi.org/10.1016/j.epsl.2008.07.054, 2008.
Westerberg, A. W.: Detection and resolution of overlapped peaks for an on-line computer system for gas chromatographs, Anal. Chem., 41, 1770–1777, https://doi.org/10.1021/ac60282a018, 1969.
Weyhenmeyer, G. A., Chukwuka, A. V., Anneville, O., Brookes, J., Carvalho, C. R., Cotner, J. B., Grossart, H.-P., Hamilton, D. P., Hanson, P. C., Hejzlar, J., Hilt, S., Hipsey, M. R., Ibelings, B. W., Jacquet, S., Kangur, K., Kragh, T., Lehner, B., Lepori, F., Lukubye, B., Marce, R., McElarney, Y., Paule-Mercado, Ma. C., North, R., Rojas-Jimenez, K., Rusak, J. A., Sharma, S., Scordo, F., de Senerpont Domis, L. N., Sø, J. S., Wood, S. (Susie) A., Xenopoulos, M. A., and Zhou, Y.: Global lake health in the Anthropocene: Societal implications and treatment strategies, Earths Future, 12, e2023ef004387, https://doi.org/10.1029/2023ef004387, 2024.
Wienhues, G., Zahajská, P., Schneider, T., Fischer, D., and Grosjean, M.: Direct detection of phycocyanin in sediments by hyperspectral imaging, J. Paleolimnol., 73, 73–87, https://doi.org/10.1007/s10933-024-00350-y, 2025.
Yabuzaki, J.: Carotenoids Database: structures, chemical finger prints and distribution among organisms, Database (Oxford), Vol. 2017, bax004, https://doi.org/10.1093/database/bax004, 2017.
Zander, P. D., Żarczyński, M., Vogel, H., Tylmann, W., Wacnik, A., Sanchini, A., and Grosjean, M.: A high-resolution record of Holocene primary productivity and water-column mixing from the varved sediments of Lake Żabińskie, Poland, Sci. Total Environ., 755, 143713, https://doi.org/10.1016/j.scitotenv.2020.143713, 2021.
Zander, P. D., Wienhues, G., and Grosjean, M.: Scanning hyperspectral imaging for in situ biogeochemical analysis of lake sediment cores: Review of recent developments, J. Imaging, 8, 58, https://doi.org/10.3390/jimaging8030058, 2022.
Zander, P. D., Wirth, S. B., Gilli, A., Peduzzi, S., and Grosjean, M.: Hyperspectral imaging sediment core scanning tracks high-resolution Holocene variations in (an)oxygenic phototrophic communities at Lake Cadagno, Swiss Alps, Biogeosciences, 20, 2221–2235, https://doi.org/10.5194/bg-20-2221-2023, 2023.
Züllig, H.: Carotenoids from plankton and photosynthetic bacteria in sediments as indicators of trophic changes in Lake Lobsigen during the last 14000 years, Hydrobiologia, 143, 315–319, https://doi.org/10.1007/978-94-009-4047-5_40, 1986.
Short summary
Climate warming speeds up lake eutrophication, creating “dead zones” where aquatic life suffocates due to oxygen depletion. The sediments of Amsoldingersee, a Swiss lake, revealed how climate shifts impacted the lake around 10 000–18 000 years ago. (1) Algal composition differed between both cold and warm periods. (2) Nutrient additions from dust controlled algal growth more than temperature. (3) Cold periods with ice cover led to oxygen depletion. (4) Algal communities recovered after anoxic phases.
Climate warming speeds up lake eutrophication, creating “dead zones” where aquatic life...
Altmetrics
Final-revised paper
Preprint