Articles | Volume 22, issue 17
https://doi.org/10.5194/bg-22-4367-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4367-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The primacy of dissolved organic matter to aquatic light variability
Henry F. Houskeeper
CORRESPONDING AUTHOR
Department of Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
Stanford B. Hooker
Independent researcher, USA
Related authors
No articles found.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Aiken, J., Moore, G. F., Trees, C. C., Hooker, S. B., and Clark, D. K.: The SeaWiFS CZCS-type pigment algorithm, Oceanographic Lit. Rev., 3, 315–316, 1996.
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F.: Microbial utilization of organic matter in the world's oceans, Mar. Ecol. Prog. S., 10, 101–114, 1983.
Azam, F.: Microbial control of oceanic carbon flux: the plot thickens, Science, 280, 694–696, 1998.
Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., and Hoepffner, N.: Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res.-Oceans, 108, C7, https://doi.org/10.1029/2001JC000882, 2003.
Bach, L. T., Riebesell, U., Sett, S., Febiri, S., Rzepka, P., and Schulz, K. G.: An approach for particle sinking velocity measurements in the 3–400 µm size range and considerations on the effect of temperature on sinking rates, Marine Biol., 159, 1853–1864, 2012.
Bell, T. W. and Siegel, D. A.: Nutrient availability and senescence spatially structure the dynamics of a foundation species, P. Natl. Acad. Sci. USA, 119, e2105135118, https://doi.org/10.1073/pnas.2105135118, 2022.
Bidigare, R. R., Ondrusek, M. E., Morrow, J. H., and Kiefer, D.: In vivo absorption properties of algal pigments, Ocean Optics X Proc. SPIE, 1302, 290–302, 1990.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations, J. Geophys. Res.-Oceans, 109, C11, https://doi.org/10.1029/2004JC002419, 2004.
Cael, B. B., Chase, A., and Boss, E.: Information content of absorption spectra and implications for ocean color inversion, Appl. Optics, 59, 3971–3984, 2020.
Cael, B. B., Bisson, K., Boss, E., and Erickson, Z. K.: How many independent quantities can be extracted from ocean color?, Limnol. Oceanogr. Lett., 8, 603–610, 2023.
Cetinić, I., Rousseaux, C. S., Carroll, I. T., Chase, A. P., Kramer, S. J., Werdell, P. J., Siegel, D. A., Dierssen, H. M., Catlett, D., Neeley, A., and Ramos, I. M. S., Wolny, J. L., Sadoff, N., Urquhart, E., Westberry, T. K., Stramski, D., Pahlevan, N., Seegers, B. N., Sirk, E., Lange, P. K., Vandermeulen, R. A., Graff, J. R., Allen, J. G., Gaube, P., McKinna, L. I. W., McKibben, S. M., Binding, C. E., Calzado, Sanjuan, V., and Sayers, M.: Phytoplankton composition from sPACE: Requirements, opportunities, and challenges, Remote Sens. Environ., 302, 113964, https://doi.org/10.1016/j.rse.2023.113964, 2024.
Clark, D. K.: Phytoplankton pigment algorithms for the Nimbus-7 CZCS, in: Oceanography from Space, 227–237, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4613-3315-9_28, 1981.
Clarke, G. L., Ewing, G. C., and Lorenzen, C. J.: Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration, Science, 167, 1119–1121, 1970.
Claustre, H., Morel, A., Hooker, S.B., Babin, M., Antoine, D., Oubelkheir, K., Bricaud, A., Leblanc, K., Quéguiner, B., and Maritorena, S.: Is desert dust making oligotrophic waters greener?, Geophys. Rev. Lett., 29, 1–4, 2002.
Claustre, H., Hooker, S. B., Van Heukelem, L., Berthon, J.-F., Barlow, R., Ras, J., Sessions, H., Targa, C., Thomas, C., van der Linde, D., and Marty, J.-C.: An intercomparison of HPLC phytoplankton pigment methods using in situ samples: Application to remote sensing and database activities, Mar. Chem., 85, 41–61, 2004.
Del Vecchio, R. and Blough, N. V.: Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling, Mar. Chem., 78, 231–253, 2002.
Dierssen, H. M.: Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate, P. Natl. Acad. Sci. USA, 107, 17073–17078, 2010.
Dierssen, H. M. and Smith, R. C.: Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters, J. Geophys. Res.-Oceans, 105, 26301–26312, 2000.
Doron, M., Bélanger, S., Doxoran, D., and Babin, M.: Spectral variations in the near-infrared reflectance., Remote Sens. Environ., 115, 1617–1631, 2011.
Dutkiewicz, S., Hickman, A.E., Jahn, O., Henson, S., Beaulieu, C., and Monier, E.: Ocean colour signature of climate change, Nat. Commun., 10, 578, https://doi.org/10.1038/s41467-019-08457-x, 2019.
Erickson, Z. K., Werdell, P. J., and Cetinić, I.: Bayesian retrieval of optically relevant properties from hyperspectral water-leaving reflectances, Appl. Optics, 59, 6902–6917, 2020.
Erickson, Z. K., McKinna, L., Werdell, P. J., and Cetinić, I.: Bayesian approach to a generalized inherent optical property model, Optics Express, 31, 22790–22801, 2023.
Fenchel, T.: The microbial loop–25 years later, J. Exper. Mar. Biol. Ecol., 366, 99–103, 2008.
Fisher, R. A.: The distribution of the partial correlation coefficient, Metron, 3, 329–332, 1924.
Garver, S. A. and Siegel, D. A.: Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea, J. Geophys. Res.-Oceans, 102, 18607–18625, 1997.
Gordon, H. R.: Evolution of ocean color atmospheric correction: 1970–2005, Remote Sens., 13, 5051, https://doi.org/10.3390/rs13245051, 2021.
Gordon, H. R. and Morel, A.: Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, in: Lecture Notes on Coastal and Estuarine Studies, 113 pp., Springer-Verlag, New York, 1983.
Gordon, H. R., Clark, D. K., Mueller, J. L., and Hovis, W. A.: Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: comparisons with surface measurements, Science, 210, 63–66, 1980.
Gordon, H. R., Clark, D. K., Brown, J. W., Brown, O. B., Evans, R. H., and Broenkow, W. W.: Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates, Appl. Optics, 22, 20–36, 1983.
Gordon, Howard R., Otis B. Brown, Robert H. Evans, James W. Brown, Raymond C. Smith, Karen S. Baker, and Dennis K. Clark.: A semianalytic radiance model of ocean color, J. Geophys. Res.-Atmo., 93, 10909–10924, https://doi.org/10.1029/JD093iD09p10909, 1988.
Gonsior, M., Hertkorn, N., Conte, M. H., Cooper, W. J., Bastviken, D., Druffel, E., and Schmitt-Kopplin, P.: Photochemical production of polyols arising from significant photo-transformation of dissolved organic matter in the oligotrophic surface ocean, Mar. Chem., 163, 10–18, 2014.
Granéli, E., Carlsson, P., and Legrand, C.: The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species, Aquatic Ecol., 33, 17–27, 1999.
Gray, P. C., Boss, E., Bourdin, G., and Lehahn, Y.: Emergent patterns of patchiness differ between physical and planktonic properties in the ocean, Nat. Commun., 16, 1808, https://doi.org/10.1038/s41467-025-56794-x, 2025.
Grew, G. W. and Mayo, L. S.: Ocean color algorithm for remote sensing of chlorophyll, NASA Tech. Pub., No. NAS 1.60, 2164, 1983.
Guild, Liane S., Raphael M. Kudela, Stanford B. Hooker, Sherry L. Palacios, and Henry F. Houskeeper.: Airborne radiometry for calibration, validation, and research in oceanic, coastal, and inland waters, Front. Environ. Sci., 8, 585529, https://doi.org/10.3389/fenvs.2020.585529, 2020.
Hansell, D. A. and Orellana, M. V.: Dissolved Organic Matter in the Global Ocean: A Primer, Gels, 7, 128, https://doi.org/10.3390/gels7030128, 2021.
Hirata, T., Hirawake, T., Sakaida, F., Yamaguchi, H., Suzuki, K., Murakami, H., Ishizaka, J., Kobayashi, H., Fujukara, A., Toratani, M., and Saitoh, S.: Development and Verification of SGLI/GCOM-C1 Ocean Algorithms, J. Rem. Sens. Soc. Japan, 34, 278–285, 2014.
Hooker, S. B., Claustre, H., Ras, J., Van Heukelem, L., Berthon, J.-F., Targa, C., van der Linde, D., Barlow, R., and Sessions, H.: The First SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-1), NASA Tech. Memo. 2000–206892, Vol. 14, edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 42 pp., 2000.
Hooker, S. B., Lazin, G., Zibordi, G., and McLean, S.: An evaluation of above- and in-water methods for determining water-leaving radiances, J. Atmos. Ocean. Tech., 19, 486–515, 2002.
Hooker, S. B., Bernhard, G., Morrow, J. H., Booth, C. R., Comer, T., Lind, R. N., and Quang, V.: Optical sensors for planetary radiant energy (OSPREy): calibration and validation of current and next-generation NASA missions. TM-2012-215872, NASA Goddard Space Flight Center, Greenbelt, Maryland, 117 pp., 2012a.
Hooker, S. B., Clementson, L., Thomas, C. S., Schlüter, L., Allerup, M., Ras, J., Claustre, H., Normandeau, C., Cullen, J., Kienast, M., Kozlowski, W., Vernet, M., Chakraborty, S., Lohrenz, S., Tuel, M., Redalje, D., Cartaxana, P., Mendes, C. R., Brotas, V., Matondkar, S. G. P., Parab, S. G., Neeley, A., and Egeland, E. S.: The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5), NASA Tech. Memo. 2012–217503, NASA Goddard Space Flight Center, Greenbelt, Maryland, 98 pp., 2012b.
Hooker, S. B., Morrow, J. H., and Matsuoka, A.: Apparent optical properties of the Canadian Beaufort Sea – Part 2: The 1 % and 1 cm perspective in deriving and validating AOP data products, Biogeosciences, 10, 4511–4527, https://doi.org/10.5194/bg-10-4511-2013, 2013.
Hooker, S. B., Lind, R. N., Morrow, J. H., Brown, J. W., Suzuki, K., Houskeeper, H. F., Hirawake, T., and Maure, E. R.: Advances in Above- and In-Water Radiometry, Vol. 1: Enhanced Legacy and State-of-the-Art Instrument Suites, TP–2018–219033/Vol. 1, NASA Goddard Space Flight Center, Greenbelt, Maryland, 60 pp., 2018a.
Hooker, S. B., Lind, R. N., Morrow, J. H., Brown, J. W., Kudela, R. M., Houskeeper, H. F., and Suzuki, K.: Advances in Above- and In-Water Radiometry, Vol. 2: Autonomous Atmospheric and Oceanic Observing Systems, TP–2018–219033/Vol. 2, NASA Goddard Space Flight Center, Greenbelt, Maryland, 69 pp., 2018b.
Hooker, S. B., Lind, R. N., Morrow, J. H., Brown, J. W., Kudela, R. M., and Houskeeper, H. F., and Suzuki, K.: Advances in Above- and In-Water Radiometry, Vol. 3: Hybridspectral Next-Generation Optical Instruments, TP–2018–219033/Vol. 3, NASA Goddard Space Flight Center, Greenbelt, Maryland, 39 pp., 2018c.
Hooker, S. B., Matsuoka, A., Kudela, R. M., Yamashita, Y., Suzuki, K., and Houskeeper, H. F.: A global end-member approach to derive aCDOM(440) from near-surface optical measurements, Biogeosciences, 17, 475–497, https://doi.org/10.5194/bg-17-475-2020, 2020.
Hooker, S. B., Houskeeper, H. F., Kudela, R. M., Matsuoka, A., Suzuki, K., and Isada, T.: Spectral modes of radiometric measurements in optically complex waters, Cont. Shelf Res., 219, 104357, https://doi.org/10.1016/j.csr.2021.104357, 2021a.
Hooker, S. B., Houskeeper, H. F., Lind, R. N., and Suzuki, K.: One-and two-band sensors and algorithms to derive aCDOM(440) from global above- and in-water optical observations, Sensors, 21, 5384, https://doi.org/10.3390/s21165384, 2021b.
Hooker, S. B., Houskeeper, H. F., Lind, R. N., Kudela, R. M., and Suzuki, K.: Verification and validation of hybridspectral radiometry obtained from an unmanned surface vessel (USV) in the open and coastal oceans, Remote Sens., 14, 1084, https://doi.org/10.3390/rs14051084, 2022.
Houskeeper, H. F.: Advances in bio-optics for observing aquatic ecosystems, University of California, Santa Cruz, https://www.proquest.com/dissertations-theses/advances-bio-optics-observing-aquatic-ecosystems/docview/2436427912/se-2 (last access: 25 August 2025), 2020.
Houskeeper, H. F. and Hooker, S. B.: Extending aquatic spectral information with the first radiometric IR-B field observations, PNAS Nexus, 2, pgad340, https://doi.org/10.1093/pnasnexus/pgad340, 2023.
Houskeeper, H. F. and Hooker, S. B.: The primacy of dissolved organic matter to aquatic light variability, Dryad [data set], https://doi.org/10.5061/dryad.8pk0p2p14, 2025.
Houskeeper, H. F., Draper, D., Kudela, R. M., and Boss, E.: Chlorophyll absorption and phytoplankton size information inferred from hyperspectral particulate beam attenuation, Appl. Optics, 59, 6765–6773, 2020.
Houskeeper, H. F., Hooker, S. B., and Kudela, R. M.: Spectral range within global aCDOM(440) algorithms for oceanic, coastal, and inland waters with application to airborne measurements, Remote Sens. Environ., 253, 112155, https://doi.org/10.1016/j.rse.2020.112155, 2021.
Houskeeper, H. F., Hooker, S. B., and Cavanaugh, K. C.: Spectrally simplified approach for leveraging legacy geostationary oceanic observations, Appl. Optics, 61, 7966–7977, 2022.
Houskeeper, H. F., Hooker, S. B., and Lind, R. N.: Expanded linear responsivity for Earth and planetary radiometry, J. Atmos. Ocean. Tech., 41, 1093–1105, 2024.
Hovis, W. A.: The Nimbus-7 coastal zone color scanner (CZCS) program, in: Oceanography from Space, 213-225, Boston, MA, Springer US, 1981.
Hu, C., Lee, Z., and Franz, B.: Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophys. Res., 117, C1, https://doi.org/10.1029/2011JC007395, 2012.
Isada, T., Hooker, S. B., Taniuchi, Y., and Suzuki, K.: Evaluation of retrieving chlorophyll a concentration and colored dissolved organic matter absorption from satellite ocean color remote sensing in the coastal waters of Hokkaido, Japan, J. Oceanol., 78, 263–276, 2022.
Jerlov, N. G.: Optical studies of ocean water, Rept. Swedish Deep-Sea Exped., 1–59, 1951.
Jerlov, N. G.: Optical Oceanography, Elsevier Oceanol., Series 5, ISBN 0-444-41490-8, 1968.
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.: Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean, Nat. Rev. Microb., 8, 593–599, 2010.
Johnson, R., Strutton, P. G., Wright, S. W., McMinn, A., and Meiners, K. M.: Three improved satellite chlorophyll algorithms for the Southern Ocean, J. Geophys. Res.-Oceans, 118, 3694–3703, 2013.
Kahru, M. and Mitchell, B. G.: Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current, Int. J. Remote Sens., 20, 3423–3429, 1999.
Kalle, K.: The problem of the Gelbstoff in the sea, Mar. Biol., 4, 91–104, 1966.
Kirk, J. T. O.: Light and photosynthesis in aquatic ecosystems, Cambridge University Press, https://doi.org/10.1017/CBO9780511623370, 2011.
Kramer, S. J., Siegel, D. A., Maritorena, S., and Catlett, D.: Global surface ocean HPLC phytoplankton pigments and hyperspectral remote sensing reflectance, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937536, 2021.
Kramer, S. J., Siegel, D. A., Maritorena, S., and Catlett, D.: Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales, Remote Sens. Environ., 270, 112879, https://doi.org/10.1016/j.rse.2021.112879, 2022.
Kudela, R. M., Palacios, S. L., Austerberry, D. C., Accorsi, E. K., Guild, L. S., and Torres-Perez, J.: Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters, Remote Sens. Environ., 167, 196–205, 2015.
Kudela, R. M., Hooker, S. B., Houskeeper, H. F., and McPherson, M.: The influence of signal to noise ratio of legacy airborne and satellite sensors for simulating next-generation coastal and inland water products, Remote Sens., 11, 2071, https://doi.org/10.3390/rs11182071, 2019.
Kudela, R. M., Hooker, S. B., Guild, L. S., Houskeeper, H. F., and Taylor, N.: Expanded signal to noise ratio estimate for validating next-generation satellite sensors in oceanic, coastal, and inland waters, Remote Sens., 16, 1238, https://doi.org/10.3390/rs16071238, 2024.
Lee, Z. P., Carder, K. L., and Arnone, R. A.: Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters, Appl. Optics, 41, 5755–5772, 2002.
Letelier, R. M. and Abbott, M. R.: An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS), Remote Sens. Environ., 58, 215–223, 1996.
Lewis, K. M. and Arrigo, K. R.: Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the Arctic Ocean, J. Geophys. Res.-Oceans, 125, e2019JC015706, https://doi.org/10.1029/2019JC015706, 2020.
Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of a semianalytical ocean color model for global-scale applications, Appl. Optics, 41, 2705–2714, 2002.
Matsuoka, A., Babin, M., Doxaran, D., Hooker, S. B., Mitchell, B. G., Bélanger, S., and Bricaud, A.: A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space, Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, 2014.
McClain, C., Hooker, S. B., Feldman, G., and Bontempi, P.: Satellite data for ocean biology, biogeochemistry, and climate research, Eos, Trans. Amer. Geophys. Union, 87, 337–343, 2006.
Morel, A.: In-water and remote measurements of ocean color, Bound.-Lay. Meteorol., 18, 177–201, 1980.
Morel, A.: Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters), J. Geophys. Res., 93, 10749–10768, 1988.
Morel, A.: Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?, J. Geophys. Res., 114, C01016, https://doi.org/10.1029/2008JC004803, 2009.
Morel, A., Hervé Claustre, David Antoine, and B. Gentili.: Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters., Biogeosciences, 4, 913–925, https://doi.org/10.5194/bg-4-913-2007, 2007.
Morel, A. and Berthon, J.‐F.: Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote‐sensing applications, Limnol. Oceanogr., 34, 1545–1562, 1989.
Morel, A. and Gentili, B.: The dissolved yellow substance and the shades of blue in the Mediterranean Sea, Biogeosciences, 6, 2625–2636, https://doi.org/10.5194/bg-6-2625-2009, 2009.
Morel, A. and Prieur, L.: Analysis of variations in ocean color 1, Limnol. Oceanogr., 22, 709–722, 1977.
Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W.: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, NASA Goddard Space Flight Center, Greenbelt, Maryland, 80 pp., 2010.
O'Reilly, J. E. and Werdell, P. J.: Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6, Remote Sens. Environ., 229, 32–47, 2019.
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C.: Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res.-Oceans, 103, 24937–24953, 1998.
O'Shea, R. E., Pahlevan, N., Smith, B., Bresciani, M., Egerton, T., Giardino, C., Li, L., Moore, T., Ruiz-Verdu, A., Ruberg, S., and Simis, S. G.: Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and PRISMA imagery, Remote Sens. Environ., 266, 112693, https://doi.org/10.1016/j.rse.2021.112693, 2021.
Prochaska, J. X. and Frouin, R. J.: On the Challenges of Retrieving Phytoplankton Properties from Remote-Sensing Observations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-927, 2025.
Ryther, J. H. and Yentsch, C. S: The estimation of phytoplankton production in the ocean from chlorophyll and light data 1, Limnol. Oceanogr., 2, 281–286, 1957.
Sala, M. M., Aparicio, F. L., Balagué, V., Boras, J. A., Borrull, E., Cardelús, C., Cros, L., Gomes, A., López-Sanz, A., Malits, A., and Martínez, R. A.: Contrasting effects of ocean acidification on the microbial food web under different trophic conditions, ICES J. Mar. Sci., 73, 670–679, 2016.
Sathyendranath, S., Prieur, L., and Morel, A.: An evaluation of the problems of chlorophyll retrieval from ocean colour, for case 2 waters, Adv. Space Res., 7, 27–30, 1987.
Sauer, M. J., Roesler, C. S., Werdell, P. J., and Barnard, A.: Under the hood of satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties, Optics Express, 20, 20920–20933, 2012.
Sea-Bird Scientific: Hyperspectral Ocean Color Radiometer User Manual. HyperOCR 2024-07-10 Version C, https://www.seabird.com/asset-get.download.jsa?id=69833853935 (last access: 2 August 2024).
Siegel, D. A., Maritorena, S., Nelson, N. B., and Behrenfeld, M.J.: Independence and interdependencies among global ocean color properties: Reassessing the bio‐optical assumption, J. Geophys. Res.-Oceans, 110, C07011, https://doi.org/10.1029/2004JC002527, 2005.
Siegel, D. A., Behrenfeld, M. J., Maritorena, S., McClain, C. R., Antoine, D., Bailey, S. W., Bontempi, P. S., Boss, E. S., Dierssen, H. M., Doney, S. C., and Eplee Jr., R. E.: Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission, Remote Sens. Environ., 135, 77–91, 2013.
Smith, R. C., Baker, K. S., and Dustan, P.: Fluorometric techniques for the measurement of oceanic chlorophyll in the support of remote sensing, Scripps Institution of Oceanography, Ref. 81-17, 1981.
Steele, J. H.: The structure of marine ecosystems, Harvard University Press, https://doi.org/10.4159/harvard.9780674592513.c4, 1974.
Suzuki, K., Kamimura, A., and Hooker, S. B.: Rapid and highly sensitive analysis of chlorophylls and carotenoids from marine phytoplankton using ultra-high performance liquid chromatography (UHPLC) with the first derivative spectrum chromatogram (FDSC) technique, Mar. Chem., 176, 96–109, https://doi.org/10.1016/j.marchem.2015.07.010, 2015.
Taylor, B. B., Torrecilla, E., Bernhardt, A., Taylor, M. H., Peeken, I., Röttgers, R., Piera, J., and Bracher, A.: Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance, Biogeosciences, 8, 3609–3629, https://doi.org/10.5194/bg-8-3609-2011, 2011.
Twardowski, M. S., Boss, E., Sullivan, J. M., and Donaghay, P. L.: Modeling the spectral shape of absorption by chromophoric dissolved organic matter, Mar. Chem., 89, 69–88, 2004.
Tyler, J. E.: In situ detection and estimation of chlorophyll and other pigments in the ocean, P. Natl. Acad. Sci. USA, 47, 1726–1733, 1961.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res.-Oceans, 111, C08005, https://doi.org/10.1029/2005JC003207, 2006.
Van Heukelem, L. and Hooker, S. B.: The Importance of a Quality Assurance Plan for Method Validation and Minimizing Uncertainties in the HPLC Analysis of Phytoplankton Pigments, in: Phytoplankton Pigments Characterization, Chemotaxonomy and Applications in Oceanography, edited by: Roy, S., Llewellyn, C.A., Egeland, E.S., and Johnsen, G., Cambridge University Press, Cambridge, 195–242, 2011.
Werdell, P. J. and Bailey, S. W.: The SeaWiFS Bio-optical Archive and Storage System (SeaBASS): Current architecture and implementation, NASA Technical Memo: 2002-211617, edited by: Fargion, G. S. and McClain, C. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 45 pp., 2002.
Werdell, P. J., Franz, B. A., Bailey, S. W., Feldman, G. C., Boss, E., Brando, V. E., Dowell, M., Hirata, T., Lavender, S. J., Lee, Z., and Loisel, H.: Generalized ocean color inversion model for retrieving marine inherent optical properties, Appl. Optics, 52, 2019–2037, 2013.
Yentsch, C. S.: The influence of phytoplankton pigments on the colour of sea water, Deep-Sea Res., 7, 1–9, 1960.
Zaneveld, J. R. V. and Kitchen, J. C.: The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure, J. Geophys. Res.-Oceans, 100, 13309–13320, 1995.
Zaneveld, J. R. V., Boss, E., and Barnard, A.: Influence of surface waves on measured and modeled irradiance profiles, Appl. Optics, 40, 1442–1449, 2001.
Short summary
Oceanic light has historically been modeled based on phytoplankton concentration, consistent with a grazing food chain. This study indicates that oceanic light variability is more closely linked to variability in dissolved organic matter. The result is consistent with advancing knowledge of the microbial loop, wherein dissolved compounds are important ecosystem drivers. The findings also indicate that accurate retrieval of dissolved organics is key to the remote sensing of phytoplankton.
Oceanic light has historically been modeled based on phytoplankton concentration, consistent...
Altmetrics
Final-revised paper
Preprint