Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-3949-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3949-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of tropical woodland savannas to El Niño droughts
Simone Matias Reis
Laboratório de Ecologia de Ecossistemas Florestais e Savânicos, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Yadvinder Malhi
School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, United Kingdom
Ben Hur Marimon Junior
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Beatriz Schwantes Marimon
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Huanyuan Zhang-Zheng
School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, United Kingdom
Igor Araújo
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Renata Freitag
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Edmar Almeida de Oliveira
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Karine da Silva Peixoto
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Luciana Januário de Souza
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Ediméia Laura Souza da Silva
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Eduarda Bernardes Santos
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Kamila Parreira da Silva
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Maélly Dállet Alves Gonçalves
Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Cécile Girardin
School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, United Kingdom
Cecilia Dahlsjö
School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, United Kingdom
Oliver L. Phillips
School of Geography, University of Leeds, Leeds, United Kingdom
Imma Oliveras Menor
CORRESPONDING AUTHOR
School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, United Kingdom
AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
Related authors
No articles found.
Cecilia Chavana-Bryant, Phil Wilkes, Wanxin Yang, Andrew Burt, Peter Vines, Amy C. Bennett, Georgia C. Pickavance, Declan L. M. Cooper, Simon L. Lewis, Oliver L. Phillips, Benjamin Brede, Alvaro Lau, Martin Herold, Iain McNicol, Edward T. A. Mitchard, David A. Coomes, Toby Jackson, Loic Makaga, Heddy O. Milamizokou Napo, Alfred Ngomanda, Stephan Ntie, Vincent Medjibe, Pacome Dimbonda, Luna Soenens, Virginie Daelemans, Laetitia Proux, Reuben Nilus, Nicolas Labriere, Kathryn Jeffery, David F. R. P. Burslem, Daniel Clewley, David Moffat, Lan Qie, Harm Bartholomeus, Vincent Gregoire, Nicolas Barbier, Geraldine Derroire, Katharine Abernethy, Klaus Scipal, and Mat Disney
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-67, https://doi.org/10.5194/essd-2025-67, 2025
Preprint under review for ESSD
Short summary
Short summary
The ForestScan project provides a comprehensive set of datasets of tropical forest 3D structural measurements using terrestrial, unpiloted aerial vehicle and aerial laser scanning, plus tree census data. Collected at three sites in French Guiana, Gabon, and Malaysia, these datasets are crucial for calibrating and validating earth observation-derived forest biomass estimates, therefore, expanding and enhancing their use, and aiding global conservation efforts.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Cited articles
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., and Sparovek, G.: Köppen's climate classification map for Brazil, Meteorol. Z., 22, 711–728, https://doi.org/10.1127/0941-2948/2013/0507, 2013.
Aragão, L. E. O., Malhi, Y., Roman-Cuesta, R. M., Saatchi, S., Anderson, L. O., and Shimabukuro, Y. E.: Spatial patterns and fire response of recent Amazonian droughts, Geophys. Res. Lett., 34, L07701, https://doi.org/10.1029/2006GL028946, 2007.
Araújo, I., Marimon, B. S., Scalon, M. C., Fauset, S., Junior, B. H. M., Tiwari, R., Galbraith, D. R., and Gloor, M. U.: Trees at the Amazonia-Cerrado transition are approaching high temperature thresholds, Environ. Res. Lett., 16, 034047, https://doi.org/10.1088/1748-9326/abe3b9, 2021a.
Araújo, I., Marimon, B. S., Scalon, M. C., Cruz, W. J., Fauset, S., Vieira, T. C., Galbraith, D. R., and Gloor, M. U.: Intraspecific variation in leaf traits facilitates the occurrence of trees at the Amazonia–Cerrado transition, Flora, 279, 151829, https://doi.org/10.1016/j.flora.2021.151829, 2021b.
Araújo, I., Scalon, M. C., Amorim, I., Menor, I. O., Cruz, W. J., Reis, S. M., Simione, P. F., and Marimon, B. S.: Morpho-anatomical traits and leaf nutrient concentrations vary between plant communities in the Cerrado–Amazonia transition?, Flora, 306, 152366, https://doi.org/10.1016/j.flora.2023.152366, 2023.
Araújo, I., Marimon, B. S., Junior, B. H. M., Oliveira, C. H., Silva, J. W., Beú, R. G., da Silva, I. V., Simioni, P. F., Tavares, J. V., Phillips, O. L., Gloor, M. U., and Galbraith, D. R.: Taller trees exhibit greater hydraulic vulnerability in southern Amazonian forests, Environ. Exp. Bot., 226, 105905, https://doi.org/10.1016/j.envexpbot.2024.105905, 2024.
Ball, R. A.: Ecophysiological leaf traits of Cerrado woody plants, PhD thesis, University of Alberta, 105 pp., https://doi.org/10.7939/R35M2C, 2010.
Brando, P. M., Nepstad, D. C., Davidson, E. A., Trumbore, S. E., Ray, D., and Camargo, P.: Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment, Philos. T. Roy. Soc. B, 363, 1839–1848, https://doi.org/10.1098/rstb.2007.0031, 2008.
Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., and Dierig, D. A.: Root traits contributing to plant productivity under drought, Front. Plan. Sci., 4, 442, https://doi.org/10.3389/fpls.2013.00442, 2013.
Covey, K., Soper, F., Pangala, S., Bernardino, A., Pagliaro, Z., Basso, L., Cassol, H., Fearnside, P., Navarrete, D., Novoa, S., Sawakuchi, H., Lovejoy, T., Marengo, J., Peres, C. A., Baillie, J., Bernasconi, P., Camargo, J., Freitas, C., Hoffman, B., Nardoto, G. B., Nobre, I., Mayorga, J., Mesquita, R., Pavan, S., Pinto, F., Rocha, F., de Assis Mello, R., Thuault, A., Bahl, A. A., and Elmore, A.: Carbon and beyond: The biogeochemistry of climate in a rapidly changing Amazon, Front. For. Glob. Change, 4, 618401, https://doi.org/10.3389/ffgc.2021.618401, 2021.
Doughty, C. E., Malhi, Y., Araujo-Murakami, A., Metcalfe, D. B., Silva-Espejo, J. E., Arroyo, L., Heredia, J. P., Pardo-Toledo, E., Mendizabal, L. M., Rojas-Landivar, V. D., Vega-Martinez, M., Flores-Valencia, M., Sibler-Rivero, R., Moreno-Vare, L., Viscarra, L. J., Chuviru-Castro, T., Osinaga-Becerra, M., and Ledezma, R.: Allocation trade-offs dominate the response of tropical forest growth to seasonal and interannual drought, Ecology, 95, 2192–2201, https://doi.org/10.1890/13-1507.1, 2014.
Duan, S., He, H. S., and Spetich, M.: Effects of growing-season drought on phenology and productivity in the west region of central hardwood forests, USA, Forests, 9, 377, https://doi.org/10.3390/f9070377, 2018.
Fan, L., Wigneron, J.-P., Ciais, P., Chave, J., Brandt, M., Fensholt, R., Saatchi, S. S., Bastos, A., Al-Yaari, A., Hufkens, K., Qin, Y., Xiao, X., Chen, C., Myneni, R. B., Fernandez-Moran, R., Mialon, A., Rodriguez-Fernandez, N. J., Kerr, Y., Tian, F., and Peñuelas, J.: Satellite-observed pantropical carbon dynamics, Nat. Plants, 5, 944–951, https://doi.org/10.1038/s41477-019-0478-9, 2019.
Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Alarcón, A., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragao, L. E. O. C., Arroyo, L., Aymard, G. A. C., Baker, T. R., Baraloto, C., Barroso, J., Bonal, D., Castro, W., Chama, V., Chave, J., Domingues, T. F., Fauset, S., Groot, N., Honorio Coronado, E., Laurance, S., Laurance, W. F., Lewis, S. L., Licona, J. C., Marimon, B. S., Marimon-Junior, B. H., Mendoza Bautista, C., Neill, D. A., Oliveira, E. A., Oliveira dos Santos, C., Pallqui Camacho, N. C., Pardo-Molina, G., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez-Angulo, H., Réjou-Méchain, M., Rudas, A., Saiz, G., Salomão, R. P., Silva-Espejo, J. E., Silveira, M., ter Steege, H., Stropp, J., Terborgh, J., Thomas-Caesar, R., van der Heijden, G. M. F., Vásquez Martinez, R., Vilanova, E., and Vos, V. A.: Amazon forest response to repeated droughts, Global Biogeochem. Cy., 30, 964–982, https://doi.org/10.1002/2015GB005133, 2016.
ForestPlots.net: WORKING WITH DATA, ForestPlot.net [data set], https://www.forestplots.net/en/join-forestplots/working-with-data, last access: 9 August 2025.
Galbraith, D., Malhi, Y., Affum-Baffoe, K., Castanho, A. D., Doughty, C. E., Fisher, R. A., Lewis, S. L., Peh, K. S.-H., Phillips, O. L., Quesada, C. A., Sonké, B., and Lloyd, J.: Residence times of woody biomass in tropical forests, Plant Ecol. Divers., 6, 139–157, https://doi.org/10.1080/17550874.2013.770578, 2013.
Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Domingues, L. G., Cassol, H. L. G., Tejada, G., Aragão, L. E. O. C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A. H., Corrêa, S. M., Anderson, L., Von Randow, C., Correia, C. S. C., Crispim, S. P., and Neves, R. A.: Amazonia as a carbon source linked to deforestation and climate change, Nature, 595, 388–393, https://doi.org/10.1038/s41586-021-03629-6, 2021.
Gloor, E., Wilson, C., Chipperfield, M. P., Chevallier, F., Buermann, W., Boesch, H., Parker, R., Somkuti, P., Gatti, L. V., Correia, C., Domingues, L. G., Peters, W., Miller, J., Deeter, M. N., and Sullivan, M. J.: Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data, Philos. T. Roy. Soc. B, 373, 20170302, https://doi.org/10.1098/rstb.2017.0302, 2018.
Harmon, M. E., Whigham, D. F., Sexton, J., and Olmsted, I.: Decomposition and mass of woody detritus in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico, Biotropica, 27, 305–316, 1995.
Hughes, I. G. and Hase, T. P. A. (Eds.): Measurements and their uncertainties: A practical guide to modern error analysis, Oxford University Press, New York, 153 pp., ISBN 9780199566327, 2010.
Jancoski, H. S.: Características morfofuncionais de árvores em resposta à sazonalidade climática e herbivoria na transição Cerrado-Amazônia, PhD thesis, Universidade do Estado de Mato Grosso, 89 pp., https://portal.unemat.br/media/files/halina-soares.pdf (last access: 9 August 2025), 2019.
Jancoski, H. S., Schwantes Marimon, B., Scalon, M. C., de V. Barros, F., Marimon-Junior, B. H., Carvalho, E., Oliveira, R. S., and Oliveras Menor, I.: Distinct leaf water potential regulation of tree species and vegetation types across the Cerrado–Amazonia transition, Biotropica, 54, 431–443, https://doi.org/10.1111/btp.13064, 2022.
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and Van Der Schrier, G.: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016, Sci. Rep., 6, 1–7, https://doi.org/10.1038/srep33130, 2016.
Kavanagh, T., and Kellman M.: Seasonal Pattern of Fine Root Proliferation in a Tropical Dry Forest, Biotropica, 24, 157–165, https://doi.org/10.2307/2388669, 1992.
Kummerow, J., Castillanos, J., Maas, M., and Larigauderie, A.: Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest, Vegetatio, 90, 73–80, https://doi.org/10.1007/BF00045590, 1990.
Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., Bloom, A. A., Wunch, D., Frankenberg, C., Sun, Y., O'Dell, C. W., Gurney, K. R., Menemenlis, D., Gierach, M., Crisp, D., and Eldering, A.: Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño, Science, 358, eaam5690, https://doi.org/10.1126/science.aam5690, 2017.
Machado-Silva, F., Peres, L. F., Gouveia, C. M., Enrich-Prast, A., Peixoto, R. B., Pereira, J. M., Marotta, H., Fernandes, P. J. F., and Libonati, R.: Drought resilience debt drives NPP decline in the Amazon Forest, Global Biogeochem. Cy., 35, e2021GB007004, https://doi.org/10.1029/2021GB007004, 2021.
Malhi, Y., Aragao, L. E. O., Metcalfe, D. B., Paiva, R., Quesada, C. A., Almeida, S., Anderson, L., Brando, P., Chambers, J. Q., da Costa, A. C. L., Hutyra, L. R., Oliveira, P., Patiño, S., Pyle, E. H., Robertson, A. L., and Teixeira, L. M.: Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests, Glob. Change Biol., 15, 1255–1274, https://doi.org/10.1111/j.1365-2486.2008.01780.x, 2009.
Malhi, Y., Doughty, C. E., Goldsmith, G. R., Metcalfe, D. B., Girardin, C. A., Marthews, T. R., del Aguila-Pasquel, J., Aragão, L. E. O. C., Araujo-Murakami, A., Brando, P., da Costa, A. C. L., Silva-Espejo, J. E., Farfán Amézquita, F., Galbraith, D. R., Quesada, C. A., Rocha, W., Salinas-Revilla, N., Silvério, D., Meir, P., and Phillips, O. L.: The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests, Glob. Change Biol., 21, 2283–2295, https://doi.org/10.1111/gcb.12859, 2015.
Malhi, Y., Girardin, C. A., Goldsmith, G. R., Doughty, C. E., Salinas, N., Metcalfe, D. B., Huaraca Huasco, W., Silva-Espejo, J. E., del Aguilla-Pasquell, J., Farfán Amézquita, F., Aragão, L. E. O. C., Guerrieri, R., Ishida, F. Y., Bahar, N. H. A., Farfan-Rios, W., Phillips, O. L., Meir, P., and Silman, M.: The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective, New Phytol., 214, 1019–1032, https://doi.org/10.1111/nph.14189, 2017.
Malhi, Y., Girardin, C., Metcalfe, D. B., Doughty, C. E., Aragão, L. E., Rifai, S. W., Oliveras, I., Shenkin, A., Aguirre-Gutiérrez, J., Dahlsjö, C. A. L., Riutta, T., Berenguer, E., Moore, S., Huaraca Huasco, W., Salinas, N., Da Costa, A. C. L., Bentley, L. P., Adu-Bredu, S., Marthews, T. R., Meir, P., and Phillips, O. L.: The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics, Biol. Conserv., 253, 108889, https://doi.org/10.1016/j.biocon.2020.108889, 2021.
Marimon, B. S., Lima, E. S., Duarte, T. G., Chieregatto, L. C., and Ratter, J. A.: Observations on the vegetation of Northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest ecotone, Edinb. J. Bot., 63, 323–341, https://doi.org/10.1017/S0960428606000576, 2006.
Marimon, B. S., Marimon-Junior, B. H., Feldpausch, T. R., Oliveira-Santos, C., Mews, H. A., Lopez-Gonzalez, G., Lloyd, J., Franczak, D. D., de Oliveira, E. A., Maracahipes, L., Miguel, A., Lenza, E., and Phillips, O. L.: Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia, Plant Ecol. Divers., 7, 281–292, https://doi.org/10.1080/17550874.2013.818072, 2014.
Marimon Junior, B. H. and Haridasan, M.: Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil, Acta Bot. Bras., 19, 913–926, https://doi.org/10.1590/S0102-33062005000400026, 2005.
Marques, E. Q., Marimon-Junior, B. H., Marimon, B. S., Matricardi, E. A., Mews, H. A., and Colli, G. R.: Redefining the Cerrado–Amazonia transition: implications for conservation, Biodivers. Conserv., 29, 1501–1517, https://doi.org/10.1007/s10531-019-01720-z, 2020.
Marthews, T. R., Riutta, T., Oliveras-Menor, I., Urrutia, R., Moore, S., Metcalfe, D., Malhi, Y., Phillips, O., Huaraca Huasco, W., Ruiz Jaén, M., Girardin, C., Butt, N., and Cain, R.: Measuring Tropical Forest Carbon Allocation and Cycling: A RAINFOR-GEM Field Manual for Intensive Census Plots (v3.0), Global Ecosystems Monitoring Network, Oxford, 121 pp., https://www.researchgate.net/publication/273448136_Measuring_Tropical_Forest_Carbon_Allocation_and_Cycling_v30 (last access: 9 August 2025), 2014.
Matricardi, E. A. T., Skole, D. L., Costa, O. B., Pedlowski, M. A., Samek, J. H., and Miguel, E. P.: Long-term forest degradation surpasses deforestation in the Brazilian Amazon, Science, 369, 1378–1382, https://doi.org/10.1126/science.abb3021, 2020.
Metcalfe, D. B., Meir, P., Aragao, L. E. O. C., Malhi, Y., Da Costa, A. C. L., Braga, A., Gonçalves, P. H. L., de Athaydes, J., de Almeida, S. S., and Williams, M.: Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon, J. Geophys. Res.-Biogeo., 112, G04001, https://doi.org/10.1029/2007JG000443, 2007.
Metcalfe, D. B., Meir, P., Aragão, L. E. O., da Costa, A. C., Braga, A. P., Gonçalves, P. H. L., Silva Junior, J. A., de Almeida, S. S., Dawson, L. A., Malhi, Y., and Williams, M.: The effects of water availability on root growth and morphology in an Amazon rainforest, Plant Soil, 311, 189–199, https://doi.org/10.1007/s11104-008-9670-9, 2008.
Miranda, S. D. C., Bustamante, M., Palace, M., Hagen, S., Keller, M., and Ferreira, L. G.: Regional variations in biomass distribution in Brazilian savanna woodland, Biotropica, 46, 125–138, https://doi.org/10.1111/btp.12095, 2014.
Morandi, P. S., Marimon-Junior, B. H., De Oliveira, E. A., Reis, S. M., Valadão, M. X., Forsthofer, M., Passos, F. B., and Marimon, B. S.: Vegetation succession in the Cerrado–Amazonian forest transition zone of Mato Grosso state, Brazil, Edinb. J. Bot., 73, 83–93, https://doi.org/10.1017/S096042861500027X, 2015.
Morandi, P. S., Marimon, B. S., Eisenlohr, P. V., Marimon-Junior, B. H., Oliveira-Santos, C., Feldpausch, T. R., de Oliveira, E. A., Reis, S. M., Lloyd, J., and Phillips, O. L.: Patterns of tree species composition at watershed-scale in the Amazon “arc of deforestation”: implications for conservation, Environ. Conserv., 43, 317–326, https://doi.org/10.1017/S0376892916000278, 2016.
Neyret, M., Bentley, L. P., Oliveras, I., Marimon, B. S., Marimon-Junior, B. H., de Oliveira, E. A., Passos, F. B., Ccoscco, R. C., dos Santos, J., Reis, S. M., Morandi, P. S., Paucar, G. R., Robles Cáceres, A., Valdez Tejeira, Y., Yllanes Choque, Y., Salinas, N., Shenkin, A., Asner, G. P., Díaz, S., Enquist, B. J., and Malhi, Y.: Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly, Ecol. Evol., 6, 5674–5689, https://doi.org/10.1002/ece3.2281, 2016.
Nogueira, D. S., Marimon, B. S., Marimon-Junior, B. H., Oliveira, E. A., Morandi, P., Reis, S. M., Elias, F., Neves, E. C., Feldpausch, T. R., and Phillips, O. L.: Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge, Environ. Conserv. 46, 285–292, https://doi.org/10.1017/S0376892919000110, 2019.
Oliveira, B., Marimon Junior, B. H., Mews, H. A., Valadão, M. B. X., and Marimon, B. S.: Unraveling the ecosystem functions in the Amazonia–Cerrado transition: evidence of hyperdynamic nutrient cycling, Plant Ecol., 218, 225–239, https://doi.org/10.1007/s11258-016-0681-y, 2017.
Oliveras, I. and Malhi, Y.: Many shades of green: the dynamic tropical forest–savannah transition zones, Philos. T. Roy. Soc. B, 371, 20150308, https://doi.org/10.1098/rstb.2015.0308, 2016.
Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., León-Gómez, C., Dawson, T., Camarero Martínez, J. J., Castorena, M., Echeverría, A., Espinosa, C. I., Fajardo, A., Gazol, A., Isnard, S., Lima, R. S., Marcati, C. R., and Méndez-Alonzo, R.: Plant height and hydraulic vulnerability to drought and cold, P. Natl. Acad. Sci. USA, 115, 7551–7556, https://doi.org/10.1073/pnas.1721728115, 2018.
Palmer, P. I.: The role of satellite observations in understanding the impact of El Nino on the carbon cycle: current capabilities and future opportunities, Philos. T. Roy. Soc. B, 373, 20170407, https://doi.org/10.1098/rstb.2017.0407, 2018.
Patiño, S., Fyllas, N. M., Baker, T. R., Paiva, R., Quesada, C. A., Santos, A. J. B., Schwarz, M., ter Steege, H., Phillips, O. L., and Lloyd, J.: Coordination of physiological and structural traits in Amazon forest trees, Biogeosciences, 9, 775–801, https://doi.org/10.5194/bg-9-775-2012, 2012.
Peixoto, K. S., Marimon-Junior, B. H., Marimon, B. S., Elias, F., de Farias, J., Freitag, R., Mews, E. A., Neves, E. C., Prestes, N. C. C. S., and Malhi, Y.: Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO2 soil efflux in cerradao forest undergoing ecological succession, Acta Oecol., 82, 23–31, https://doi.org/10.1016/j.actao.2017.05.005, 2017.
Peixoto, K. D. S., Marimon-Junior, B. H., Cavalheiro, K. A., Silva, N. A., das Neves, E. C., Freitag, R., Mews, E. A., Valadao, M. B. X., and Marimon, B. S.: Assessing the effects of rainfall reduction on litterfall and the litter layer in phytophysiognomies of the Amazonia–Cerrado transition, Braz. J. Bot., 41, 589–600, https://doi.org/10.1007/s40415-018-0443-2, 2018.
Pérez-Ramos, I. M., Volaire, F., Fattet, M., Blanchard, A., and Roumet, C.: Tradeoffs between functional strategies for resource-use and drought-survival in Mediterranean rangeland species, Environ. Exp. Bot., 87, 126–136, https://doi.org/10.1016/j.envexpbot.2012.09.004, 2013.
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, Á. C. A., Dávila Cardozo, N., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., ter Steege, H., Stropp, J., Vásquez, R., Zelazowski, P., Álvarez Dávila, E., Andelman, S., Andrade, A., Chao, K.-J., Erwin, T., Di Fiore, A., Honorio C., E., Keeling, H., Killeen, T. J., Laurance, W. F., Peña Cruz, A., Pitman, N. C. A., Núñez Vargas, P., Ramírez-Angulo, H., Rudas, A., Salomão, R., Silva, N., Terborgh, J., and Torres-Lezama, A.: Drought sensitivity of the Amazon rainforest, Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033, 2009.
Powers, J. S., Vargas G. G., Brodribb, T. J., Schwartz, N. B., Pérez-Aviles, D., Smith-Martin, C. M., Becknell, J. M., Aureli, F., Blanco, R., Calderón-Morales, E., Calvo-Alvarado, J. C., Calvo-Obando, A. J., Chavarría, M. M., Carvajal-Vanegas, D., Jiménez-Rodríguez, C. D., Chacon, E. M., Schaffner, C. M., Werden, L. K., Xu, X., and Medvigy, D.: A catastrophic tropical drought kills hydraulically vulnerable tree species, Glob. Change Biol., 26, 3122–3133, https://doi.org/10.1111/gcb.15037, 2020.
Prestes, N. C., Marimon, B. S., Morandi, P. S., Reis, S. M., Marimon Junior, B. H., Cruz, W. J., Oliveira, E. A., Lucas H. Mariano, L. H., Elias, F., Santos, D. M., Esquivel-Muelbert, A., and Phillips, O. L.: Impact of the extreme 2015–16 El Niño climate event on forest and savanna tree species of the Amazonia-Cerrado transition, Flora, 319, 152597, https://doi.org/10.1016/j.flora.2024.152597, 2024.
Ratter, J. A., Richards, P. W., Argent, G., and Gifford, D. R.: Observations on the vegetation of northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo Expedition area, Philos. T. Roy. Soc. B, 266, 449–492, https://doi.org/10.1098/rstb.1973.0053, 1973.
Reis, S. M., Lenza, E., Marimon, B. S., Gomes, L., Forsthofer, M., Morandi, P. S., Marimon Junior, B. H., Feldpausch, T. R., and Elias, F.: Post-fire dynamics of the woody vegetation of a savanna forest (Cerradão) in the Cerrado-Amazon transition zone, Acta Bot. Bras., 29, 408–416, https://doi.org/10.1590/0102-33062015abb0009, 2015.
Reis, S. M., de Oliveira, E. A., Elias, F., Gomes, L., Morandi, P. S., Marimon, B. S., Marimon Junior, B. H., Neves, E. C., Oliveira, O., and Lenza, E.: Resistance to fire and the resilience of the woody vegetation of the “Cerradão” in the “Cerrado”–Amazon transition zone, Braz. J. Bot., 40, 193–201, https://doi.org/10.1007/s40415-016-0336-1, 2017.
Reis, S. M., Marimon, B. S., Marimon Junior, B. H., Morandi, P. S., Oliveira, E. A. D., Elias, F., and Phillips, O. L.: Climate and fragmentation affect forest structure at the southern border of Amazonia, Plant Ecol. Divers., 11, 13–25, 2018.
Reis, S. M., Marimon, B. S., Esquivel-Muelbert, A., Marimon Junior, B. H., Morandi, P. S., Elias, F., de Oliveira, E. A., Galbraith, D., Feldpausch, T. R., Menor, I. O., Malhi, Y., and Phillips, O. L.: Climate and crown damage drive tree mortality in southern Amazonian edge forests, J. Ecol., 110, 876–888, https://doi.org/10.1111/1365-2745.13849, 2022.
Reis, S. M., Malhi, Y., Marimon Junior, B. H., Marimon, B. S., Zhang-Zheng, H., Araújo, I., Freitag, R., de Oliveira, E. A., Peixoto, K. S., Souza, L. J., Souza da Silva, E. L., Bernardes Santos, E., Silva, K. P., Gonçalves, M. D. A., Girardin, C., Dahlsjö, C., Phillips, O., and Oliveras Menor, I.: Datapackage from: Sensitivity of tropical woodland savannas to El Niño droughts, ForestPlots.net [data set], https://doi.org/10.5521/2025_4, 2025.
Rezende, A. V., Vale, A. D., Sanquetta, C. R., Figueiredo Filho, A., and Felfili, J. M.: Comparação de modelos matemáticos para estimativa do volume, biomassa e estoque de carbono da vegetação lenhosa de um cerrado sensu stricto em Brasília, DF, Sci. For., 71, 65–73, https://doi.org/10.5902/1980509827065, 2006.
Ribeiro, J. F. and Walter, B. M. T.: As principais fitofisionomias do bioma Cerrado, in: Cerrado Ecologia e Fauna, edited by: Sano, S. M., Almeida, S. P., and Ribeiro, J. F., Embrapa Informação Tecnológico, Brasília, 153–221, ISBN 9788573833973, 2008.
Rifai, S. W., Girardin, C. A. J., Berenguer, E., del Aguila-Pasquel, J., Dahlsjö, C. A. L., Doughty, C. E., Jeffery, K. J., Moore, S., Oliveras, I., Riutta, T., Rowland, L. M., Araujo Murakami, A., Addo-Danso, S. D., Brando, P., Burton, C., Evouna Ondo, F., Duah-Gyamfi, A., Farfán Amézquita, F., Freitag, R., Hancco Pacha, F., Huaraca Huasco, W., Ibrahim, F., Mbou, A. T., Mihindou Mihindou, V., Peixoto, K. S., Rocha, W., Rossi, L. C., Seixas, M., Silva-Espejo, J. E., Abernethy, K. A., Adu-Bredu, S., Barlow, J., da Costa, A. C. L., Marimon, B. S., Marimon-Junior, B. H., Meir, P., Metcalfe, D. B., Phillips, O. L., White, L. J. T., and Malhi, Y.: ENSO Drives interannual variation of forest woody growth across the tropics, Philos. T. R. Soc. B, 373, 20170410, https://doi.org/10.1098/rstb.2017.0410, 2018.
Riutta, T., Malhi, Y., Kho, L. K., Marthews, T. R., Huaraca Huasco, W., Khoo, M., Tan, S., Turner, E., Reynolds, G., Both, S., Burslem, D. F. R. P., Teh, Y. A., Vairappan, C. S., Majalap, N., and Ewers, R. M.: Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests, Glob. Change Biol., 24, 2913–2928, https://doi.org/10.1111/gcb.14068, 2018.
Scalon, M. C., Oliveras Menor, I., Freitag, R., Peixoto, K. S., Rifai, S. W., Marimon, B. S., Marimon Junior, B. H., and Malhi, Y.: Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone, Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, 2022.
Silvério, D. V., Brando, P. M., Bustamante, M. M., Putz, F. E., Marra, D. M., Levick, S. R., and Trumbore, S. E.: Fire, fragmentation, and windstorms: A recipe for tropical forest degradation, J. Ecol., 107, 656–667, https://doi.org/10.1111/1365-2745.13076, 2019.
Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., and Frank, D.: Drought, heat, and the carbon cycle: a review, Curr. Clim. Change Rep., 4, 266–286, https://doi.org/10.1007/s40641-018-0103-4, 2018.
Terra, M. C., Nunes, M. H., Souza, C. R., Ferreira, G. W., do Prado-Junior, J. A., Rezende, V. L., Maciel, R., Mantovani, V., Rodrigues, A., Augusto Morais, V. A., Scolforo, J. R. S., and de Mello, J. M.: The inverted forest: Aboveground and notably large belowground carbon stocks and their drivers in Brazilian savanas, Sci. Total Environ., 867, 161320, https://doi.org/10.1016/j.scitotenv.2022.161320, 2023.
Zhang-Zheng, H., Adu-Bredu, S., Duah-Gyamfi, A., Moore, S., Addo-Danso, S. D., Amissah, L., Valentini, R., Djagbletey, G., Anim-Adjei, K., Quansah, J., Sarpong, B., Owusu-Afriyie, K., Gvozdevaite, A., Tang, M., Ruiz-Jaen, M. C., Ibrahim, F., Girardin, C. A. J., Rifai, S., Dahlsjö, C. A. L., Riutta, T., Deng, X., Sun, Y., Prentice, I. C., Oliveras Menor, I., and Malhi, Y.: Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia, Nat. Commun., 15, 3158, https://doi.org/10.1038/s41467-024-47202-x, 2024.
Short summary
The 2015–2016 El Niño caused severe droughts in tropical forests, but its impact on the Cerrado, Brazil's largest savanna, was unclear. Our study tracked the productivity of two key Cerrado vegetation types over 5 years. Before the El Niño, productivity was higher in the transitional forest–savanna, but it dropped sharply during the event. Meanwhile, the savanna showed minor changes. These findings suggest that transitional ecosystems are particularly vulnerable to drought and climate change.
The 2015–2016 El Niño caused severe droughts in tropical forests, but its impact on the Cerrado,...
Altmetrics
Final-revised paper
Preprint