Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-3915-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3915-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon and nitrogen dynamics in subsoils after 20 years of added precipitation in a Mediterranean grassland
Life and Environmental Sciences, University of California, Merced, Merced, 95343, USA
Sora L. Kim
Life and Environmental Sciences, University of California, Merced, Merced, 95343, USA
Asmeret Asefaw Berhe
Life and Environmental Sciences, University of California, Merced, Merced, 95343, USA
Related authors
No articles found.
Teneille Nel, Manisha Dolui, Abbygail R. McMurtry, Stephanie Chacon, Joseph A. Mason, Laura M. Phillips, Erika Marin-Spiotta, Marie-Anne de Graaff, Asmeret A. Berhe, and Teamrat A. Ghezzehei
EGUsphere, https://doi.org/10.5194/egusphere-2025-5164, https://doi.org/10.5194/egusphere-2025-5164, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Buried ancient topsoils (Brady paleosol, Nebraska) sequester vast SOC. We found repeated drying/rewetting causes greater C loss than continuous wetting, destabilizing the slow-cycling C pool, especially in shallower soils. Decomposition rates are higher in erosional settings. Burial depth and moisture regime are key to the long-term vulnerability of these ancient C stocks under climate change.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Cited articles
Abbasi, A. O., Salazar, A., Oh, Y., Reinsch, S., del Rosario Uribe, M., Li, J., Rashid, I., and Dukes, J. S.: Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses, Biogeosciences, 17, 3859–3873, https://doi.org/10.5194/bg-17-3859-2020, 2020.
Bai, Y. and Cotrufo, M. F.: Grassland soil carbon sequestration: Current understanding, challenges, and solutions, Science, 377, 603–608, https://doi.org/10.1126/science.abo2380, 2022.
Bell, C., Carrillo, Y., Boot, C. M., Rocca, J. D., Pendall, E., and Wallenstein, M. D.: Rhizosphere stoichiometry: are ratios of plants, soils, and enzymes conserved at the plant species-level?, New Phytol., 201, 505–517, https://doi.org/10.1111/nph.12531, 2014.
Berhe, A., Suttle, K. B., Burton, S. D., and Banfield, J. F.: Contingency in the direction and mechanics of soil organic matter responses to increased rainfall, Plant Soil, 358, 371–383, https://doi.org/10.1007/s11104-012-1156-0, 2012.
Berhe, A. A., Harden, J. W., Torn, M. S., and Harte, J.: Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions, J. Geophys. Res., 113, G04039, https://doi.org/10.1029/2008JG000751, 2008.
Button, E. S., Pett-Ridge, J., Murphy, D. V., Kuzyakov, Y., Chadwick, D. R., and Jones, D. L.: Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils, Soil Biol. Biochem., 170, 108697, https://doi.org/10.1016/j.soilbio.2022.108697, 2022.
Carminati, A. and Javaux, M.: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought, Trends Plant Sci., 25, 868–880, https://doi.org/10.1016/j.tplants.2020.04.003, 2020.
Casson, S. and Gray, J. E.: Influence of environmental factors on stomatal development, New Phytol., 178, 9–23, https://doi.org/10.1111/j.1469-8137.2007.02351.x, 2008.
Chou, W. W., Silver, W. L., Jackson, R. D., Thompson, A. W., and Allen-Diaz, B.: The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall, Glob. Change Biol., 14, 1382–1394, https://doi.org/10.1111/j.1365-2486.2008.01572.x, 2008.
Conen, F., Zimmermann, M., Leifeld, J., Seth, B., and Alewell, C.: Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio, Biogeosciences, 5, 123–128, https://doi.org/10.5194/bg-5-123-2008, 2008.
Cruz-Martínez, K., Suttle, K. B., Brodie, E. L., Power, M. E., Andersen, G. L., and Banfield, J. F.: Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland, ISME J., 3, 738–744, https://doi.org/10.1038/ismej.2009.16, 2009.
Cruz-Martínez, K., Rosling, A., Zhang, Y., Song, M., Andersen, G. L., and Banfield, J. F.: Effect of Rainfall-Induced Soil Geochemistry Dynamics on Grassland Soil Microbial Communities, Appl. Environ. Microb., 78, 7587–7595, https://doi.org/10.1128/AEM.00203-12, 2012.
Delgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A., Wallenstein, M. D., Quero, J. L., Ochoa, V., Gozalo, B., García-Gómez, M., Soliveres, S., García-Palacios, P., Berdugo, M., Valencia, E., Escolar, C., Arredondo, T., Barraza-Zepeda, C., Bran, D., Carreira, J. A., Chaieb, M., Conceição, A. A., Derak, M., Eldridge, D. J., Escudero, A., Espinosa, C. I., Gaitán, J., Gatica, M. G., Gómez-González, S., Guzman, E., Gutiérrez, J. R., Florentino, A., Hepper, E., Hernández, R. M., Huber-Sannwald, E., Jankju, M., Liu, J., Mau, R. L., Miriti, M., Monerris, J., Naseri, K., Noumi, Z., Polo, V., Prina, A., Pucheta, E., Ramírez, E., Ramírez-Collantes, D. A., Romão, R., Tighe, M., Torres, D., Torres-Díaz, C., Ungar, E. D., Val, J., Wamiti, W., Wang, D., and Zaady, E.: Decoupling of soil nutrient cycles as a function of aridity in global drylands, Nature, 502, 672–676, https://doi.org/10.1038/nature12670, 2013.
Diamond, S., Andeer, P., Li, Z., Crits-Christoph, A., Burstein, D., Anantharaman, K., Lane, K. R., Thomas, B. C., Pan, C., Northen, T., and Banfield, J. F.: Processing of grassland soil C−N compounds into soluble and volatile molecules is depth stratified and mediated by genomically novel bacteria and archaea, bioRxiv [preprint], https://doi.org/10.1101/445817, 2018.
Dijkstra, P., LaViolette, C. M., Coyle, J. S., Doucett, R. R., Schwartz, E., Hart, S. C., and Hungate, B. A.: 15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function, Ecol. Lett., 11, 389–397, https://doi.org/10.1111/j.1461-0248.2008.01154.x, 2008.
Driesen, E., Van Den Ende, W., De Proft, M., and Saeys, W.: Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review, Agronomy, 10, 1975, https://doi.org/10.3390/agronomy10121975, 2020.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon Isotope Discrimination and Photosynthesis, Annu. Rev. Plant Physio., 40, 503–537, 1989.
Foley, M. M., Blazewicz, S. J., McFarlane, K. J., Greenlon, A., Hayer, M., Kimbrel, J. A., Koch, B. J., Monsaint-Queeney, V. L., Morrison, K., Morrissey, E., Hungate, B. A., and Pett-Ridge, J.: Active populations and growth of soil microorganisms are framed by mean annual precipitation in three California annual grasslands, Soil Biol. Biochem., 177, 108886, https://doi.org/10.1016/j.soilbio.2022.108886, 2023.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., and Rumpel, C.: Stability of organic carbon in deep soil layers controlled by fresh carbon supply, Nature, 450, 277–280, https://doi.org/10.1038/nature06275, 2007.
Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R., and Richter, A.: Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow, New Phytol., 201, 916–927, https://doi.org/10.1111/nph.12569, 2014.
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta analysis, Global Change Biol., 8, 345–360, https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002.
Hartig, F.: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R package version 0.4.7, https://CRAN.R-project.org/package=DHARMa (last access: 25 February 2025), 2024.
Hawkes, C. V., Kivlin, S. N., Rocca, J. D., Huguet, V., Thomsen, M. A., and Suttle, K. B.: Fungal Community Responses to Precipitation, Global Change Biol., 17, 1637–1645, https://doi.org/10.1111/j.1365-2486.2010.02327.x, 2011.
Heisler-White, J. L., Knapp, A. K., and Kelly, E. F.: Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland, Oecologia, 158, 129–140, https://doi.org/10.1007/s00442-008-1116-9, 2008.
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The whole-soil carbon flux in response to warming, Science, 355, 1420–1423, https://doi.org/10.1126/science.aal1319, 2017.
Hicks Pries, C. E., Ryals, R., Zhu, B., Min, K., Cooper, A., Goldsmith, S., Pett-Ridge, J., Torn, M., and Berhe, A. A.: The Deep Soil Organic Carbon Response to Global Change, Annu. Rev. Ecol. Evol. S., 54, 375–401, https://doi.org/10.1146/annurev-ecolsys-102320-085332, 2023.
Hobbie, E. A. and Ouimette, A. P.: Controls of nitrogen isotope patterns in soil profiles, Biogeochemistry, 95, 355–371, https://doi.org/10.1007/s10533-009-9328-6, 2009.
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and Piñeiro, G.: The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls, Annu. Rev. Ecol. Evol. S., 48, 419–445, https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., Smith, R. G., Tiemann, L., and Grandy, A. S.: Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes, Biogeochemistry, 139, 103–122, https://doi.org/10.1007/s10533-018-0459-5, 2018.
Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423–436, https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2, 2000.
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., and Kleber, M.: Mineral protection of soil carbon counteracted by root exudates, Nat. Clim. Change, 5, 588–595, https://doi.org/10.1038/nclimate2580, 2015.
Kleber, M., Mikutta, R., Torn, M. S., and Jahn, R.: Poorly crystalline mineral phases protect organic matter in acid subsoil horizons, Eur. J. Soil Sci., 56, 050912034650054, https://doi.org/10.1111/j.1365-2389.2005.00706.x, 2005.
Knicker, H.: Soil organic N – An under-rated player for C sequestration in soils?, Soil Biol. Biochem., 43, 1118–1129, https://doi.org/10.1016/j.soilbio.2011.02.020, 2011.
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate, P. Natl. Acad. Sci. USA, 107, 19691–19695, https://doi.org/10.1073/pnas.1004933107, 2010.
Krüger, N., Finn, D. R., and Don, A.: Soil depth gradients of organic carbon-13 – A review on drivers and processes, Plant Soil, 495, 113–136, https://doi.org/10.1007/s11104-023-06328-5, 2023.
Kuzyakov, Y., Friedel, J. K., and Stahr, K.: Review of mechanisms and quantification of priming effects, Soil Biol., 32, 1485–1498, https://doi.org/10.1016/S0038-0717(00)00084-5, 2000.
Li, C., Liu, L., Zheng, L., Yu, Y., Mushinski, R. M., Zhou, Y., and Xiao, C.: Greater soil water and nitrogen availability increase C:N ratios of root exudates in a temperate steppe, Soil Biol. Biochem., 161, 108384, https://doi.org/10.1016/j.soilbio.2021.108384, 2021.
Liebmann, P., Wordell-Dietrich, P., Kalbitz, K., Mikutta, R., Kalks, F., Don, A., Woche, S. K., Dsilva, L. R., and Guggenberger, G.: Relevance of aboveground litter for soil organic matter formation – a soil profile perspective, Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020, 2020.
Madhavan, S., Treichel, I., and O'Leary, M. H.: Effects of Relative Humidity on Carbon Isotope Fractionation in Plants, Bot. Acta, 104, 292–294, https://doi.org/10.1111/j.1438-8677.1991.tb00232.x, 1991.
Maillard, É., McConkey, B. G., and Angers, D. A.: Increased uncertainty in soil carbon stock measurement with spatial scale and sampling profile depth in world grasslands: A systematic analysis, Agr. Ecosyst. Environ., 236, 268–276, https://doi.org/10.1016/j.agee.2016.11.024, 2017.
Mainka, M., Summerauer, L., Wasner, D., Garland, G., Griepentrog, M., Berhe, A. A., and Doetterl, S.: Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence, Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, 2022.
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., Van Bodegom, P. M., Cornwell, W. K., Ellsworth, D., Niinemets, Ü., Ordonez, A., Reich, P. B., and Santiago, L. S.: Global effects of soil and climate on leaf photosynthetic traits and rates, Global Ecol. Biogeogr., 24, 706–717, https://doi.org/10.1111/geb.12296, 2015.
Margenot, A., Calderón, F., and Parikh, S. J.: Limitations and Potential of Spectral Subtractions in Fourier-Transform Infrared Spectroscopy of Soil Samples, Soil Sci. Soc. Am. J., 80, 10–26, https://doi.org/10.2136/sssaj2015.06.0228, 2015.
McFarlane, K. J., Torn, M. S., Hanson, P. J., Porras, R. C., Swanston, C. W., Callaham, M. A., and Guilderson, T. P.: Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements, Biogeochemistry, 112, 457–476, https://doi.org/10.1007/s10533-012-9740-1, 2013.
Mikutta, R., Kleber, M., Torn, M. S., and Jahn, R.: Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance?, Biogeochemistry, 77, 25–56, https://doi.org/10.1007/s10533-005-0712-6, 2006.
Min, K., Berhe, A. A., Khoi, C. M., Van Asperen, H., Gillabel, J., and Six, J.: Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers, Biogeochemistry, 148, 255–269, https://doi.org/10.1007/s10533-020-00658-7, 2020.
Min, K., Slessarev, E., Kan, M., McFarlane, K., Oerter, E., Pett-Ridge, J., Nuccio, E., and Berhe, A. A.: Active microbial biomass decreases, but microbial growth potential remains similar across soil depth profiles under deeply-vs. shallow-rooted plants, Soil Biol. Biochem., 162, 108401, https://doi.org/10.1016/j.soilbio.2021.108401, 2021.
Morris, K. A., Stark, J. M., Bugbee, B., and Norton, J. M.: The invasive annual cheatgrass releases more nitrogen than crested wheatgrass through root exudation and senescence, Oecologia, 181, 971–983, https://doi.org/10.1007/s00442-015-3544-7, 2016.
Natelhoffer, K. J. and Fry, B.: Controls on Natural Nitrogen-15 and Carbon-13 Abundances in Forest Soil Organic Matter, Soil Sci. Soc. Am. J., 52, 1633–1640, https://doi.org/10.2136/sssaj1988.03615995005200060024x, 1988.
Nierop, K. G. J., Van Lagen, B., and Buurman, P.: Composition of plant tissues and soil organic matter in the first stages of a vegetation succession, Geoderma, 100, 1–24, https://doi.org/10.1016/S0016-7061(00)00078-1, 2001.
Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N. D., and Calderón, F. J.: Soil Chemical Insights Provided through Vibrational Spectroscopy, in: Advances in Agronomy, vol. 126, Elsevier, 1–148, https://doi.org/10.1016/B978-0-12-800132-5.00001-8, 2014.
Pedersen, E. J., Miller, D. L., Simpson, G. L., and Ross, N.: Hierarchical generalized additive models in ecology: an introduction with mgcv, PeerJ, 7, e6876, https://doi.org/10.7717/peerj.6876, 2019.
Plante, A. F., Conant, R. T., Stewart, C. E., Paustian, K., and Six, J.: Impact of Soil Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions, Soil Sci. Soc. Am. J., 70, 287–296, https://doi.org/10.2136/sssaj2004.0363, 2006.
Porras, R. C., Hicks Pries, C. E., McFarlane, K. J., Hanson, P. J., and Torn, M. S.: Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils, Biogeochemistry, 133, 333–345, https://doi.org/10.1007/s10533-017-0337-6, 2017.
Prommer, J., Walker, T. W. N., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F., and Richter, A.: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity, Global Change Biol., 26, 669–681, https://doi.org/10.1111/gcb.14777, 2020.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 21 July 2025), 2022.
Rocci, K. S., Bird, M., Blair, J. M., Knapp, A. K., Liang, C., and Cotrufo, M. F.: Thirty years of increased precipitation modifies soil organic matter fractions but not bulk soil carbon and nitrogen in a mesic grassland, Soil Biol. Biochem., 185, 109145, https://doi.org/10.1016/j.soilbio.2023.109145, 2023.
Ruehr, N. K., Offermann, C. A., Gessler, A., Winkler, J. B., Ferrio, J. P., Buchmann, N., and Barnard, R. L.: Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux, New Phytol., 184, 950–961, https://doi.org/10.1111/j.1469-8137.2009.03044.x, 2009.
Rumpel, C.: Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils, Soil Biol. Biochem., 36, 177–190, https://doi.org/10.1016/j.soilbio.2003.09.005, 2004.
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but poorly understood component of terrestrial C cycle, Plant Soil, 338, 143–158, https://doi.org/10.1007/s11104-010-0391-5, 2011.
Salazar, A., Sulman, B. N., and Dukes, J. S.: Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress, Soil Biol. Biochem., 116, 237–244, https://doi.org/10.1016/j.soilbio.2017.10.017, 2018.
Schimel, J., Balser, T. C., and Wallenstein, M.: Microbial Stress-Response Physiology and its implcations for ecosystem function, Ecology, 88, 1386–1394, https://doi.org/10.1890/06-0219, 2007.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Skopp, J., Jawson, M. D., and Doran, J. W.: Steady-State Aerobic Microbial Activity as a Function of Soil Water Content, Soil Sci. Soc. Am. J., 54, 1619, https://doi.org/10.2136/sssaj1990.03615995005400060018x, 1990.
Slessarev, E. W., Nuccio, E. E., McFarlane, K. J., Ramon, C. E., Saha, M., Firestone, M. K., and Pett-Ridge, J.: Quantifying the effects of switchgrass (Panicum virgatum) on deep organic C stocks using natural abundance 14C in three marginal soils, GCB Bioenergy, 12, 834–847, https://doi.org/10.1111/gcbb.12729, 2020.
Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., Wagai, R., and Bowden, R. D.: Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization, Biogeochemistry, 96, 209–231, https://doi.org/10.1007/s10533-009-9359-z, 2009.
Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., Ciais, P., Hovenden, M. J., Leuzinger, S., Beier, C., Kardol, P., Xia, J., Liu, Q., Ru, J., Zhou, Z., Luo, Y., Guo, D., Adam Langley, J., Zscheischler, J., Dukes, J. S., Tang, J., Chen, J., Hofmockel, K. S., Kueppers, L. M., Rustad, L., Liu, L., Smith, M. D., Templer, P. H., Quinn Thomas, R., Norby, R. J., Phillips, R. P., Niu, S., Fatichi, S., Wang, Y., Shao, P., Han, H., Wang, D., Lei, L., Wang, J., Li, X., Zhang, Q., Li, X., Su, F., Liu, B., Yang, F., Ma, G., Li, G., Liu, Y., Liu, Y., Yang, Z., Zhang, K., Miao, Y., Hu, M., Yan, C., Zhang, A., Zhong, M., Hui, Y., Li, Y., and Zheng, M.: A meta-analysis of 1119 manipulative experiments on terrestrial carbon-cycling responses to global change, Nat. Ecol. Evol., 3, 1309–1320, https://doi.org/10.1038/s41559-019-0958-3, 2019.
Souza, L. F. T., Hirmas, D. R., Sullivan, P. L., Reuman, D. C., Kirk, M. F., Li, L., Ajami, H., Wen, H., Sarto, M. V. M., Loecke, T. D., Rudick, A. K., Rice, C. W., and Billings, S. A.: Root distributions, precipitation, and soil structure converge to govern soil organic carbon depth distributions, Geoderma, 437, 116569, https://doi.org/10.1016/j.geoderma.2023.116569, 2023.
Staszel, K., Lasota, J., and Błońska, E.: Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil, Sci. Rep., 12, 7635, https://doi.org/10.1038/s41598-022-11754-z, 2022.
Suttle, K. B., Thomsen, M. A., and Power, M. E.: Species Interactions Reverse Grassland Responses to Changing Climate, Science, 315, 640–642, https://doi.org/10.1126/science.1136401, 2007.
Throop, H. L., Archer, S. R., Monger, H. C., and Waltman, S.: When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils, J. Arid Environ., 77, 66–71, https://doi.org/10.1016/j.jaridenv.2011.08.020, 2012.
von Haden, A. C., Yang, W. H., and DeLucia, E. H.: Soils' dirty little secret: Depth-based comparisons can be inadequate for quantifying changes in soil organic carbon and other mineral soil properties, Global Change Biol., 26, 3759–3770, https://doi.org/10.1111/gcb.15124, 2020.
Vranova, V., Rejsek, K., and Formanek, P.: Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review, Sci. World J., 2013, 1–15, https://doi.org/10.1155/2013/524239, 2013.
Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R., Shiel, R. S., Wilby, A., and Bardgett, R. D.: Legacy effects of grassland management on soil carbon to depth, Global Change Biol., 22, 2929–2938, https://doi.org/10.1111/gcb.13246, 2016.
Wahab, L. M., Kim, S., and Berhe, A. A.: Carbon and nitrogen dynamics in subsoils after 20 years of added precipitation in a Mediterranean grassland, Dryad [data set], https://doi.org/10.5061/dryad.2280gb64q, 2025.
Wilpiszeski, R. L., Aufrecht, J. A., Retterer, S. T., Sullivan, M. B., Graham, D. E., Pierce, E. M., Zablocki, O. D., Palumbo, A. V., and Elias, D. A.: Soil Aggregate Microbial Communities: Towards Understanding Microbiome Interactions at Biologically Relevant Scales, Appl. Environ. Microb., 85, e00324-19, https://doi.org/10.1128/AEM.00324-19, 2019.
Wood, S. N.: Generalized additive models: an introduction with R, Chapman and Hall/CRC, https://doi.org/10.1201/9781315370279, 2017.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.: Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation, Global Change Biol., 17, 927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Yost, J. L. and Hartemink, A. E.: How deep is the soil studied – an analysis of four soil science journals, Plant Soil, 452, 5–18, https://doi.org/10.1007/s11104-020-04550-z, 2020.
Zhang, P., Li, B., Wu, J., and Hu, S.: Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis, Ecol. Lett., 22, 200–210, https://doi.org/10.1111/ele.13181, 2019.
Short summary
Soils are a large reservoir of carbon (C) on land, and there is uncertainty regarding how this reservoir will be affected by climate change. Currently, active research on (1) how changing precipitation patterns, a key aspect of climate change, will affect soil C and (2) how vulnerable subsoils are to climate change is still being undertaken. In this study, we examined subsoils after 20 years of experimentally manipulated precipitation shifts to see whether increasing precipitation would affect C amounts and chemistry.
Soils are a large reservoir of carbon (C) on land, and there is uncertainty regarding how this...
Altmetrics
Final-revised paper
Preprint