Articles | Volume 22, issue 17
https://doi.org/10.5194/bg-22-4423-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4423-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Measurements of fluorescent dissolved organic matter (FDOM) in seawater (filter blanks, pore sizes, and storage)
School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul 08826, South Korea
Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea
Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, South Korea
Heejun Han
School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul 08826, South Korea
Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea
Intae Kim
Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea
Guebuem Kim
School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul 08826, South Korea
Related authors
No articles found.
Yong-Jae Baek, Bomina Kim, Seok-Hyun Youn, Sang-Heon Lee, Hyo-Keun Jang, Heejun Han, Hugh W. Ducklow, Sung-Han Kim, and Jung-Ho Hyun
EGUsphere, https://doi.org/10.5194/egusphere-2025-4211, https://doi.org/10.5194/egusphere-2025-4211, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Climate change is driving more frequent and intense heavy rainfall worldwide. We show that the massive runoff from the Yangtze River strongly regulates microbial productivity by altering nutrient balance and the bioavailability of dissolved organic carbon, providing insights into how climate change may affect marine ecosystems. Our findings are applicable to other ocean basins (e.g., the Amazon River and the Arctic Ocean) that receive substantial freshwater input accompanied by heavy rainfall.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021, https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is enclosed by a dike along the western coast of South Korea, was determined using a combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties (absorbance and fluorescence) of dissolved organic matter in two different seasons (March 2017 and September 2018).
Cited articles
Amaral, J. H. F., Gaddy, J. R., Bianchi, T. S., Osborne, T. Z., Newman, S., Dombrowski, J., and Morrison, E. S.: Controls on the composition of dissolved organic matter in treatment wetland source waters of South Florida, USA, Ecol. Eng., 194, 107047, https://doi.org/10.1016/j.ecoleng.2023.107047, 2023.
Bro, R.: PARAFAC. Tutorial and applications, Chemometr. Intell. Lab., 38, 149–171, https://doi.org/10.1016/S0169-7439(97)00032-4, 1997.
Catalá, T. S., Reche, I., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Ortega-Retuerta, E., Calvo, E., Alvarez, M., Marrasé, C., and Stedmon, C. A.: Turnover time of fluorescent dissolved organic matter in the dark global ocean, Nat. Commun., 6, 5986, https://doi.org/10.1038/ncomms6986, 2015.
Chen, J., Zhou, Y., and Zhang, Y.: New insights into microbial degradation of cyanobacterial organic matter using a fractionation procedure, Int. J. Env. Res. Pub. He., 19, 6981, https://doi.org/10.3390/ijerph19126981, 2022.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem., 51, 325–346, https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Coble, P. G.: Marine optical biogeochemistry: the chemistry of ocean color, Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350, 2007.
Coble, P. G., Del Castillo, C. E., and Avril, B.: Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon, Deep-Sea Res. Pt. II, 45, 2195–2223, https://doi.org/10.1016/S0967-0645(98)00068-X, 1998.
Conmy, R. N., Coble, P. G., Cannizzaro, J. P., and Heil, C. A.: Influence of extreme storm events on West Florida Shelf CDOM distributions, J. Geophys. Res.-Biogeo., 114, G00F04, https://doi.org/10.1029/2009JG000981, 2009.
Druffel, E. R., Griffin, S., Coppola, A. I., and Walker, B. D.: Radiocarbon in dissolved organic carbon of the Atlantic Ocean, Geophys. Res. Lett., 43, 5279–5286, https://doi.org/10.1002/2016GL068746, 2016.
Druffel, E. R., Griffin, S., Wang, N., Garcia, N. G., McNichol, A. P., Key, R. M., and Walker, B. D.: Dissolved organic radiocarbon in the central Pacific Ocean, Geophys. Res. Lett., 46, 5396–5403, https://doi.org/10.1029/2019GL083149, 2019.
Galletti, Y., Gonnelli, M., Brogi, S. R., Vestri, S., and Santinelli, C.: DOM dynamics in open waters of the Mediterranean Sea: New insights from optical properties, Deep-Sea Res. Pt. I, 144, 95–114, https://doi.org/10.1016/j.dsr.2019.01.007, 2019.
Gonçalves-Araujo, R., Granskog, M. A., Bracher, A., Azetsu-Scott, K., Dodd, P. A., and Stedmon, C. A.: Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters, Sci. Rep.-UK, 6, 33978, https://doi.org/10.1038/srep33978, 2016.
Han, H., Na, T., Cho, H.-M., Kim, G., and Hwang, J.: Large fluxes of continental-shelf-borne dissolved organic carbon in the East China Sea and the Yellow Sea, Mar. Chem., 240, 104097, https://doi.org/10.1016/j.marchem.2022.104097, 2022.
Kim, J., Kim, Y., Kang, H.-W., Kim, S. H., Rho, T., and Kang, D.-J.: Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter, Mar. Chem., 218, 103720, https://doi.org/10.1016/j.marchem.2019.103720, 2020.
Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., and Tranvik, L. J.: Inner filter correction of dissolved organic matter fluorescence, Limnol. Oceanogr.-Meth., 11, 616–630, https://doi.org/10.4319/lom.2013.11.616, 2013.
Lawaetz, A. J. and Stedmon, C. A.: Fluorescence intensity calibration using the Raman scatter peak of water, Appl. Spectrosc., 63, 936–940, https://doi.org/10.1366/000370209788964548, 2009.
Lin, H. and Guo, L.: Variations in colloidal DOM composition with molecular weight within individual water samples as characterized by flow field-flow fractionation and EEM-PARAFAC analysis, Environ. Sci. Technol., 54, 1657–1667, https://doi.org/10.1021/acs.est.9b07123, 2020.
Lønborg, C., Álvarez-Salgado, X. A., Davidson, K., Martínez-García, S., and Teira, E.: Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo, Mar. Chem., 119, 121–129, https://doi.org/10.1016/j.marchem.2010.02.001, 2010.
Margolin, A. R., Gonnelli, M., Hansell, D. A., and Santinelli, C.: Black Sea dissolved organic matter dynamics: Insights from optical analyses, Limnol. Oceanogr., 63, 1425–1443, https://doi.org/10.1002/lno.10791, 2018.
Murphy, K. R., Boehme, J. R., Brown, C., Noble, M., Smith, G., Sparks, D., and Ruiz, G. M.: Exploring the limits of dissolved organic matter fluorescence for determining seawater sources and ballast water exchange on the US Pacific coast, J. Marine Syst., 111, 157–166, https://doi.org/10.1016/j.jmarsys.2012.10.010, 2013a.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence spectroscopy and multi-way techniques. PARAFAC, Anal. Methods-UK, 5, 6557–6566, https://doi.org/10.1039/C3AY41160E, 2013b.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online spectral library of auto-fluorescence by organic compounds in the environment, Anal. Methods-UK, 6, 658–661, https://doi.org/10.1039/C3AY41935E, 2014.
Nelson, N. B. and Siegel, D. A.: The global distribution and dynamics of chromophoric dissolved organic matter, Annu. Rev. Mar. Sci., 5, 447–476, https://doi.org/10.1146/annurev-marine-120710-100751, 2013.
Rochelle-Newall, E. and Fisher, T.: Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton, Mar. Chem., 77, 7–21, https://doi.org/10.1016/S0304-4203(01)00072-X, 2002.
Spencer, R. G., Bolton, L., and Baker, A.: Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations, Water Res., 41, 2941–2950, https://doi.org/10.1016/j.watres.2007.04.012, 2007.
Stedmon, C. A. and Bro, R.: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr.-Meth., 6, 572–579, https://doi.org/10.4319/lom.2008.6.572, 2008.
Stedmon, C. A. and Nelson, N. B.: The optical properties of DOM in the ocean, in: Biogeochemistry of marine dissolved organic matter, Academic Press, Elsevier, 481–508, https://doi.org/10.1016/B978-0-12-405940-5.00010-8, 2015.
Stedmon, C. A., Markager, S., and Bro, R.: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82, 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0, 2003.
Tanoue, E.: Vertical distribution of dissolved organic carbon in the North Pacific as determined by the high-temperature catalytic oxidation method, Earth Planet. Sc. Lett., 111, 201–216, https://doi.org/10.1016/0012-821X(92)90179-Y, 1992.
Vines, M. and Terry, L. G.: Evaluation of the biodegradability of fluorescent dissolved organic matter via biological filtration, AWWA Water Science, 2, e1201, https://doi.org/10.1002/aws2.1201, 2020.
Wang, Y., Wang, Y., Ge, H., Liu, B., Wu, J., Han, L., Liu, Y., Yu, J., and Xu, Y.: Optical characterization of dissolved organic matter in Kuroshio-Oyashio confluence region: Implication for water mass mixing, Deep-Sea Res. Pt. I, 185, 103807, https://doi.org/10.1016/j.dsr.2022.103807, 2022.
Yamashita, Y. and Tanoue, E.: Production of bio-refractory fluorescent dissolved organic matter in the ocean interior, Nat. Geosci., 1, 579–582, https://doi.org/10.1038/ngeo279, 2008.
Yamashita, Y. and Tanoue, E.: Basin scale distribution of chromophoric dissolved organic matter in the Pacific Ocean, Limnol. Oceanogr., 54, 598–609, https://doi.org/10.4319/lo.2009.54.2.0598, 2009.
Yamashita, Y., Tosaka, T., Bamba, R., Kamezaki, R., Goto, S., Nishioka, J., Yasuda, I., Hirawake, T., Oida, J., and Obata, H.: Widespread distribution of allochthonous fluorescent dissolved organic matter in the intermediate water of the North Pacific, Prog. Oceanogr., 191, 102510, https://doi.org/10.1016/j.pocean.2020.102510, 2021.
Zepp, R. G., Sheldon, W. M., and Moran, M. A.: Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices, Mar. Chem., 89, 15–36, https://doi.org/10.1016/j.marchem.2004.02.006, 2004.
Short summary
This study examines methodological uncertainties in FDOM (fluorescent dissolved organic matter) measurements due to filter blanks, pore sizes, and storage conditions. Results show that pre-cleaning filters and optimizing storage improve measurement reliability. These findings minimize procedural errors and provide clear guidelines for FDOM analysis, emphasizing the need for method standardization in marine biogeochemical research.
This study examines methodological uncertainties in FDOM (fluorescent dissolved organic matter)...
Altmetrics
Final-revised paper
Preprint