Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-4993-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4993-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tree growth and water-use efficiency at the Himalayan fir treeline and lower altitudes: roles of climate warming and CO2 fertilization
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
China National Botanical Garden, Beijing 100093, China
Cited articles
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions, Plant Cell Environ., 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest. Ecol. Manag., 259, 660–684, https://doi.org/10.1016/j.foreco.2009.09.001, 2010.
Andreu-Hayles, L., Planells, O., Gutierrez, E., Muntan, E., Helle, G., Anchukaitis, K. J., and Schleser, G. H.: Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests, Glob. Change Biol., 17, 2095–2112, https://doi.org/10.1111/j.1365-2486.2010.02373.x, 2011.
Aranda, I., Gil, L., and Pardos, J. A.: Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe, Trees-Struct. Funct., 14, 344–352, https://doi.org/10.1007/s004680050229, 2000.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Boucher, E., Guiot, J., Daux, V., Danis, P. A., and Dussouillez, P.: An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations, Biogeosciences, 10, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, 2014.
Bräuning, A. and Mantwill, B.: Summer temperature and summer monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings, Geophys. Res. Lett., 31, L24205, https://doi.org/10.1029/2004gl020793, 2004.
Brienen, R. J. W., Wanek, W., and Hietz, P.: Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species, Trees-Struct. Funct., 25, 103–113, https://doi.org/10.1007/s00468-010-0474-1, 2011.
Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Charney, N. D., Babst, F., Poulter, B., Record, S., Trouet, V. M., Frank, D., Enquist, B. J., and Evans, M. E.: Observed forest sensitivity to climate implies large changes in 21st century North American forest growth, Ecol. Lett., 19, 1119–1128, https://doi.org/10.1111/ele.12650, 2016.
Cole, C. T., Anderson, J. E., Lindroth, R. L., and Waller, D. M.: Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides), Glob. Change Biol., 16, 2186–2197, https://doi.org/10.1111/j.1365-2486.2009.02103.x, 2010.
Du, J.: Change of temperature in Tibetan Plateau from 1961 to 2000, Acta Geographica Sinica, 56, 682–690, https://doi.org/10.11821/xb200106007, 2001.
Ehleringer, J. R. and Cerling, T. E.: Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentration in plants, Tree Physiol., 15, 105–111, https://doi.org/10.1093/treephys/15.2.105, 1995.
Fang, O., Qiu, H., and Zhang, Q.-B.: Species-specific drought resilience in juniper and fir forests in the central Himalayas, Ecol. Indic., 117, 106615, https://doi.org/10.1016/j.ecolind.2020.106615, 2020.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon Isotope Discrimination and Photosynthesis, Annu. Rev. Plant Phys., 40, 503–537, https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989.
Farquhar, G. D., Oleary, M. H., and Berry, J. A.: On the Relationship between Carbon Isotope Discrimination and the Inter-Cellular Carbon-Dioxide Concentration in Leaves, Aust. J. Plant. Physiol., 9, 121–137, https://doi.org/10.1071/PP9820121, 1982.
Franco, B. and Fares, Q.: A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment, Tree Ring Res., 64, 81-96, https://doi.org/10.3959/2008-6.1, 2008.
Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., Treydte, K., Zimmermann, N. E., Schleser, G. H., Ahlstrom, A., Ciais, P., Friedlingstein, P., Levis, S., Lomas, M., Sitch, S., Viovy, N., Andreu-Hayles, L., Bednarz, Z., Berninger, F., Boettger, T., D'Alessandro, C. M., Daux, V., Filot, M., Grabner, M., Gutierrez, E., Haupt, M., Hilasvuori, E., Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger, M., Loader, N. J., Marah, H., Masson-Delmotte, V., Pazdur, A., Pawelczyk, S., Pierre, M., Planells, O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K. T., Saracino, A., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, M., Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S., and Weigl, M.: Water-use efficiency and transpiration across European forests during the Anthropocene, Nat. Clim. Chang., 5, 579–583, https://doi.org/10.1038/nclimate2614, 2015.
Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A., Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowell, N., Norby, R. J., Tissue, D. T., and von Caemmerer, S.: Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century, New Phytol., 197, 1077–1094, https://doi.org/10.1111/nph.12104, 2013.
Garcia-Forner, N., Adams, H. D., Sevanto, S., Collins, A. D., Dickman, L. T., Hudson, P. J., Zeppel, M. J., Jenkins, M. W., Powers, H., Martinez-Vilalta, J., and McDowell, N. G.: Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation, Plant Cell Environ., 39, 38–49, https://doi.org/10.1111/pce.12588, 2016.
Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W., Zimmermann, N. E., Metsaranta, J. M., de Jong, R., Frank, D. C., Esper, J., Buntgen, U., Guo, X. J., and Bhatti, J.: No growth stimulation of Canada's boreal forest under half-century of combined warming and CO2 fertilization522, P. Natl. Acad. Sci. USA, 113, E8406–E8414, https://doi.org/10.1073/pnas.1610156113, 2016.
Granda, E., Rossatto, D. R., Camarero, J. J., Voltas, J., and Valladares, F.: Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought, Oecologia, 174, 307–317, https://doi.org/10.1007/s00442-013-2742-4, 2014.
Guerrieri, R., Belmecheri, S., Ollinger, S. V., Asbjornsen, H., Jennings, K., Xiao, J., Stocker, B. D., Martin, M., Hollinger, D. Y., Bracho-Garrillo, R., Clark, K., Dore, S., Kolb, T., Munger, J. W., Novick, K., and Richardson, A. D.: Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency, P. Natl. Acad. Sci. USA, 116, 16909–16914, https://doi.org/10.1073/pnas.1905912116, 2019.
Guo, M. M., Zhang, Y. D., Wang, X. C., Gu, F. X., and Liu, S. R.: The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau, Forest Ecol. Manag., 425, 21–26, https://doi.org/10.1016/j.foreco.2018.05.021, 2018.
Guo, Y., Zhang, L., Yang, L., Shen, W., Pan, Y., Wright, I. J., Luo, Y., and Luo, T.: Enhanced leaf turnover and nitrogen recycling sustain CO2 fertilization effect on tree-ring growth, Nat. Ecol. Evol., 6, 1271–1278, https://doi.org/10.1038/s41559-022-01811-1, 2022.
Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y., Allen, C. D., Arndt, S. K., Breshears, D. D., Davi, H., Galbraith, D., Ruthrof, K. X., Wunder, J., Adams, H. D., Bloemen, J., Cailleret, M., Cobb, R., Gessler, A., Grams, T. E. E., Jansen, S., Kautz, M., Lloret, F., and O'Brien, M.: Research frontiers for improving our understanding of drought-induced tree and forest mortality, New Phytol., 218, 15–28, https://doi.org/10.1111/nph.15048, 2018.
Hereş, A. M., Voltas, J., Lopez, B. C., and Martinez-Vilalta, J.: Drought-induced mortality selectively affects Scots pine trees that show limited intrinsic water-use efficiency responsiveness to raising atmospheric CO2, Funct. Plant Biol., 41, 244–256, https://doi.org/10.1071/Fp13067, 2014.
Holmes, R. L. and Kozinn, W. P.: Pneumonia and Bacteremia Associated with Hemophilus-Influenzae Serotype-D, J. Clin. Microbiol., 18, 730–732, https://doi.org/10.1128/Jcm.18.3.730-732.1983, 1983.
Huang, R., Zhu, H. F., Liu, X. H., Liang, E. Y., Griessinger, J., Wu, G. J., Li, X. X., and Brauning, A.: Does increasing intrinsic water use efficiency (iWUE) stimulate tree growth at natural alpine timberline on the southeastern Tibetan Plateau?, Global Planet Change, 148, 217–226, https://doi.org/10.1016/j.gloplacha.2016.11.017, 2017.
Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327, https://doi.org/10.1038/nature12291, 2013.
Klein, T.: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours, Funct. Ecol., 28, 1313–1320, https://doi.org/10.1111/1365-2435.12289, 2014.
Klesse, S., Peters, R. L., Alfaro-Sánchez, R., Badeau, V., Baittinger, C., Battipaglia, G., Bert, D., Biondi, F., Bosela, M., Budeanu, M., Čada, V., Camarero, J. J., Cavin, L., Claessens, H., Cretan, A.-M., Čufar, K., de Luis, M., Dorado-Liñán, I., Dulamsuren, C., Espelta, J. M., Garamszegi, B., Grabner, M., Gricar, J., Hacket-Pain, A., Hansen, J. K., Hartl, C., Hevia, A., Hobi, M., Janda, P., Jump, A. S., Kašpar, J., Kazimirović, M., Keren, S., Kreyling, J., Land, A., Latte, N., Lebourgeois, F., Leuschner, C., Lévesque, M., Longares, L. A., del Castillo, E. M., Menzel, A., Merela, M., Mikoláš, M., Motta, R., Muffler, L., Neycken, A., Nola, P., Panayotov, M., Petritan, A. M., Petritan, I. C., Popa, I., Prislan, P., Levanič, T., Roibu, C.-C., Rubio-Cuadrado, Á., Sánchez-Salguero, R., Šamonil, P., Stajić, B., Svoboda, M., Tognetti, R., Toromani, E., Trotsiuk, V., van der Maaten, E., van der Maaten-Theunissen, M., Vannoppen, A., Vašíčková, I., von Arx, G., Wilmking, M., Weigel, R., Zlatanov, T., Zang, C., and Buras, A.: No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation, Glob. Change Biol., 30, e17546, https://doi.org/10.1111/gcb.17546, 2024.
Körner, C.: Carbon limitation in trees, J. Ecol., 91, 4–17, https://doi.org/10.1046/j.1365-2745.2003.00742.x, 2003.
Körner, C.: Paradigm shift in plant growth control, Curr. Opin. Plant Biol., 25, 107–114, https://doi.org/10.1016/j.pbi.2015.05.003, 2015.
Laumer, W., Andreu, L., Helle, G., Schleser, G. H., Wieloch, T., and Wissel, H.: A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses, Rapid Commun. Mass Sp., 23, 1934–1940, https://doi.org/10.1002/rcm.4105, 2009.
Lefcheck, J. S.: PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics, Meth. Ecol. Evol., 7, 573–579, https://doi.org/10.1111/2041-210X.12512, 2016.
Lévesque, M., Siegwolf, R., Saurer, M., Eilmann, B., and Rigling, A.: Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions, New Phytol., 203, 94–109, https://doi.org/10.1111/nph.12772, 2014.
Liang, E., Leuschner, C., Dulamsuren, C., Wagner, B., and Hauck, M.: Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau, Climatic Change, 134, 163–176, https://doi.org/10.1007/s10584-015-1531-y, 2016a.
Liang, E., Wang, Y., Piao, S., Lu, X., Camarero, J. J., Zhu, H., Zhu, L., Ellison, A. M., Ciais, P., and Penuelas, J.: Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau, P. Natl. Acad. Sci. USA, 113, 4380–4385, https://doi.org/10.1073/pnas.1520582113, 2016b.
Linares, J. C. and Camarero, J. J.: From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline, Glob. Change Biol., 18, 1000–1015, https://doi.org/10.1111/j.1365-2486.2011.02566.x, 2012.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolstrom, M., Lexer, M. J., and Marchetti, M.: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems, Forest Ecol. Manag., 259, 698–709, https://doi.org/10.1016/j.foreco.2009.09.023, 2010.
Liu, M., Trugman, A., Penuelas, J., and Anderegg, W.: Climate-driven disturbances amplify forest drought sensitivity, Nat. Clim. Chang., 14, 746–752, https://doi.org/10.1038/s41558-024-02022-1, 2024.
Liu, X., Zhao, L., Voelker, S., Xu, G., Zeng, X., Zhang, X., Zhang, L., Sun, W., Zhang, Q., Wu, G., and Li, X.: Warming and CO2 enrichment modified the ecophysiological responses of Dahurian larch and Mongolia pine during the past century in the permafrost of northeastern China, Tree Physiol., 39, 88–103, https://doi.org/10.1093/treephys/tpy060, 2019.
Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R., and Waterhouse, J. S.: An improved technique for the batch processing of small wholewood samples to alpha-cellulose, Chem. Geol., 136, 313–317, https://doi.org/10.1016/S0009-2541(96)00133-7, 1997.
Martínez-Sancho, E., Dorado-Linan, I., Merino, E. G., Matiu, M., Helle, G., Heinrich, I., and Menzel, A.: Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits, Glob. Change Biol., 24, 1012–1028, https://doi.org/10.1111/gcb.13937, 2018.
Martínez-Vilalta, J. and Garcia-Forner, N.: Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept, Plant Cell Environ., 40, 962–976, https://doi.org/10.1111/pce.12846, 2017.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Q. Sci. Rev., 23, 771–801, https://doi.org/10.1016/j.quascirev.2003.06.017, 2004.
Mirabel, A., Girardin, M., Metsaranta, J., Way, D., and Reich, P.: Increasing atmospheric dryness reduces boreal forest tree growth, Nat. Commun., 14, 6901, https://doi.org/10.1038/s41467-023-42466-1, 2023.
Mu, Y. M., Fang, O., and Lyu, L.: Nighttime warming alleviates the incidence of juniper forest growth decline on the Tibetan Plateau, Sci. Total Environ., 782, 146924, https://doi.org/10.1016/j.scitotenv.2021.146924, 2021a.
Mu, Y. M., Zhang, Q. B., Fang, O. Y., Lyu, L. X., and Cherubini, P.: Pervasive tree-growth reduction in Tibetan juniper forests, Forest Ecol. Manag., 480, 118642, https://doi.org/10.1016/j.foreco.2020.118642, 2021b.
Nakagawa, S. and Schielzeth, H.: A general and simple method for obtaining R2 from generalized linear mixed-effects models, Meth. Ecol. Evol., 4, 133–142, https://doi.org/10.1111/j.2041-210x.2012.00261.x, 2013.
Olano, J., Sangüesa-Barreda, G., García-López, M., García-Hidalgo, M., Rozas, V., García-Cervigón, A., Delgado Huertas, A., and Hernández-Alonso, H.: Water use efficiency and climate legacies dominate beech growth at its rear edge, J. Ecol., 111, 2160–2171, https://doi.org/10.1111/1365-2745.14164, 2023.
Pan, Y. D., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J. Y., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G. J., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., and Murdiyarso, D.: The enduring world forest carbon sink, Nature, 631, 563–569, https://doi.org/10.1038/s41586-024-07602-x, 2024.
Panthi, S., Fan, Z.-X., van der Sleen, P., and Zuidema, P. A.: Long-term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate, Glob. Change Biol., 26, 1778–1794, https://doi.org/10.1111/gcb.14910, 2020.
Peñuelas, J., Canadell, J. G., and Ogaya, R.: Increased water-use efficiency during the 20th century did not translate into enhanced tree growth, Global Ecol. Biogeogr., 20, 597–608, https://doi.org/10.1111/j.1466-8238.2010.00608.x, 2011.
Peñuelas, J., Sardans, J., Estiarte, M., Ogaya, R., Carnicer, J., Coll, M., Barbeta, A., Rivas-Ubach, A., Llusia, J., Garbulsky, M., Filella, I., and Jump, A. S.: Evidence of current impact of climate change on life: a walk from genes to the biosphere, Glob. Change Biol., 19, 2303–2338, https://doi.org/10.1111/gcb.12143, 2013.
Peters, W., van der Velde, I. R., van Schaik, E., Miller, J. B., Ciais, P., Duarte, H. F., van der Laan-Luijkx, I. T., van der Molen, M. K., Scholze, M., Schaefer, K., Vidale, P. L., Verhoef, A., Warlind, D., Zhu, D., Tans, P. P., Vaughn, B., and White, J. W. C.: Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale, Nat. Geosci., 11, 744–748, https://doi.org/10.1038/s41561-018-0212-7, 2018.
Piao, S., Nan, H., Huntingford, C., Ciais, P., Friedlingstein, P., Sitch, S., Peng, S., Ahlström, A., Canadell, J. G., Cong, N., Levis, S., Levy, P. E., Liu, L., Lomas, M. R., Mao, J., Myneni, R. B., Peylin, P., Poulter, B., Shi, X., Yin, G., Viovy, N., Wang, T., Wang, X., Zaehle, S., Zeng, N., Zeng, Z., and Chen, A.: Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nat. Commun., 5, 5018, https://doi.org/10.1038/ncomms6018, 2014.
Pu, X. and Lyu, L.: Disentangling the impact of photosynthesis and stomatal conductance on rising water-use efficiency at different altitudes on the Tibetan plateau, Agr. Forest Meteorol., 341, 109659, https://doi.org/10.1016/j.agrformet.2023.109659, 2023.
Pu, X., Wang, X., and Lyu, L.: Recent warming-induced tree growth enhancement at the Tibetan treeline and the link to improved water-use efficiency, Forests, 12, 1702, https://doi.org/10.3390/f12121702, 2021.
Qi, Z. H., Liu, H. Y., Wu, X. C., and Hao, Q.: Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China, Glob. Change Biol., 21, 816–826, https://doi.org/10.1111/gcb.12703, 2015.
R Core Team: R: a language and environment for statistical computing, R foundation for statistical computing, Vienna [software], https://www.r-project.org (last access: 29 November 2022), 2022.
Reed, C. C., Ballantyne, A. P., Cooper, L. A., and Sala, A.: Limited evidence for CO2-related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients, Glob. Change Biol., 24, 3922–3937, https://doi.org/10.1111/gcb.14165, 2018.
Salzer, M. W., Hughes, M. K., Bunn, A. G., and Kipfmueller, K. F.: Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes, Proc. Natl. Acad. Sci. U.S.A., 106, 20348–20353, https://doi.org/10.1073/pnas.0903029106, 2009.
Saurer, M., Siegwolf, R. T. W., and Schweingruber, F. H.: Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years, Glob. Change Biol., 10, 2109–2120, https://doi.org/10.1111/j.1365-2486.2004.00869.x, 2004.
Saurer, M., Spahni, R., Frank, D. C., Joos, F., Leuenberger, M., Loader, N. J., McCarroll, D., Gagen, M., Poulter, B., Siegwolf, R. T. W., Andreu-Hayles, L., Boettger, T., Linan, I. D., Fairchild, I. J., Friedrich, M., Gutierrez, E., Haupt, M., Hilasvuori, E., Heinrich, I., Helle, G., Grudd, H., Jalkanen, R., Levanic, T., Linderholm, H. W., Robertson, I., Sonninen, E., Treydte, K., Waterhouse, J. S., Woodley, E. J., Wynn, P. M., and Young, G. H. F.: Spatial variability and temporal trends in water-use efficiency of European forests, Glob. Change Biol., 20, 3700–3712, https://doi.org/10.1111/gcb.12717, 2014.
Shestakova, T. A., Voltas, J., Saurer, M., Berninger, F., Esper, J., Andreu-Hayles, L., Daux, V., Helle, G., Leuenberger, M., Loader, N. J., Masson-Delmotte, V., Saracino, A., Waterhouse, J. S., Schleser, G. H., Bednarz, Z., Boettger, T., Dorado-Linan, I., Filot, M., Frank, D., Grabner, M., Haupt, M., Hilasvuori, E., Jungner, H., Kalela-Brundin, M., Krapiec, M., Marah, H., Pawelczyk, S., Pazdur, A., Pierre, M., Planells, O., Pukiene, R., Reynolds-Henne, C. E., Rinne-Garmston, K. T., Rita, A., Sonninen, E., Stievenard, M., Switsur, V. R., Szychowska-Krapiec, E., Szymaszek, M., Todaro, L., Treydte, K., Vitas, A., Weigl, M., Wimmer, R., and Gutierrez, E.: Spatio-temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate, Global Ecol. Biogeogr., 28, 1295–1309, https://doi.org/10.1111/geb.12933, 2019.
Shi, C. M., Schneider, L., Hu, Y., Shen, M., Sun, C., Xia, J. Y., Forbes, B. C., Shi, P. L., Zhang, Y. D., and Ciais, P.: Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau, Environ. Res. Lett., 15, 054011, https://doi.org/10.1088/1748-9326/ab7b9b, 2020.
Shipley, B.: Confirmatory path analysis in a generalized multilevel context, Ecology, 90, 363–368, https://doi.org/10.1890/08-1034.1, 2009.
Sigdel, S. R., Wang, Y. F., Camarero, J. J., Zhu, H. F., Liang, E. Y., and Penuelas, J.: Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas, Glob. Change Biol., 24, 5549–5559, https://doi.org/10.1111/gcb.14428, 2018.
Silva, L. C. R. and Anand, M.: Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes, Global Ecol. Biogeogr., 22, 83–92, https://doi.org/10.1111/j.1466-8238.2012.00783.x, 2013.
Silva, L. C. R., Sun, G., Zhu-Barker, X., Liang, Q. L., Wu, N., and Horwath, W. R.: Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change, Sci. Adv., 2, e1501302, https://doi.org/10.1126/sciadv.1501302, 2016.
Sterck, F., Song, Y., and Poorter, L.: Drought- and heat-induced mortality of conifer trees is explained by leaf and growth legacies, Sci. Adv., 10, eadl4800, https://doi.org/10.1126/sciadv.adl4800, 2024.
van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F., Pons, T. L., Terburg, G., and Zuidema, P. A.: No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased, Nat. Geosci., 8, 24–28, https://doi.org/10.1038/Ngeo2313, 2015.
Voelker, S. L., Brooks, J. R., Meinzer, F. C., Anderson, R., Bader, M. K. F., Battipaglia, G., Becklin, K. M., Beerling, D., Bert, D., Betancourt, J. L., Dawson, T. E., Domec, J. C., Guyette, R. P., Korner, C., Leavitt, S. W., Linder, S., Marshall, J. D., Mildner, M., Ogee, J., Panyushkina, I., Plumpton, H. J., Pregitzer, K. S., Saurer, M., Smith, A. R., Siegwolf, R. T. W., Stambaugh, M. C., Talhelm, A. F., Tardif, J. C., Van de Water, P. K., Ward, J. K., and Wingate, L.: A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies, Glob. Change Biol., 22, 889–902, https://doi.org/10.1111/gcb.13102, 2016.
Voltas, J., Aguilera, M., Gutiérrez, E., and Shestakova, T. A.: Shared drought responses among conifer species in the middle Siberian taiga are uncoupled from their contrasting water-use efficiency trajectories, Sci. Total Environ., 720, 137590, https://doi.org/10.1016/j.scitotenv.2020.137590, 2020.
Walker, X. J., Mack, M. C., and Johnstone, J. F.: Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests, Glob. Change Biol., 21, 3102–3113, https://doi.org/10.1111/gcb.12893, 2015.
Wang, B., Chen, T., Xu, G. B., Wu, M. H., Zhang, G. S., Li, C. J., and Wu, G. J.: Anthropogenic-management could mitigate declines in growth and survival of Qinghai spruce (Picea crassifolia) in the east Qilian Mountains, northeast Tibetan Plateau, Agr. Forest Meteorol., 250, 118–126, https://doi.org/10.1016/j.agrformet.2017.12.249, 2018.
Wang, J., Taylor, A., and D'Orangeville, L.: Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest, P. Natl. Acad. Sci. USA, 120, e2212780120, https://doi.org/10.1073/pnas.2212780120, 2023.
Wang, W., McDowell, N. G., Liu, X., Xu, G., Wu, G., Zeng, X., and Wang, G.: Contrasting growth responses of Qilian juniper (Sabina przewalskii) and Qinghai spruce (Picea crassifolia) to CO2 fertilization despite common water-use efficiency increases at the northeastern Qinghai-Tibetan Plateau, Tree Physiol., https://doi.org/10.1093/treephys/tpaa169, 2020.
Wang, W. Z., Liu, X. H., An, W. L., Xu, G. B., and Zeng, X. M.: Increased intrinsic water-use efficiency during a period with persistent decreased tree radial growth in northwestern China: Causes and implications, Forest Ecol. Manag., 275, 14–22, https://doi.org/10.1016/j.foreco.2012.02.027, 2012.
Wu, G. J., Liu, X. H., Chen, T., Xu, G. B., Wang, W. Z., Zeng, X. M., and Zhang, X. W.: Elevation-dependent variations of tree growth and intrinsic water-use efficiency in Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains, China, Front. Plant Sci., 6, 12, https://doi.org/10.3389/fpls.2015.00309, 2015.
Xu, G. B., Liu, X. H., Qin, D. H., Chen, T., An, W. L., Wang, W. Z., Wu, G. J., Zeng, X. M., and Ren, J. W.: Climate warming and increasing atmospheric CO2 have contributed to increased intrinsic water-use efficiency on the northeastern Tibetan Plateau since 1850, Trees-Struct. Funct., 27, 465–475, https://doi.org/10.1007/s00468-013-0855-3, 2013.
Yang, R.-Q., Fu, P.-L., Fan, Z.-X., Panthi, S., Gao, J., Niu, Y., Li, Z.-S., and Bräuning, A.: Growth-climate sensitivity of two pine species shows species-specific changes along temperature and moisture gradients in southwest China, Agr. Forest Meteorol., 318, 108907, https://doi.org/10.1016/j.agrformet.2022.108907, 2022.
Zhang, X., Liu, X., Zhang, Q., Zeng, X., Xu, G., Wu, G., and Wang, W.: Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, Northeastern China, Agr. Forest Meteorol., 248, 145–155, https://doi.org/10.1016/j.agrformet.2017.09.013, 2018.
Zhao, D., Zhang, Z., and Zhang, Y.: Soil Moisture Dominates the Forest Productivity Decline During the 2022 China Compound Drought-Heatwave Event, Geophys. Res. Lett., 50, e2023GL104539, https://doi.org/10.1029/2023GL104539, 2023.
Short summary
This study explores how rising CO₂ and increasing temperatures affect the growth of Himalayan fir trees on the Tibetan Plateau, particularly in relation to water availability. We found that, while tree growth in wet, high-elevation areas improved with increased CO₂, growth in dry, low-elevation areas declined due to water stress. These findings suggest that, while CO₂ may boost growth in some areas, the negative effects of drought may outweigh these benefits.
This study explores how rising CO₂ and increasing temperatures affect the growth of Himalayan...
Altmetrics
Final-revised paper
Preprint